第6章回转体表面相贯线画法
- 格式:ppt
- 大小:1.28 MB
- 文档页数:42
两回转体轴线相交且其表面公内切于一个球面的相贯线
圆柱与圆柱斜交,当两圆
柱直径相等斜交处的曲面内切
于球时,相贯线正面投影为两
条相交不等长直线,且前后重
叠;水平面投影为圆形曲线,
圆柱与圆锥正交,当圆柱
直径相对圆锥正交处的曲面内
切于球时,相贯线正面投影为
两条相交等长直线且前后重
叠;水平面投影为对称交的两
圆柱与圆锥斜交,当圆柱
直径相对圆锥斜交处的曲面内
切于球时,相贯线正面投影为
两条相交不等长直线,且前后
重叠;水平面投影为不对称相
交的两椭圆曲线,且有部分不。
平面体与回转体相贯回转体与回转体相贯多体相贯5.1 概述1.相贯的形式两立体相交叫作相贯,其表面产生的交线叫做相贯线。
本章主要讨论常用不同立体相交时其表面相贯线的投影特性及画法。
2.相贯线的主要性质★表面性相贯线位于两立体的表面上。
★封闭性相贯线一般是封闭的空间折线(通常由直线和曲线组成)或空间曲线。
★共有性相贯线是两立体表面的共有线。
其作图实质是找出相贯的两立体表面的若干共有点的投影。
5.2 平面体与回转体相贯1.相贯线的性质相贯线是由若干段平面曲线(或直线)所组成的空间折线,每一段是平面体的棱面与回转体表面的交线。
2.作图方法求交线的实质是求各棱面与回转面的截交线。
•分析各棱面与回转体表面的相对位置,从而确定交线的形状。
•求出各棱面与回转体表面的截交线。
•连接各段交线,并判断可见性。
空间分析:四棱柱的四个棱面分别与圆柱面相交,前后两棱面与圆柱轴线平行,截交线为两段直线;左右两棱面与圆柱轴线垂直,截交线为两段圆弧。
投影分析:由于相贯线是两立体表面的共有线,所以相贯线的侧面投影积聚在一段圆弧上,水平投影积聚在矩形上。
例2:求作主视图例2:求作主视图1. 相贯线的性质相贯线一般为光滑封闭的空间曲线,它是两回转体表面的共有线。
5.3 回转体与回转体相贯2.作图方法•利用投影的积聚性直接找点。
•用辅助平面法。
•先找特殊点。
⒊作图过程•补充中间点。
确定交线的弯曲趋势确定交线的范围例1 :圆柱与圆柱相贯,求其相贯线。
●●●●●●●●●空间及投影分析:小圆柱轴线垂直于H面,水平投影积聚为圆,根据相贯线的共有性,相贯线的水平投影即为该圆。
大圆柱轴线垂直于W面,侧面投影积聚为圆,相贯线的侧面投影在该圆上。
求相贯线的投影:利用积聚性,采用表面取点法。
☆找特殊点☆补充中间点☆光滑连接当圆柱直径变化时,相贯线的变化趋势。
交线向大圆柱一侧弯交线为两条平面曲线(椭圆)●●●●●●●●●●●●●●●●●●●★外形交线◆两外表面相贯◆一内表面和一外表面相贯★内形交线◆两内表面相贯无轮是两外表面相贯,还是一内表面和一外表面相贯,或者两内表面相贯,求相贯线的方法和思路是一样的。
第六章立体的投影——立体的相贯线§6-1 平面立体与平面立体相贯§6-2 平面立体与曲面立体相贯§6-3 曲面立体与曲面立体相贯基本要求基本要求§6-1 平面立体与平面立体相贯一、概述二、例题1例题2例题3一、概述1.相贯线的性质相贯线是两立体表面的共有线,相贯线上的点是两立体表面的共有点;不同的立体以及不同的相贯位置,相贯线的形状也不同;2.相贯线的形状两平面立体的相贯线由折线组成。
折线的每一段都是甲形体的一个侧面与乙形体的一个侧面的交线,折线的转折点就是一个形体的侧棱与另一形体的侧面的交点。
3.求相贯线的方法求两平面立体相贯线的方法通常有两种:一种是求各侧棱对另一形体表面的交点,然后把位于甲形体同一侧面又位于乙形体同一侧面上的两点,依次连接起来。
另一种是求一形体各侧面与另一形体各侧面的交线。
4.判别相贯线可见性的原则只有位于两形体都可见的侧面上的交线,是可见的。
只要有一个侧面不可见,面上的交线就不可见。
1" y y yy1 4" 44' 33' 2' 1' 3" 2" 解题步骤1.分析 相贯线的正面投影已知,水平投影和侧面投影未知;2.求出相贯线上的折点Ⅰ、Ⅱ、 Ⅲ、 Ⅳ ;3.顺次地连接各点,作出相贯线,并且判别可见性;4.整理轮廓线。
2' 3' 4'5'6'1'3 24 56解题步骤1.分析相贯线为左右两组折线;相贯线的正面投影已知,水平投影未知;相贯线的投影前后、左右对称2.求出相贯线上的折点Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ;3.顺次地连接各点,作出相贯线,并且判别可见性;4.整理轮廓线。
1解题步骤1.分析 相贯线为一组闭合折线,相贯线的正面投影未知,水平投影已知;相贯线的投影前后、左右对称。
2.求出相贯线上的折点Ⅰ、Ⅱ、 Ⅲ等; 3.顺次地连接各点,作出相贯线,并且判别可见性;4.整理轮廓线。