在竖直平面内做圆周运动
- 格式:ppt
- 大小:619.51 KB
- 文档页数:11
竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。
2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。
物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。
小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。
G =10 m/s 2。
求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。
这是最小速度即是过最高点的临界速度v 0。
以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。
竖直平面内的圆周运动及实例分析竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点。
一、两类模型——轻绳类和轻杆类1.轻绳类。
运动质点在一轻绳的作用下绕中心点作变速圆周运动。
由于绳子只能提供拉力而不能提供支持力,质点在最高点所受的合力不能为零,合力的最小值是物体的重力。
所以:(1)质点过最高点的临界条件:质点达最高点时绳子的拉力刚好为零,质点在最高点的向心力全部由质点的重力来提供,这时有,式中的是小球通过最高点的最小速度,叫临界速度;(2)质点能通过最高点的条件是;(3)当质点的速度小于这一值时,质点运动不到最高点高作抛体运动了;(4)在只有重力做功的情况下,质点在最低点的速度不得小于,质点才能运动过最高点;(5)过最高点的最小向心加速度。
2.轻杆类。
运动质点在一轻杆的作用下,绕中心点作变速圆周运动,由于轻杆能对质点提供支持力和拉力,所以质点过最高点时受的合力可以为零,质点在最高点可以处于平衡状态。
所以质点过最高点的最小速度为零,(1)当时,轻杆对质点有竖直向上的支持力,其大小等于质点的重力,即;(2)当时,;(3)当,质点的重力不足以提供向心力,杆对质点有指向圆心的拉力;且拉力随速度的增大而增大;(4)当时,质点的重力大于其所需的向心力,轻杆对质点的竖直向上的支持力,支持力随的增大而减小,;(5)质点在只有重力做功的情况下,最低点的速度,才能运动到最高点。
过最高点的最小向心加速度。
过最低点时,轻杆和轻绳都只能提供拉力,向心力的表达式相同,即,向心加速度的表达式也相同,即。
质点能在竖直平面内做圆周运动(轻绳或轻杆)最高点的向心力最低点的向心力,由机械能守恒,质点运动到最低点和最高点的向心力之差,向心加速度大小之差也等于。
竖直平面内做完整圆周运动的条件哎呀,说到竖直平面内做完整圆周运动,这可是个让人兴奋又有点晕的事情呢!想象一下,你在游乐园里坐上了过山车,快要冲下那陡峭的坡,心里一阵小鹿乱撞,刺激得让人尖叫。
这种感觉其实就是在做圆周运动,只不过是竖着转圈,完全不一样的体验。
不过,要想在这个竖直平面上顺利完成圆周运动,有几个条件可是得要注意的,哟!首先呢,重力可不是你的小伙伴,它可是一位严肃的对手。
想象一下,如果你在运动的过程中,重力的影响大到让你离开轨道,那你可就要飞出圈圈了,这可不是开玩笑的。
举个简单的例子,像那种从高处跳下来的小伙伴,如果没有足够的速度,根本就无法顺利转一圈。
要是想成功完成这趟旅程,得有个过硬的基础,速度得跟得上,才行。
这就像打篮球一样,你得先运球,才能投篮,不然那球可就飞到天边去了。
圆周运动的另一个大关键就是向心力。
说白了,就是让你始终保持在那个圆圈里的神秘力量。
你可以把它想象成一个温柔的怀抱,时时刻刻把你包围着,让你不至于掉出去。
如果你有过骑自行车的经验,就会知道转弯的时候得用力压下去,这就是向心力在发挥作用。
没有它的帮助,你在转弯的时候就会像一只脱了缰绳的野马,飞得七零八落,根本无法优雅地完成那一圈的转弯。
向心力的来源可多了,比如说重力、摩擦力和拉力,甚至是你那股子拼劲儿,统统都可以算作助力。
你想啊,摩擦力就像个老司机,总能稳稳地掌控住方向,带你走上正轨。
再来聊聊那种神奇的速度变化。
很多人可能不知道,圆周运动里的速度可不是一成不变的,速度和位置的关系可大着呢。
想象一下你在风中飞驰,感觉像是要飞起来了,转弯的时候速度变得快了,简直就像是开了加速器。
这时候你得小心了,要不然可能就会因为速度过快而偏离了原来的轨道,摔得四脚朝天。
运动员们在训练的时候,最怕的就是在某个关键点失去控制,结果就变成了一个大笑话。
所以说,保持合适的速度,就像喝酒要有度,过了就不好了。
圆周运动的方向也很重要哦!不信你看看,跑步的时候,跑着跑着突然改变方向,那感觉就像在玩打地鼠,根本无法保持稳定。
竖直平面内的圆周运动模型考点规律分析(1)竖直平面内的圆周运动模型在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况,可分为三种模型。
一是只有拉(压)力,如球与绳连接、沿内轨道的“过山车”等,称为“轻绳模型”;二是只有推(支撑)力的,称为“拱桥模型”;三是可拉(压)可推(支撑),如球与杆连接,小球在弯管内运动等,称为“轻杆模型”。
(2)三种模型对比典型例题例1长度为L=0.50 m的轻质细杆OA,A端有一质量为m=3.0 kg的小球,如图所示,小球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0 m/s,g取10 m/s2,则此时细杆OA受到()A.6.0 N的拉力B.6.0 N的压力C.24 N的拉力D.24 N的压力[规范解答]设小球以速率v0通过最高点时,球对杆的作用力恰好为零,即mg =m v 20L得v 0=gL =10×0.50 m/s = 5 m/s 。
由于v =2.0 m/s< 5 m/s ,可知过最高点时,球对细杆产生压力,细杆对小球为支持力,如图所示,为小球的受力情况图。
由牛顿第二定律mg -N =m v 2L ,得N =mg -m v 2L =⎝ ⎛⎭⎪⎫3.0×10-3.0×2.020.50 N =6.0 N 由牛顿第三定律知,细杆OA 受到6.0 N 的压力。
[完美答案] B例2 一细绳与水桶相连,水桶中装有水,水桶与水一起以细绳的另一端点为圆心在竖直平面内做圆周运动,如图所示,水的质量m =0.5 kg ,水的重心到转轴的距离l =50 cm ,g 取10 m/s 2。
求:(1)若在最高点水不流出来,求桶的最小速率;(结果保留三位有效数字)(2)若在最高点水桶的速率v =3 m/s ,求水对桶底的压力大小。
[规范解答] (1)以水桶中的水为研究对象,在最高点恰好不流出来,说明水的重力恰好提供其做圆周运动所需的向心力,此时桶的速率最小。
竖直平面内的圆周运动一.竖直平面内的圆周运动属于圆周运动二.两种情况:1、没有支撑物的物体在竖直平面内的圆周运动①临界条件:小球到达最高点时绳的拉力(或轨道的弹力)刚好等于零,小球重力提供其圆周运动的向心力,即mg=mv02/R∴刚过最高点的临界速度(最小速度)v=②当v≥v0时小球通过最高点③当v<v0时小球不能到达最高点。
2、有支撑物的物体在竖直平面内的圆周运动v=0弹力的大小b图中的弹力a图中的弹力速度范围课堂练习1、绳系着装水的桶,在竖直平面内做圆周运动,水的质量m=0.5kg,绳长=0.4m.求(1)桶在最高点水不流出的最小速率?(2)水在最高点速率=3m/s时水对桶底的压力?(g取10m/s2)2、细杆的一端与一小球相连,可绕过O点的水平轴自由转动,现给小球一初速度,使它做圆周运动,a、b分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是()A.a处为拉力,b处为拉力B.a处为拉力,b处为推力C.a处为推力,b处为拉力D.a处为推力,b处为推力作业1.长度为0.5m的轻质细杆,A端有一质量为3kg的小球,以O点为圆心,在竖直平面内做圆周运动,如图所示,小球通过最高点时的速度为2m/s,取g=10m/s2,则此时轻杆OA将()A.受到6.0N的拉力B.受到6.0N的压力C.受到24N的拉力D.受到54N的拉力2.一轻杆一端固定一质量为m的小球,另一端以O为圆心,使小球做半径为R的圆周运动,以下说法正确的是()A、小球过最高点时,杆所受的弹力可以等于0B、小球过最高点时的最小速度为√gRC、小球过最高点时,杆对球的作用力可以与球所受重力方向相反,此时重力一定大于杆对球的作用力D、小球过最高点时,杆对球的作用力一定与小球所受重力方向相反3.质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度值为V,当小球以2V的速度经过最高点时,对轨道的压力值是()(A)0 (B)mg (C)3mg (D)5mg4.一质量为0.5kg的小球,用0.4m长的细线拴住在竖直面内作圆周运动,求:当小球在圆上最高点速度为4m/s时,细线的拉力是多少?(g=10m/s2)5. 如图,质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度是v,当小球以3v 的速度经过最高点时,对轨道的压力大小是多少?6.用钢管做成半径为R=0.5m的光滑圆环(管径远小于R)竖直放置,一小球(可看作质点,直径略小于管径)质量为m=0.2kg在环内做圆周运动,求:小球通过最高点A时,下列两种情况下球对管壁的作用力. 取g=10m/s2(1) A的速率为1.0m/s (2) A的速率为4.0m/s。
专题二:竖直平面内的圆周运动的综合问题学习目标】1. 了解竖直平面内的圆周运动的特点.2. 了解变速圆周的运动物体受到的合力产生的两个效果,知道做变速圆周运动的物体受到的合力不指向圆心.3. 掌握处理变速圆周运动正交分解的方法.4. 学会用能量观点研究竖直平面内圆周运动.教材解读】1. 竖直平面内的圆周运动的特点竖直平面内的圆周运动分为匀速圆周运动和变速圆周运动两种.常见的竖直平面内的圆周运动是物体在轨道弹力(或绳、杆的弹力)与重力共同作用下运动,多数情况下弹力(特别是绳的拉力与轨道的弹力)方向与运动方向垂直对物体不做功,而重力对物体做功使物体的动能不断变化,因而物体做变速圆周运动.若物体运动过程中,还受其他力与重力平衡,则物体做匀速圆周运动.2. 变速圆周运动所受合外力产生两个效果做变速圆周运动的物体受到的合力不指向圆心(图6-12-1),它产生两个方向的效果.半径方向的分力F1产生向心加速度改变速度的方向合切线方向的分力F2产生切线方向加速度改变速度的大小F因此变速圆周运动的合外力不等于向心力,只是在半径方向的分力F1 提供向心力.3. 变速圆周运动中的正交分解应用牛顿运动定律解答圆周运动问题时,常采用正交分解法,其坐标原点是做圆周运动的物体(视为质点)所在的位置,建立相互垂直的两个坐标轴:一个沿法线(半径)方向,法线方向的合力F 1改变速度的方向;另一个沿切线方向,切线方向的合力F2 改变速度的大小.(想一想,图6-12-1 中物体的速度在增大还是减小?)4. 处理竖直平面内圆周运动的方法如前所述,通常情况下,由于弹力对物体不做功,只有重力(或其他力)对物体做功,因此,运用能量观点(动能定理、机械能守恒定律)和牛顿运动定律相结合是解决此类问题的有效方法.另外要注意在不同约束条件下物体能完成圆周运动的条件不同:在绳(或沿圆轨道内侧运动)的约束下,最高点速度v gR ;在杆(或管)的约束下,最高点速度v ≥0.【案例剖析】例1.如图6-12-2 所示,质量为m的小球自半径为R 的光滑半圆形轨道最高点A 处由静止滑下,当滑至最低点B 时轨道对小球的支持力是多大?解析:小球下滑过程中轨道对小球的弹力不做功,只有重力对小球做功,所以小球的机械能守恒.1由机械能守恒定律得 : mgR mv 222在B 点, 根据牛顿第二定律有 :F mg m v, 由可解得 F 3mg R例 2.如图 6-12-3 所示,长为 l 的细绳一端固定在 O 点,另一端拴质量为 m 的小球, 在 O 点正下方距离 O 点 d 处有一钉子. 将细绳拉成水平无初速释放小球, 子后小球能在竖直平面内做完整的圆周运动,d 应满足什么条件?解析:为使小球能绕钉子做完整的圆周运动, 小球必须能通过圆周 的最高点, 设小球运动的轨道半径为 R ,则小球在最高点的速度应满足: v gR .根据机械能定律有 : mgl 2mgR 1mv 2由此可解得: R ≤0.4 l .所以, d 满足的条件是: 0.6 l ≤ d < l .例 3 .风洞实验室中可产生大小、 方向可调节的风力. 用长为 l 的细 线拴一小球将其放入风洞实验室,调节风力方向为水平向右(如图 6-12-4 所示),当小球静止在 A 点时,悬线与竖直方向夹角为 α.试求:⑴ 水平风力的大小;⑵ 若将小球从竖直位置由静止释放, 当悬线与竖直方向成多大角度时, 小球的速度最大?最大速度是多少?解析: ⑴参照图 6-12-5 ,根据平衡知识,可求得风力大小 F = mgtan α, 同时还可求得风力与重力的合力为 mg/cos α.⑵当小球运动到细线与竖直方向夹角为 β时,建立如图 6-12-6 所示的 坐标系:在 x 轴方向,当 Fcos β>mgsin β时,小球速度在增大; 当 Fcos β<mgsin β 时,小球速度在减小.当 Fcos β= mgsin β时小球的速度达到最大,将第⑴问中的 F 代入即12根据动能定理得 : Fl sin mgl (1 cos ) 2 mv思考: ⑴小球静止在 A 点时,给小球多大的速度才能使它在竖直平面内做完整的圆周运动? B F 如图 6-12-7 所示,小球必须能通过 B 点才能做完整的圆周运动, 设通过 B 点时小球的最小速度为v min ,则此时绳上拉力恰好为零.mg2mgvminm (1)mg2l 1 mv 2 1 mv m 2in(2)cos lcos 2 2 min由 (1)(2) 可解得: v 5glA图6 12 7 ⑵若将风力方向调节为竖直向上,并使风力大小恰好等于小球 重力,那么,在最低点给小球水平方向的初速度,试分析小球的运动情况.可解得: β =α.将 F mg tan 代入可解得2gl (1 cos )cos为使细绳碰到钉图6 12 3图 6 12 4 mg 图6 126x分析:因为合力对小球始终不做功,故动能不变,所以小球做匀速圆周运动. 【知识链接】飞行员在进行特技飞行表演时,会发生黑视现象.当飞行员从俯冲 状态往上拉时(图 6-12-8 ),血液处于超重状态,视重增大,心脏无法 象平常一样运输血液,导致血压降低,从而导致视网膜缺血. 【目标达成】1.如图 6-12-9 所示,小球在竖直放置的光滑圆弧轨道内侧做圆周运动, 球加速度方向的说法中,正确的是( )A. 一定指向圆心B. 一定不指向圆心C. 只有在最高点和最低点指向圆心D. 除最高点和最低点外,肯定不指向圆心解析:对小球受力分析可知,只有小球处于最高点和最低点时,弹力与重力的合力才 指向圆心,其他位置均不指向圆心,故选项C 、D 正确.2.上海锦江乐园新建的“摩天转轮”是在直径为 98m 的圆周上每隔一定位置固定 座舱,每座舱有 6 个座位.游人乘坐时,转轮始终不停地在竖直平面内匀速转动,试判断 下列说法中正确的是( )A. 每时每刻,乘客受到的合力都不为零B. 每个乘客都在做加速度为零的匀速运动C. 乘客在乘坐过程中对座位的压力始终不变D. 乘客在乘坐过程中的机械能始终保持不变 解析:由于乘客随座舱在竖直平面内做匀速圆周运动,故受到合力指向圆心,选项 A 正确、 B 错误.将加速度沿水平、竖直方向分解可知:人位于转轴以下时,人处于超重状 态,人对座位的压力大于人的重力;人位于转轴以上时,人处于失重状态,人对座位的压 力小于人的重力,故选项 C 错误.在运动过程中,人动能始终不变,而势能在变化,所以 选项 D 错误.故本题正确选项为 A .3.如图 6-12-10 所示,细线长为 l ,一端固定在 O 点,另一端系一小球,把线拉至水平位置,然后无初速释放小球,在达到最低点时小球加速度为 之间的关系为( )A . l 越长, a 越大, F 也越大B .l 越长, a 越大, F 不变C . l 越长, F 越大, a 不变D .a 、F 均不随 l 的变化而变化解析:根据机械能守恒定律和牛顿第二定律可求得:F = 3mg ,a = 2g ,故选项 D 正确.4.如图 6-12-11 所示,将完全相同的两个小球 A 、B ,用长 0.8m 的细线悬于以 v = 4m/s 向右匀速行驶的车厢顶部,两球分别与小车前后壁接触,由于某种原因,车厢突然停止, 此时前后悬线的拉力之比为( )A. 1: 1B. 1: 2C. 1: 3图6 12 11图 6 12 8a ,D. 1: 4解析:车厢停止时,前面小球也静止,故拉力等于重力;后面小球由于惯性开始做圆 周运动,根据牛顿第二定律可解得此时绳上拉力是其重力的 3 倍,故选项 C 正确.5.如图 6-12-12 所示, 质量为 m 的小球用细绳拴住, 在竖直平面内做 圆周运动,已知小球运动到最高点时对绳的拉力为 mg ,则小球运动到最低点时对绳的拉力为( )A . 3mg C .7mgD . 9mg22解析:在最高点: mg mg m v 1 ,在最低点: F mg m v 2 RR由机械能守恒定律:2mgR 1 mv 22 1 mv 12;由此可得正确选项为 C .2 22 16.如图 6-12-13 所示,从光滑的 1/4 圆弧槽的最高点滑下的小滑块,滑出槽口时速度方向为水平方向,槽口与一个半球顶点相切,半球底面为水平,若要使小物块滑出槽口后7.童非是我国著名的体操运动员,首次在单杠项目上实现了“单臂大回环”,即用一只手抓住单杠,伸展身体以单杠为轴做圆周运动.假设童非的质量为 65kg ,那么,在完成 “单臂大回环”的过程中,童非的单臂至少要能够承受 N 的力( g 取 10m/s 2)解析:设童非做圆周运动的轨道半径为 其最小速度可为 0.2在最低点: F mg m vR (R 为其重心离转轴的距离) ,则在最高点,1由机械能守恒定律: 2mgRmv 2,由此解得 F = 5mg=3250N .28.如图 6-12-14 所示,支架质量为 M ,放在水平地面上,转轴 O 处用长 l 的细绳悬挂质量为 m的小球.⑴ 把小球拉起到细绳水平的位置, 然后释放小球, 当它运动到最低 点时地面对支架的支持力多大?⑵若小球在竖直平面内摆动到最高点时,支架恰对地面无压力,则 小球在最高点的速度是多大?图 6 12 14B . 5mg 不沿半球面下滑,已知圆弧轨道的半径为 R 1,半球的半径为 是( )R 2,则 R 1和 R 2应满足的关系 A. R 1 R 2 C. R 1 R 2B. D.R 1 R 22R 1R 2解析:为使小物块不沿半球面下滑,则它在球顶端的速度v gR 2 ,由机械能守恒定律可得: mgR 11mv 2,联立解得2D 为正确选项.图6 12 12解析:⑴设小球运动到最低点速度为 v ,由机械能守恒定律和牛顿第二定律得:mgl 1 mv 2 ; F mg m v 由此可得 F 3mg 2l 所以此时地面对支架的支持力 F N = Mg + F = Mg +3mg ⑵ 运动到最高点时,支架恰对地面无压力,说明细绳上的拉力 2 对小球 : mg F m v解得 :v (M m)glF = Mg 拓展提高】 9.如图 6-12-15 所示,半径为 R 、内径很小的光滑半圆管置于竖直平面内,两个质量 均为 m 的小球 A 、B ,以不同的速度进入管内, 3mg ,B 通过最高点 C 时,对管壁的下部压力为 解析:设 第二定律, A 、 B 两球到达最高点时速度分别为A 通过最高点 C 时,对管壁上部的压力为 0.75mg ,求 A 、B 两球落地点间的距离. v A 、v B ,根据牛顿2v A mg 3mg m 2 vBmg 0.75mg mA 、B 两球离开C 后做平抛运动, x (v A v B ) t 解得 x 3R对 A 球 :解得 :v A 2 gR 解得 :v B 1gR落地点间距设为 △x ,根据平抛运动规律有:122R gt 22 10.如图 6-12-16 所示,光滑水平面 AB 与竖直平面内半圆形导轨在 B 点衔接,导轨 半径为 R .一个质量为 m 的物块静止在 A 处压缩弹簧,在弹力作用下获得向右的初速度, 当它经过 B 点进入导轨瞬间对导轨的压力为其重力的 7 倍,之后向上运动恰能完成半圆周 运动到达 C 点.求: ⑴ ⑵⑶ 解: 第二定律得: 弹簧对物块的弹力做的功;物块从 B 至 C 克服阻力做的功; 物块离开 C 点后落回水平面时的动能是多大? 物块在 B 点时受力 mg 和导轨的支持力 F N =7mg ,由牛顿图6 12 16 v B 2 1 2m E KBmv B 3mgRR2物块到达 C 点时仅受重力 mg ,由牛顿第二定律得:7mg mg2 vc mg m cRE KC 1 mv C 21 mgR22⑴根据动能定理,可求得弹簧弹力对物块做功为W 弹= E KB 3mgR⑵物体从 B 到 C 只有重力和阻力做功,根据动能定理有:W阻2mgR E KC E KB 解得:W阻0.5 mgR 即物体从B 到C 克服阻力做功为0.5mgR⑶物体离开轨道后做平抛运动,仅有重力做功,机械能守恒.E K E KC E pC 0.5mgR 2mgR 2.5mgR章末综合。
竖直平面内圆周运动的脱轨问题在日常生活中,我们经常看到一些游乐园中的过山车或者摩天轮等设施,它们都是以圆周运动为基础的。
然而,有时候我们会想,如果竖直平面内的圆周运动速度过快会发生什么呢?是否会发生脱轨的现象呢?我们来了解一下什么是圆周运动。
圆周运动是指物体沿着一个圆形轨道运动的过程。
在竖直平面内的圆周运动中,物体沿着一个半径固定的圆圈做匀速运动。
当物体保持一定的速度和半径时,它将始终受到一个向心力的作用,使其保持在圆周运动中。
那么,如果圆周运动的速度过快,物体是否会脱离轨道呢?答案是肯定的。
当物体的速度超过一定的临界值时,它将无法保持在圆周运动中,发生脱轨现象。
为了更好地理解这个问题,我们可以通过一个简单的例子来说明。
假设有一辆小汽车在一个竖直平面内的圆形赛道上进行运动。
当小汽车的速度逐渐增大时,它会受到向心力的作用而向内偏转,保持在圆形赛道上。
然而,当小汽车的速度超过一定的临界值时,向心力无法提供足够的向心加速度,小汽车将无法保持在圆形赛道上,发生脱轨现象。
那么,如何计算圆周运动的临界速度呢?在竖直平面内的圆周运动中,向心力由重力提供。
因此,我们可以根据向心力与重力的平衡关系来计算临界速度。
向心力由以下公式给出:F = m * a = m * v^2 / r,其中m为物体的质量,v为物体的速度,r为圆形赛道的半径。
重力由以下公式给出:F = m * g,其中m为物体的质量,g为重力加速度。
当物体处于脱轨状态时,向心力无法提供足够的向心加速度,即向心力小于重力。
因此,我们可以得到以下关系:m * v^2 / r < m * g。
通过整理上述不等式,我们可以得到圆周运动的临界速度公式:v < √(g * r)。
这个公式告诉我们,当圆周运动的速度小于√(g * r)时,物体可以保持在圆周运动中;当速度大于√(g * r)时,物体将发生脱轨现象。
在这个公式中,g为重力加速度,r为圆形赛道的半径。
竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。
2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。
物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。
小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。
G =10 m/s 2。
求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。
这是最小速度即是过最高点的临界速度v 0。
以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。
竖直平面内的圆周运动模型1.引言圆周运动一直是物理学的重要研究课题之一,它被广泛应用于各种机械和电子设备中。
而本文将聚焦于竖直平面内的圆周运动模型。
竖直平面内的圆周运动模型有哪些特点?如何用公式描述这种运动模型?这是本文将要介绍的内容。
2.竖直平面内的圆周运动模型特点竖直平面内的圆周运动模型是指,物体在竖直方向上运动时同时还在平面内做圆周运动。
它有如下几个特点:2.1 运动轨迹竖直平面内的圆周运动模型的轨迹形式是狭义螺旋线。
物体沿着这条曲线不断前进。
2.2 运动速度初始速度指向切线方向,所有速度的大小相等,运动速度与运动方向始终相切。
2.3 运动加速度圆周运动的加速度有两部分:径向加速度和切向加速度。
径向加速度的大小为:a_r= \frac{v^2}{r}切向加速度的大小为:a_t= \frac{dv}{dt}= \frac{d}{dt}(v\Deltat)=v\frac{d}{dt}\Delta t2.4 运动周期竖直平面内的圆周运动模型的运动周期与它的初速度和半径有关系。
如果初始速度为v_0,半径为r,则运动周期为:T= \frac{2\pi r}{v_0}3.公式描述竖直平面内的圆周运动模型可以用如下公式来描述:x= r \cos (\omega t)y= r \sin (\omega t)z= v_0 t其中,x和y分别表示物体在平面内的坐标;z表示物体在竖直方向的坐标;r表示圆的半径,\omega表示物体在平面内的角速度,角速度的大小为:\omega= \frac{v_0}{r}4.总结竖直平面内的圆周运动模型是一种特殊的、复杂的运动模型。
它的轨迹形式为狭义螺旋线,初始速度指向圆弧的切线方向,所有速度的大小相等,运动速度与运动方向始终相切。
圆周运动的加速度有两部分:径向加速度和切向加速度。
径向加速度的大小为v^2/r,切向加速度的大小为v\frac{d}{dt}\Delta t。
竖直平面内的圆周运动模型的周期与初始速度和半径有关系,其周期为T= \frac{2\pi r}{v_0}。
绳拉球在竖直平面内做圆周运动的重力最大功率解法绳拉球在竖直平面内做圆周运动的重力最大功率解法是一种应用物理学原理分析运动物体在特定条件下功率输出问题的方法。
此前,我们讨论了绳拉球在竖直平面内做圆周运动的基本原理、重力对球的作用以及如何计算重力的最大功率。
接下来,我们将进一步探讨影响重力最大功率的其他因素,并提出一种求解最大功率的算法。
首先,我们需要了解重力对绳拉球的作用。
重力作用于球心,使其在竖直方向上受到一个恒定的加速度。
根据牛顿第二定律,重力与绳拉力之间的关系可以表示为:F = m * a其中,F 是绳拉力,m 是球的质量,a 是球的加速度。
在竖直平面内,球的运动可以分解为竖直方向和水平方向的两个分量。
竖直方向上的分量使球在竖直方向上做加速运动,而水平方向上的分量使球在水平方向上做匀速运动。
接下来,我们来讨论影响重力最大功率的几个因素。
首先,球的速度会影响重力的功率输出。
根据功率的定义,功率P与力F、速度v和角度θ之间存在关系:P = F * v * cos(θ)其中,θ是力与速度之间的夹角。
当θ=0时,功率最大,此时重力的最大功率为:P_max = F * v_max其次,球的质量和速度也会影响重力的最大功率。
根据牛顿第二定律,重力与绳拉力之间的关系为:F = m * g其中,g 是重力加速度。
将此式代入功率公式中,我们可以得到:P_max = m * g * v_max因此,要实现重力的最大功率,需要使球的质量m和速度v达到最优值。
接下来,我们提出一种求解重力最大功率的算法。
首先,根据球的质量和速度计算重力与绳拉力之间的关系;然后,根据功率公式计算重力在不同角度下的功率输出;最后,通过优化算法(如梯度下降法、牛顿法等)求解使功率最大化的角度θ。
通过这种方法,我们可以得到重力的最大功率以及使功率最大化的条件。
总之,绳拉球在竖直平面内做圆周运动的重力最大功率解法是一种应用物理学和数学优化方法分析重力功率输出问题的方法。
圆周运动的临界问题要点提示一.圆周运动中的临界问题的分析方法首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值.二.竖直平面内作圆周运动的临界问题竖直平面内的圆周运动是典型的变速圆周运动。
一般情况下,只讨论最高点和最低点的情况,常涉及过最高点时的临界问题。
1.“绳模型”如图6-11-1所示,小球在竖直平面内做圆周运动过最高点情况。
(注意:绳对小球只能产生拉力)(1)小球能过最高点的临界条件:绳子和轨道对小球刚好没有力的作用mg =2vmRv临界(2)小球能过最高点条件:v(当v(3)不能过最高点条件:v(实际上球还没有到最高点时,就脱离了轨道)2.“杆模型”如图6-11-2所示,小球在竖直平面内做圆周运动过最高点情况(注意:轻杆和细线不同,轻杆对小球既能产生拉力,又能产生推力。
)(1)小球能最高点的临界条件:v = 0,F = mg(F为支持力)(2)当0< vF随v增大而减小,且mg > F > 0(F为支持力)(3)当v时,F=0图6-11-1a b图6-11-2(4)当v >Rg 时,F 随v 增大而增大,且F >0(F 为拉力)注意:管壁支撑情况与杆一样。
杆与绳不同,杆对球既能产生拉力,也能对球产生支持力. 由于两种模型过最高点的临界条件不同,所以在分析问题时首先明确是哪种模型,然后再利用条件讨论.(3)拱桥模型如图所示,此模型与杆模型类似,但因可以离开支持面,在最高点当物体速度达v =rg 时,F N =0,物体将飞离最高点做平抛运动。
若是从半圆顶点飞出,则水平位移为s = 2R 。
【典型题目】竖直平面内作圆周运动的临界问题 (1)绳模型 1、如图6-11-5所示,细线的一端有一个小球,现给小球一初速度,使小球绕细线另一端O 在竖直平面内转动,不计空气阻力,用F 表示球到达最高点时细线对小球的作用力,则F 可能 ( )A .是拉力B .是推力C .等于零D .可能是拉力,可能是推力,也可能等于零2、如图,质量为0.5kg 的小杯里盛有1kg 的水,用绳子系住小杯在竖直平面内做“水流星”表演,转动半径为1m ,小杯通过最高点的速度为4m/s ,g 取10m/s 2,求:(1) 在最高点时,绳的拉力(2) 在最高点时水对小杯底的压力(3) 为使小杯经过最高点时水不流出, 在最高点时最小速率是多少?(2)杆模型1、长度为L =0.5 m 的轻质细杆OA ,A 端有一质量为m =3.0kg 的小球,如图所示,小球以O 点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m/s ,g取10m/s 2,则此时细杆OA 受到( )A.6.02、如图所示,小球m 在竖直放置的光滑圆形管道内做圆周运动,下列说法中正确的有:A .小球通过最高点的最小速度为B .小球通过最高点的最小速度为零C .小球在水平线ab 以下管道中运动时,外侧管壁对小球一定有作用力D .小球在水平线ab 以上管道中运动时,内侧管壁对小球一定有作用力3、在质量为M 的电动机的飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为r ,r mALO m如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过( )A .g mr m M +B .g mr m M +C .g mrm M - D .mr Mg (3)拱桥模型1、如图4-3-1所示,汽车车厢顶部悬挂一个轻质弹簧,弹簧下端拴一个质量为m 的小球,当汽车以某一速率在水平地面上匀速行驶时弹簧长度为L 1;当汽车以同一速度匀速率通过一个桥面为圆弧形凸形桥的最高点时,弹簧长度为L 2,下列答案中正确的是( )A .L 1=L 2B .L 1>L 2C .L 1<L 2D .前三种情况均有可能 2、半径为 R 的光滑半圆球固定在水平面上,顶部有一小物体,如图所示。
圆周运动最低点支持力表达式(实用版)目录1.圆周运动的基本概念2.圆周运动最低点的特点3.支持力的作用和表达式4.最低点支持力与重力的关系5.结论正文一、圆周运动的基本概念圆周运动是指物体在圆周轨道上运动的现象。
在竖直平面内,物体在做圆周运动时,通常会受到重力、支持力和向心力的作用。
其中,重力是物体受到的向下的力,支持力是物体受到的向上的力,而向心力则是使物体保持圆周运动的力。
二、圆周运动最低点的特点在竖直平面内的圆周运动中,最低点是物体运动轨迹的最低点。
此时,物体的速度最大,而支持力的大小也最大。
最低点的特点是重力和支持力的合力恰好等于向心力,使物体保持圆周运动。
三、支持力的作用和表达式支持力是物体在圆周运动过程中受到的向上的力。
在最低点,支持力的作用点在物体的重心处,方向向上。
根据牛顿第二定律,支持力的大小等于物体的质量乘以向心加速度。
因此,支持力的表达式为:N = m * v^2 / r,其中 N 表示支持力,m 表示物体质量,v 表示物体在最低点的速度,r 表示圆周运动的半径。
四、最低点支持力与重力的关系在最低点,物体的重力与支持力共同提供向心力,使物体保持圆周运动。
根据牛顿第二定律,向心力等于重力与支持力的合力,即:F_c = F_g + F_N。
在最低点,重力与支持力方向相反,因此有:F_N = F_g + ma_c,其中 ma_c 表示物体在最低点的向心加速度。
将 F_N 的表达式代入得:m * v^2 / r = mg - m * a_c,解得:a_c = v^2 / r - g,其中 g 表示重力加速度。
可见,最低点的向心加速度等于物体在最低点的速度的平方除以圆周运动的半径减去重力加速度。
五、结论在竖直平面内的圆周运动中,最低点是一个重要的特殊点。
此时,物体的速度最大,支持力最大,重力和支持力的合力恰好等于向心力,使物体保持圆周运动。
物理建模系列(七)竖直平面内圆周运动的两种模型1.模型构建在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接,沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接,小球在弯管内运动等),称为“轻杆模型”.2.模型条件(1)物体在竖直平面内做变速圆周运动.(2)“轻绳模型”在轨道最高点无支撑,“轻杆模型”在轨道最高点有支撑.3.常用模型面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg【解析】 解法一:以小环为研究对象,设大环半径为R ,根据机械能守恒定律,得mg ·2R =12m v 2,在大环最低点有F N -mg =m v 2R ,得F N =5mg ,此时再以大环为研究对象,受力分析如图,由牛顿第三定律知,小环对大环的压力为F ′N =F N ,方向竖直向下,故F =Mg +5mg ,由牛顿第三定律知C 正确.解法二:设小环滑到大环最低点时速度为v ,加速度为a ,根据机械能守恒定律12m v 2=mg ·2R ,且a =v 2R,所以a =4g ,以整体为研究对象,受力情况如图所示.F -Mg -mg =ma +M ·0 所以F =Mg +5mg ,C 正确. 【答案】 C[高考真题]1.(2016·上海卷,16)风速仪结构如图(a)所示.光源发出的光经光纤传输,被探测器接收,当风轮旋转时,通过齿轮带动凸轮圆盘旋转,当圆盘上的凸轮经过透镜系统时光被挡住.已知风轮叶片转动半径为r ,每转动n 圈带动凸轮圆盘转动一圈.若某段时间Δt 内探测器接收到的光强随时间变化关系如图(b)所示,则该时间段内风轮叶片( )A .转速逐渐减小,平均速率为4πnr ΔtB .转速逐渐减小,平均速率为8πnrΔtC .转速逐渐增大,平均速率为4πnrΔtD .转速逐渐增大,平均速率为8πnrΔt【解析】 据题意,从b 图可以看出,在Δt 时间内,探测器接收到光的时间在增长,圆盘凸轮的挡光时间也在增长,可以确定圆盘凸轮的转动速度在减小;在Δt 时间内可以从图看出有4次挡光,即圆盘转动4周,则风轮叶片转动了4n 周,风轮叶片转过的弧长为l =4n ×2πr ,叶片转动速率为:v =8n πrΔt,故选项B 正确.【答案】 B2.(2016·浙江卷,20)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R =90 m 的大圆弧和r =40 m 的小圆弧,直道与弯道相切.大、小圆弧圆心O 、O ′距离L =100 m .赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍.假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动.要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g =10 m/s 2,π=3.14),则赛车( )A .在绕过小圆弧弯道后加速B .在大圆弧弯道上的速率为45 m/sC .在直道上的加速度大小为5.63 m/s 2D .通过小圆弧弯道的时间为5.58 s【解析】 赛车用时最短,就要求赛车通过大、小圆弧时,速度都应达到允许的最大速度,通过小圆弧时,由2.25mg =m v 21r 得v 1=30 m/s ;通过大圆弧时,由2.25mg =m v 22R得v 2=45 m/s ,B 项正确.赛车从小圆弧到大圆弧通过直道时需加速,故A 项正确.由几何关系可知连接大、小圆弧的直道长x =50 3 m ,由匀加速直线运动的速度位移公式:v 22-v 21=2ax得a ≈6.50 m/s 2,C 项错误;由几何关系可得小圆弧所对圆心角为120°,所以通过小圆弧弯道的时间t =13×2πrv 1≈2.79 s ,故D 项错误.【答案】 AB3.(2015·课标卷Ⅰ,22)某物理小组的同学设计了一个粗测玩具小车通过凹形桥最低点时的速度的实验.所用器材有:玩具小车、压力式托盘秤、凹形桥模拟器(圆弧部分的半径为R =0.20 m).完成下列填空:(1)将凹形桥模拟器静置于托盘秤上,如图(a)所示,托盘秤的示数为1.00 kg.(2)将玩具小车静置于凹形桥模拟器最低点时,托盘秤的示数如图(b)所示,该示数为 ________ kg.(3)将小车从凹形桥模拟器某一位置释放,小车经过最低点后滑向另一侧,此过程中托盘秤的最大示数为m ;多次从同一位置释放小车,记录各次的m 值如下表所示.(4)N ;小车通过最低点时的速度大小为 ________ m/s.(重力加速度大小取9.80 m/s 2,计算结果保留2位有效数字)【解析】 (2)由题图(b)可知托盘秤量程为10 kg ,指针所指的示数为1.40 kg.(4)由多次测出的m 值,利用平均值可求m =1.81 kg.而模拟器的重力为G =m 0g =9.8 N ,所以小车经过凹形桥最低点时对桥的压力为F N =mg -m 0g ≈7.9 N ;根据径向合力提供向心力,即7.9 N -(1.40-1.00)×9.8 N =0.4v 2R,解得v ≈1.4 m/s.【答案】 (2)1.40 (4)7.9 1.4[名校模拟]4.(2018·山东烟台高三上学期期中)如图所示,水平圆盘可以绕竖直转轴OO ′转动,在距转轴不同位置处通过相同长度的细绳悬挂两个质量相同的物体A 、B .不考虑空气阻力的影响,当圆盘绕OO ′轴匀速转动达到稳定状态时,下列说法正确的是( )A .A 比B 的线速度小B .A 与B 的向心加速度大小相等C .细绳对B 的拉力大于细绳对A 的拉力D .悬挂A 与B 的细绳与竖直方向夹角相等【解析】 物体A 、B 绕同一轴转动,角速度相同,由v =ωr 知,v A <v B ,由a =ω2r 知,a A <a B ,由T sin θ=ma ,T cos θ=mg 及a A <a B 得T A <T B ,θA <θB ,故A 、C 正确.【答案】 AC5.(2018·广东惠州市高三上学期第二次调研)如图甲所示是中学物理实验室常用的感应起电机,它是由两个大小相等直径约为30 cm 的感应玻璃盘起电的.其中一个玻璃盘通过从动轮与手摇主动轮链接如图乙所示,现玻璃盘以100 r/min 的转速旋转,已知主动轮的半径约为8 cm ,从动轮的半径约为2 cm ,P 和Q 是玻璃盘边缘上的两点,若转动时皮带不打滑,下列说法正确的是( )A .玻璃盘的转动方向与摇把转动方向相反B .P 、Q 的线速度相同C .P 点的线速度大小约为1.6 m/sD .摇把的转速约为400 r/min【解析】 若主动轮做顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,所以玻璃盘的转动方向与摇把转动方向相反,故A 正确;线速度也有一定的方向,由于线速度的方向沿曲线的切线方向,由图可知,P 、Q 两点的线速度的方向一定不同,故B 错误;玻璃盘的直径是30 cm ,转速是100 r/min ,所以线速度:v =ωr =2n πr =2×10060×π×0.32m/s =0.5π m/s ≈1.6 m/s ,故C 正确;从动轮边缘的线速度:v c =ωr c =2×10060×π×0.02m/s =115π m/s ,由于主动轮的边缘各点的线速度与从动轮边缘各点的线速度的大小相等,即v z =v c ,所以主动轮的转速:n z =ωz 2π=v z r z 2π=115π2π×0.08=12.4r/s =25 r/min.故D 错误.【答案】 AC6.(2018·华中师大第一附中高三上学期期中)如图所示,ABC 为在竖直平面内的金属半圆环,AC 连线水平,AB 为固定的直金属棒,在金属棒上和圆环的BC 部分分别套着两个相同的小环M 、N ,现让半圆环绕对称轴以角速度ω做匀速转动,半圆环的半径为R ,小圆环的质量均为m ,棒和半圆环均光滑,已知重力加速度为g ,小环可视为质点,则M 、N 两环做圆周运动的线速度之比为( )A.gR 2ω4-g 2B .g 2-R 2ω4gC.g g 2-R 2ω4D .R 2ω4-g 2g【解析】 AB 杆倾角45°,对于M 环:mg =mrω2=m v 2Mr2v M =g ω.对于N 环:mg tan θ=mR sin θ·ω2=mωv N v N =R sin θ·ω=Rω1-g 2R 2ω4 所以v M ∶v N =g ∶R 2ω4-g 2,A 对,B 、C 、D 错. 【答案】 A课时作业(十二) [基础小题练]1.如图所示,一偏心轮绕垂直纸面的轴O 匀速转动,a 和b 是轮上质量相等的两个质点,则偏心轮转动过程中a 、b 两质点( )A .角速度大小相同B .线速度大小相同C .向心加速度大小相同D .向心力大小相同【解析】同轴转动角速度相等,A 正确;由于两者半径不同,根据公式v =ωr 可得两点的线速度不同,B 错误;根据公式a =ω2r ,角速度相同,半径不同,所以向心加速度不同,C 错误;根据公式F =ma ,质量相同,但是加速度不同,所以向心力大小不同,D 错误.【答案】 A2.(2018·甘肃河西五市联考)利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L 的细线系一质量为m 的小球,两线上端系于水平横杆上,A ,B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根细线承受的张力为( )A .23mgB .3mgC .2.5mgD .732mg【解析】 小球恰好过最高点时有mg =m v 21R,解得v 1=32gL ,根据动能定理得mg ·3L =12m v 22-12m v 21,由牛顿第二定律得3T -mg =m v 2232L ,联立得T =23mg ,故A 正确,B 、C 、D 错误.【答案】 A3.如图为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n 1,转动过程中皮带不打滑.下列说法正确的是( )A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮边缘线速度大小为r 22r 1n 1D .从动轮的转速为r 2r 1n 1【解析】 主动轮沿顺时针方向转动时,传送带沿M →N 方向运动,故从动轮沿逆时针方向转动,故A 错误,B 正确;由ω=2πn 、v =ωr 可知,2πn 1r 1=2πn 2r 2,解得n 2=r 1r 2n 1,从动轮边缘线速度大小v =2πn 2r 2=2πn 1r 1,故C 、D 错误.【答案】 B4.(2018·山东青岛市即墨一中高三上学期期中)如图所示,甲、乙圆盘的半径之比为1∶2,两水平圆盘紧靠在一起,乙靠摩擦随甲不打滑转动.两圆盘上分别放置质量为m 1和m 2的小物体,m 1=2m 2,两小物体与圆盘间的动摩擦因数相同.m 1距甲盘圆心为r ,m 2距乙盘圆心为2r ,此时它们正随圆盘做匀速圆周运动.下列判断正确的是( )A .m 1和m 2的线速度之比为1∶4B .m 1和m 2的向心加速度之比为2∶1C .随转速慢慢增加,m 1先开始滑动D .随转速慢慢增加,m 2先开始滑动【解析】 甲、乙两轮子边缘上的各点线速度大小相等,有:ω1R =ω22R ,则得ω1∶ω2=2∶1,所以物块相对圆盘开始滑动前,m 1与m 2的角速度之比为2∶1.根据公式:v =ωr ,所以:v 1v 2=ω1r ω2·2r =11,故A 错误.根据a =ω2r 得:m 1与m 2的向心加速度之比为 a 1∶a 2=(ω21r )∶(ω222r )=2∶1,故B 正确.根据μmg =mrω2=ma 知,m 1先达到临界角速度,可知当转速增加时,m 1先开始滑动,故C 正确,D 错误.【答案】 BC5.如图所示,水平放置的圆筒可以绕中心轴线匀速转动,在圆筒上的直径两端有两个孔A 、B ,当圆筒的A 孔转到最低位置时,一个小球以速度v 0射入圆筒,圆筒的半径为R ,要使小球能够不碰到筒壁首次离开圆筒,则圆筒转动的角速度可能为(已知重力加速度大小为g )( )A.n πgv 0,n =1,2,3,… B.(2n -1)πg 2v 0,n =1,2,3,…C.2n πg v 0-v 20-4Rg ,n =1,2,3,…D.2n πg v 0+v 20-4Rg,n =1,2,3,… 【解析】 若小球上升最大高度小于圆筒直径,小球从A 孔离开,则竖直上抛时间为t =2v 0g =2n πω,n =1,2,3,…,ω=n πgv 0,A 正确;若小球上升最大高度小于圆筒直径,从B 孔离开,则有t =2v 0g =(2n -1)πω,n =1,2,3,…,ω=(2n -1)πg 2v 0,B 正确;若小球上升最大高度大于直径,从B 孔离开,小球经过圆筒时间为t ,则有2R =v 0t -gt 22,圆筒转动时间为t =2n πω,n =1,2,3,…,解得ω=2n πgv 0-v 20-4Rg ,C 正确;若小球上升最大高度大于直径,从A 孔离开,则圆筒转动时间为t =(2n -1)πω,n =1,2,3,…,解得ω=(2n -1)πgv 0-v 20-4Rg,D 错误. 【答案】 ABC6.(2018·开封高三模拟)在离心浇铸装置中,电动机带动两个支承轮同向转动,管状模型放在这两个轮上靠摩擦转动,如图所示,铁水注入之后,由于离心作用,铁水紧紧靠在模型的内壁上,从而可得到密实的铸件,浇铸时转速不能过低,否则,铁水会脱离模型内壁,产生次品.已知管状模型内壁半径为R ,则管状模型转动的最低角速度ω为( )A.gR B . g 2R C.2g RD .2g R【解析】 最易脱离模型内壁的位置在最高点,转动的最低角速度ω对应铁水在最高点受内壁的作用力为零,即mg =mω2R ,得:ω=gR,A 正确. 【答案】 A[创新导向练]7.生活实际——圆周运动中的自行车问题雨天在野外骑车时,在自行车的后轮轮胎上常会粘附一些泥巴,行驶时感觉很“沉重”.如果将自行车后轮撑起,并离开地面而悬空,然后用手匀速摇脚踏板,使后轮飞速转动,泥巴就被甩下来.如图所示,图中a 、b 、c 、d 为后轮轮胎边缘上的四个特殊位置,则( )A .泥巴在图中a 、c 位置的向心加速度大于b 、d 位置的向心加速度B .泥巴在图中的b 、d 位置时最容易被甩下来C .泥巴在图中的c 位置时最容易被甩下来D .泥巴在图中的a 位置时最容易被甩下来【解析】 当后轮匀速转动时,由a =Rω2知a 、b 、c 、d 四个位置的向心加速度大小相等,A 错误.在角速度ω相同的情况下,泥巴在a 点有F a +mg =mω2R ,在b 、d 两点有F bd=mω2R ,在c 点有F c -mg =mω2R ,所以泥巴与轮胎在c 位置的相互作用力最大,容易被甩下,故B 、D 错误,C 正确.【答案】 C8.生活实际——通过“过山车”考查圆周运动最高点的临界问题如图所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R ,下列说法正确的是( )A .甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B .乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C .丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D .丁图中,轨道车过最高点的最小速度为gR【解析】 在甲图中,当速度比较小时,根据牛顿第二定律得,mg -F N =m v 2R,即座椅给人施加向上的力,当速度比较大时,根据牛顿第二定律得,mg +F N =m v 2R,即座椅给人施加向下的力,故A 错误;在乙图中,因为合力指向圆心,重力竖直向下,所以安全带给人一定是向上的力,故B 正确;在丙图中,当轨道车以一定的速度通过轨道最低点时,合力方向向上,重力竖直向下,则座椅给人的作用力一定竖直向上,故C 正确;在丁图中,由于轨道车有安全锁,可知轨道车在最高点的最小速度为零,故D 错误.【答案】 BC9.高新科技——圆周运动中的运动学问题应用实例某计算机读卡系统内有两个围绕各自固定轴匀速转动的铝盘A 、B ,A 盘固定一个信号发射装置P ,能持续沿半径向外发射红外线,P 到圆心的距离为28 cm.B 盘上固定一个带窗口的红外线信号接收装置Q ,Q 到圆心的距离为16 cm.P 、Q 转动的线速度均为4π m/s.当P 、Q 正对时,P 发出的红外线恰好进入Q 的接收窗口,如图所示,则Q 每隔一定时间就能接收到红外线信号,这个时间的最小值为( )A.0.42 s B.0.56 s C.0.70 s D.0.84 s【解析】P的周期T P=2πr Pv=2π×0.284πs=0.14 s,同理Q的周期T Q=2πr Qv=2π×0.164πs=0.08 s,而经过的时间应是它们周期的整数倍,因此B项正确.【答案】 B10.科技生活——汽车后备箱升降学问汽车后备箱盖一般都配有可伸缩的液压杆,如图甲所示,其示意图如图乙所示,可伸缩液压杆上端固定于后盖上A点,下端固定于箱内O′点,B也为后盖上一点,后盖可绕过O 点的固定铰链转动,在合上后备箱盖的过程中()A.A点相对O′点做圆周运动B.A点与B点相对于O点转动的线速度大小相等C.A点与B点相对于O点转动的角速度大小相等D.A点与B点相对于O点转动的向心加速度大小相等【解析】在合上后备箱盖的过程中,O′A的长度是变化的,因此A点相对O′点不是做圆周运动,A错误;在合上后备箱盖的过程中,A点与B点都是绕O点做圆周运动,相同的时间绕O点转过的角度相同,即A点与B点相对O点的角速度相等,但是OB大于OA,根据v=rω,所以B点相对于O点转动的线速度大,故B错误,C正确;根据向心加速度a=rω2可知,B点相对O点的向心加速度大于A点相对O点的向心加速度,故D错误.【答案】 C[综合提升练]11.物体做圆周运动时所需的向心力F需由物体运动情况决定,合力提供的向心力F供由物体受力情况决定,若某时刻F需=F供,则物体能做圆周运动;若F需>F供,物体将做离心运动;若F需<F供,物体将做近心运动.现有一根长L=1 m的刚性轻绳,其一端固定于O 点,另一端系着质量m=0.5 kg的小球(可视为质点),将小球提至O点正上方的A点处,此时绳刚好伸直且无张力,如图所示.不计空气阻力,g取10 m/s2,则:(1)为保证小球能在竖直面内做完整的圆周运动,在A 点至少应施加给小球多大的水平速度?(2)在小球以速度v 1=4 m/s 水平抛出的瞬间,绳中的张力为多少?(3)在小球以速度v 2=1 m/s 水平抛出的瞬间,绳中若有张力,求其大小;若无张力,试求绳子再次伸直时所经历的时间.【解析】(1)小球做圆周运动的临界条件为重力刚好提供最高点时小球做圆周运动的向心力,即mg =m v 20L,解得v 0=gL =10 m/s. (2)因为v 1>v 0,故绳中有张力.根据牛顿第二定律有F 1+mg =m v 21L,代入数据得绳中张力F 1=3 N.(3)因为v 2<v 0,故绳中无张力,小球将做平抛运动,其运动轨迹如图中实线所示,有L 2=(y -L )2+x 2,x =v 2t ,y =12gt 2,代入数据联立解得t =0.6 s. 【答案】 (1)10 m/s (2)3 N (3)无张力,0.6 s12.(2018·山东潍坊高三上学期期中)如图所示,圆形餐桌中心有一半径为R 的圆盘,可绕穿过中心的竖直轴转动,圆盘与餐桌在同一水平面内且两者之间的间隙可忽略不计.当圆盘的角速度为 g 2R时,放置在圆盘边缘的小物体恰好滑上餐桌.已知小物体与餐桌间的动摩擦因数为0.25,最大静摩擦力等于滑动摩擦力,重力加速度为g.求:(1)小物体与圆盘的动摩擦因数;(2)小物体恰好不从餐桌滑落时餐桌的最小半径.【解析】(1)设小物体与圆盘间的动摩擦因数为μ1,小物体恰好滑到餐桌上时圆盘的角速度为ω0μ1mg=mω20R代入数据解得:μ1=0.5.(2)小物体从圆盘甩出时的速度v1=ω0R设小物体与餐桌间的动摩擦因数为μ2,小物体在餐桌上滑动距离x1恰不滑出桌面,0-v21=2ax1a=-μ2g餐桌的最小半径R min=R2+x21联立解得:R min=2R【答案】(1)0.5(2)2R。