x0 M , p(x0).
读作“存在一个x0,使p(x0)成立”.
1.4.3 含有一个量词 的命题的否定
探究
写出下列命题的否定
1)所有的矩形都是平行四边形;x M,p(x)
2)每一个素数都是奇数; x M,p(x)
3)x R, x2 2x 1 0.
x M,p(x)
x0 M,p(x0 ) x0 M,p(x0 ) x0 M,p(x0 )
1)所有实数的绝对值都不是正数; 2)每一个平行四边形都不是菱形;
3) x R, x2 1 0
x M,p(x)
x M,p(x) x M,p(x)
这些命题和它们的否定在形式上有什么变化?
一般地,对于含有一个量词的全称命题的否 定,有下面的结论:
全称命题P:x M , P(x),
它的否定P:x0 M , P(x0 ).
全称命题的否定是特称命题.
探究
写出下列命题的否定
1)有些实数的绝对值是正数;
2)某些平行四边形是菱形; 3)x0 R, x02 1 0
否定:
从命题形式上看,这三个特称命题的否定 都变成了全称命题.
一般地,对于含有一个量词的特称命题的 否定,有下面的结论:
特称命题P:x0 M , P(x0 ).
它的否定P:x M , P(x),
特称命题的否定是全称命题.
并用符号“ ”表示.含有全称
量词的命题,叫做全称命题.
常见的全称量词有:
“对所有的”, “对任意一个”, “对一 切”, “对每一个”, “任给”, “所有的” 等.
通常,将含有变量x的语句用p(x)、q(x)、 r(x)表示,变量x的取值范围用M表示。