已发表基因组文章的物种汇总资料2012-07-25
- 格式:xlsx
- 大小:55.87 KB
- 文档页数:8
nature plants 基因组文章近年来,越来越多的研究证明植物基因组的基本结构受到环境因素的影响。
由于植物在多种非常不同的生态系统中生长,他们的基因组结构也会做出相应的变化。
相比于动物基因组,植物基因组具有更多的复杂性,并且这些复杂性对于科学家和分子生物学家来说是一个挑战。
目前的技术手段也仅仅能够解释和利用植物基因组的基本框架,但是我们如何充分利用这些基因组活动结构仍然不得而知。
Nature Plants志一直在提供有价值的文章来帮助科学家更好地理解植物基因组的复杂性。
近年来,Nature Plants志发表了一系列重要的文章,深入探讨了植物基因组的进化、结构和功能。
比如,《Nature Plants》杂志曾发表了一篇重要的文章,利用测序技术来研究来自不同植物物种的基因组,该文章表明了植物的基因组结构多样性和其在不同环境中的适应性。
此外,这篇文章还提出了一种可将基因组活动与植物性状相关联的新技术,以实现植物基因组进化及其相关特性的定量分析。
另一篇《Nature Plants》杂志发表的文章,聚焦于利用基因组数据来探究植物物种之间的分子进化关系以及它们在不同环境中表现出的多样性。
该文章提出了一系列有用的结论,例如有关植物基因组的不同演化模式,以及植物基因组如何受到环境的影响。
此外,该文章也发现,重要的植物基因组区域,如细胞膜和其他蛋白质,也可能随着植物物种的演变而改变。
此外,《Nature Plants》杂志还发表了一篇有关植物基因组可塑性的文章。
该文章研究了影响植物基因组可塑性的关键因素,比如环境、营养和遗传多样性。
文章还分析了这些因素如何影响植物的基因组结构、表达和功能,以及如何影响植物的性状和开花时期等特性。
自从Nature Plants志发表的各种文章后,科学家们更好地理解了植物基因组的复杂性及其可塑性,以及如何利用这些信息来改良植物特性。
同时,这些文章也为更加深入地研究植物基因组提供了一个坚实的基础。
[转载]已经公布的真菌基因组摘要:真菌基因组学研究可以推动生物化学、分子生物学、病原菌的致病机理、与宿主相互作用等基础研究,还能更好的寻找抗菌药物靶点,促进疫苗和抗菌药物的开发研制、促进工业生产。
目前已有48种真菌的基因组序列公布,包括子囊菌门(Ascomycota)42种,担子菌门(Basidiomycota)5种,微孢子虫(Microsporidia)1种。
基因组大小超过30倍,从2.5 Mb~81.5Mb。
本文整理翻译了NCBI上关于真菌基因组的信息,对已测序真菌的重要性和其基因组相关信息进行了简要.真菌种类庞大而多样,据估计,全世界有真菌150万种,已被描述的约7万种。
真菌在自然界中分布极为广泛,它们存在于土壤、水、空气和生物体内外。
真菌在自然界的碳素和氮素循环中起主要作用。
真菌参与淀粉、纤维素、木质素等有机含碳化合物的分解,生成CO2,为植物提供碳源。
比如许多担子菌能够利用纤维素和木质素作为生长的碳源和氮源,因此可以分解木材、纸张、棉布和其他自然界中含碳的复杂有机物。
真菌对蛋白质及其他含氮化合物的分解所释放的NH3,一部分可供植物和微生物吸收同化,一部分可转化为硝酸盐,成为氮素循环中不可替代的一步。
某些真菌在发酵工业、食品加工业、抗生素生产中具有重要作用;而某些真菌又具有严重的破坏作用,有的真菌是许多重要经济作物的病原菌,如玉米腥黑穗病、小麦锈病、黄瓜黑腥病等;少数真菌是人类和动物的致病菌,如白色念珠菌等。
因此合理利用有益真菌,消灭和预防有害真菌具有重要意义。
基因组信息可以加深人们对真菌遗传和生理多样性的认识。
1997年,由欧洲、美国、加拿大和日本共96个实验室的633位科学家通力协作下,第一个真核生物酿酒酵母(Saccharomyces cereuisiae )的基因组测序完成。
2002年粟酒裂殖酵母(Schizosaccharomyces pombe)基因组测序完成,两年后第一个丝状真菌粗糙脉孢菌(Neurospora crassa)基因组测序完成。
已完成植物基因组测序情况(更新至2014年11月)中文名拉丁名发表时间刊物科、属基因组大小拟南芥Arabidopsis thaliana 2000.12 Nature 十字花科、鼠耳芥属125M水稻Oryza sativa. ssp. indica 2002.04 Science 禾本科、稻属466M水稻Oryza sativa. ssp.japonica2002.04 Science 禾本科、稻属466M杨树Populus trichocarpa 2006.09 Science 杨柳科、杨属480M 葡萄Vitis vinifera 2007.09 Nature 葡萄科、葡萄属490M衣藻Chlamydomonasreinhardtii2007.01 Science 衣藻科、衣藻属130 M小立碗藓Physcomitrella pattens 2008.01 Science 葫芦藓科、小立碗藓属480M 番木瓜Carica papaya 2008.04 Nature 番木瓜科、番木瓜属370M 百脉根Lotus japonicus 2008.05 DNA Res. 豆科472 Mb三角褐指藻Phaeodactylumtricornutum2008.11 Nature 褐指藻属27.4M高粱Sorghum bicolor 2009.01 Nature 禾本科、高粱属730M 玉米Zea mays ssp. mays 2009.11 Science 禾本科、玉米属2300M 黄瓜Cucumis sativus 2009.11 Nature Genetics 葫芦科、黄瓜属350M 大豆Glycine max 2010.01 Nature 豆科、大豆属1100M二穗短柄草Brachypodiumdistachyon2010.02 Nature 禾本科、短柄草属260M褐藻Ectocarpus 2010.06 Nature 水云属196M 团藻Volvox carteri 2010.07 Science 团藻属138M蓖麻Ricinus communis 2010.08 NatureBiotechnology大戟科、蓖麻属350M小球藻Chlorella variabilis 2010.09 Plant Cell 小球藻科46M苹果Malus × domestica 2010.09 Nature Genetics 蔷薇科、苹果属742M森林草莓Fragaria vesca 2010.12 Nature Genetics 蔷薇科、草莓属240M可可树Theobroma cacao 2010.12 Nature Genetics 梧桐科、可可属430-Mb 野生大豆Glycine soja 2010.12 PNAS 豆科、大豆属915.4 Mb褐潮藻类Aureococcusanophagefferens2011.02 PNAS 57M麻风树Jatropha curcas 2010.12 DNA Res. 大戟科、麻风树属410M 卷柏Selaginella moellendorffii 2011.05 Science 卷柏属212M枣椰树Phoenix dactylifera 2011.05 Naturebiotechnology棕榈科685M琴叶拟南芥Arabidopsis lyrata 2011.05 Nature Genetics 十字花科、鼠耳芥属206.7 Mb 马铃薯Solanum tuberosum 2011.07 Nature 茄目、茄科、茄属844M条叶蓝芥Thellugiella parvula 2011.08 Nature Genetics 盐芥属140M白菜Brassica rapa 2011.08 Nature Genetics 十字花科、芸薹属485M 印度大麻Cannabis sativa 2011.1 Genome biology 大麻属534M木豆Cajanus cajan 2011.11 Naturebiotechnology豆科、木豆属833M蒺藜苜蓿Medicago truncatula 2011.11 Nature 豆科苜蓿属500M 蓝载藻Cyanophora paradoxa 2012.02 Science 灰胞藻门70M谷子Setaria italica 2012.05 Naturebiotechnology禾本科、狗尾草属490M谷子Setaria italica 2012.05 Naturebiotechnology禾本科、狗尾草属预估510M,组装出400M番茄Solanum lycopersicum 2012.05 Nature 茄科、茄属900Mb 甜瓜Cucumis melo 2012.07 PNAS 葫芦科、甜瓜属450Mb 亚麻Linum usitatissimum 2012.07 Plant Journal 亚麻科、亚麻属373Mb 盐芥Thellungiella salsuginea 2012.07 PNAS 十字花科、盐芥属260Mb 香蕉Musa acuminata 2012.07 Nature 芭蕉科、芭蕉属523Mb 雷蒙德氏棉Gossypium raimondii 2012.08 Nature Genetics 锦葵科、棉属775.2Mb 大麦Hordeum vulgare 2012.1 Nature 禾本科、大麦属 5.1Gb梨Pyrus bretschneideri 2012.11 Genome Research 蔷薇科、梨属527Mb 西瓜Citrullus lanatus 2012.11 Nature Genetics 葫芦科、西瓜属425 Mb 甜橙Citrus sinensis 2012.11 Nature Genetics 芸香科、柑橘属367 Mb 小麦Triticum aestivum 2012.11 Nature 禾本科、小麦属17Gb两种小型藻Bigelowiella natans,Guillardia theta2012.11 Nature 95Mb 87Mb棉花(雷蒙德氏棉)Gossypium raimondii 2012.12 Nature 锦葵科、棉属761.4Mb梅花Prunus mume 2012.12 NatureCommunications蔷薇科、梨属280M鹰嘴豆Cicer arietinum 2013.01 Naturebiotechnology豆科、鹰嘴豆属738Mb橡胶树Hevea brasiliensis 2013.02 BMC Genomics 大戟科、橡胶树属 2.15Gb 毛竹Phyllostachys heterocycla 2013.02 Nature Genetics 竹科、钢竹属 2.075 Gb短花药野生稻Oryza brachyantha 2013.03NatureCommunications禾本科稻属342Mb-362Mb小麦A Triticum urartu 2013.03 Nature 禾本科、小麦属 4.94 Gb 小麦D grassAegilops tauschii 2013.03 Nature 禾本科、小麦属 4.36Gb 桃树Prunus persica 2013.03 Nature Genetics 蔷薇科、梨属265 Mb 丝叶狸藻Utricularia gibba 2013.05 Nature 狸藻科、狸藻属82Mb中国莲Nelumbo nucifera Gaertn 2013.05 Genome biology 睡莲科、莲属929 Mb 挪威云杉Picea abies 2013.05 Nature 松科、云杉属19.6G海洋球石Emiliania huxleyi 2013.06 Nature 定鞭藻纲141.7Mb藻虫黄藻Symbiodinium minutum 2013.07 Current Biology 甲藻门 1.5G 油棕榈Elaeis guineensis 2013.07 Nature 棕榈科、油棕榈属 1.8G枣椰树Phoenix dactylifera 2013.08 NatureCommunications棕榈科、刺葵属671 Mb醉蝶花Tarenaya hassleriana 2013.08 Plant Cell 醉蝶花科、醉蝶花属290 Mb 莲Nelumbo nucifera 2013.08 Plant Journal 睡莲科、莲属879 Mb桑树Morus notabilis 2013.09 NatureCommunications桑科、桑属357 Mb猕猴桃Actinidia chinensis 2013.10 NatureCommunications猕猴桃属616.1 Mb胡杨Populus euphratica 2013.11 NatureCommunications杨属496.5 Mb八倍体草莓F. x ananassa 2013.12 DNA Research 草莓属698 Mb 康乃馨Dianthus caryophyllus L. 2013.12 DNA Research 石竹属622 Mb 甜菜Beta vulgaris ssp. vulgaris 2013.12 Nature 藜科甜菜属566.6 Mb 无油樟(互叶梅)Amborella trichopoda 2013.12 Science 无油樟属748 Mb辣椒Capsicum annuum(Criolo de Morelos334)2014.1 Nature Genetics 辣椒属 3.48G芝麻Sesamum indicum 2014.2 Genome Biology 胡麻科胡麻属274 Mb辣椒Capsicum annuum(Zunla-1)2014.3 PNAS 辣椒属 3.48G火炬松Pinus taeda(Loblollypine)2014.3 Genome Biology 松属23.2G棉花(亚洲棉)Gossypium arboreum 2014.5 Nature Genetics 锦葵科、棉属1694Mb 萝卜Raphanus sativus L. 2014.5 DNA Research 十字花科、萝卜属402Mb甘蓝Brassica oleracea 2014.5 Naturecommunications十字花科、芸薹属630Mb菜豆Phaseolus vulgaris L.2014.6 Nature Genetics 豆科,菜豆属587Mb野生大豆Glycine soja2014.7Naturecommunications豆科、大豆属868 Mb普通小麦Triticum aestivum 2014.7 Science 禾本科17Gb野生西红柿Solanum pennellii 2014.7 Nature Genetics茄科942 Mb非洲野生稻Oryza glaberrima2014.8 Nature Genetics禾本科316 Mb油菜Brassica napus2014.8 Science十字花科630 Mb中果咖啡Coffea canephora 2014.9 Science 茜草科,咖啡属710 Mb茄子Solanum melongena 2014.9 DNA Research 茄科、茄属1093 Mb多个野生大豆Glycine soja 2014.9Naturebiotechnology豆科、大豆属889.33~1,118.34Mb绿豆Vigna radiata 2014.10 Naturecommunications豆科、豇豆属543 Mb啤酒花Humulus lupulus 2014.11 Plant and CellPhysiology大麻科、葎草属 2.57 Gb蝴蝶兰Phalaenopsis equestris2014.11 Nature Genetics 兰科、蝴蝶兰属 1.16 Gb。
这可能是最全面的已发表基因组物种列表!
少罗嗦,直接给网址:
/wiki/Lists_of_sequenced_genomes
点击文末评论区的“阅读原文”可直接在手机上查看,这里建议将链接复制到电脑端的浏览器查看。
打开后的页面是这样的,see,包括了8个列表:分别是动物(animal),古菌(archaea),细菌(bacteria),真菌(fungi),植物(plant),质体(plastid),原生生物(protist)以及真核生物(eukaryote)的总列表。
比如点击植物对应的List,直接进入相应的页面,如下图。
页面包含一个分级目录,类似word的导航窗格,点击对应的分类,比如说点单子叶植物,可快速定位到当前页面相应的位置。
然后可单击列表变量名或者旁边的小三角会进行排序,如下图,比如可按物种名称排序,然后可快速定位到关注的一些物种(真菌和动物的展示方式比较简单)。
将鼠标光标移到物种的拉丁文学名上,会显示该物种相关的简介。
单击物种名称,会跳转到相应的百科词条,如下图。
点击年份的上标,会迅速定位到相应的文献,如下图。
点击引用文献的的doi或PMID号可直接跳转到当前文献的下载页面,如下图。
接着我们就可以下载该文献,进而追踪到基因组数据的下载链接。
当然,你也可以用拉丁名直接到Ensembl,NCBI,UCSC等数据库查找和下载相应物种的基因组数据。
今天的内容就到这里啦~。
nature plants 基因组文章自从2000年发表首篇全基因组序列,以来,全基因组分析被用于植物的研究,并发现了许多重要的信息,以及植物的全基因组结构和功能。
全基因组分析能够帮助我们更好地了解植物的繁殖,发育,适应性和其他重要的生物进化特征。
有了这些知识,我们可以更好地利用植物来改善环境和满足人类对食物的需求。
鉴于全基因组分析对于植物研究的重要性,已经开始有许多关于植物基因组的大型研究计划,以解决这一问题。
其中一个最有影响力的计划是Nature Plants全基因组项目(The Nature Plants Genome Initiative)。
从2015年开始,该计划旨在探索植物基因组的结构,功能,进化和基因调控。
该项目的目标是解决植物基因组的许多科学难题,以及改善植物繁殖方法,改善植物的营养质量和活力,并最终达到满足人类营养需求的目标。
Nature Plants全基因组项目需要收集来自不同植物种类的大量数据,以深入研究它们的基因组结构,功能,进化和调控机制。
为了达到这个目标,该项目将包括从基因定位和表达开始,到分析变异和进化,再到比较基因组结构或功能功能,以及构建基因组模型和模拟种类演化的许多研究方向。
随着植物基因组的分析,还将进行大量的基础和应用研究,以更好地理解植物的基因组功能,发育和进化。
Nature Plants全基因组项目为植物研究有重大影响力。
该项目将提供大量的基础性研究和应用知识,以帮助我们更好地理解植物的繁殖,发育,适应性和其他重要的选择特征。
此外,Nature Plants全基因组项目还将为我们提供一种新的方式,通过改变植物的基因来改善植物的质量和活力,以满足人类营养需求。
改善植物质量和活力有助于减轻营养不良等社会问题,以及应对日益严峻的气候变化对粮食安全的威胁。
总之,Nature Plants全基因组项目为植物研究带来了诸多机会,可以帮助我们更好地了解植物的基因组结构,功能,进化和调控机制,以及如何改善植物的质量和活力。
编号中文名拉丁名发表时间 刊物科、属基因组大小1拟南芥Arabidopsis thaliana 2000.12Nature 十字花科、鼠耳芥属125 Mb 2水稻Oryza sativa. ssp. indica 2002.04Science 禾本科、稻属466 Mb 3水稻Oryza sativa. ssp. japonica 2002.04Science 禾本科、稻属466 Mb 4杨树Populus trichocarpa2006.09Science 杨柳科、杨属480 Mb 5葡萄Vitis vinifera 2007.09Nature 葡萄科、葡萄属490 Mb 6衣藻Chlamydomonas reinhardtii 2007.01Science 衣藻科、衣藻属130 Mb 7小立碗藓Physcomitrella pattens2008.01Science 葫芦藓科、小立碗藓属480 Mb 8番木瓜Carica papaya 2008.04Nature 番木瓜科、番木瓜属370 Mb 9百脉根Lotus japonicus 2008.05DNA Research豆科、百脉根属472 Mb 10三角褐指藻Phaeodactylum tricornutum2008.11Nature 褐指藻属27.4 Mb 11高粱Sorghum bicolor2009.01Nature禾本科、高粱属730 Mb 12玉米Zea mays ssp. mays 2009.11Science 禾本科、玉米属2300 Mb 13黄瓜Cucumis sativus 2009.11Nature Genetics葫芦科、黄瓜属350 Mb 14大豆Glycine max 2010.01Nature豆科、大豆属1100 Mb 15二穗短柄草Brachypodium distachyon 2010.02Nature 禾本科、短柄草属260 Mb 16褐藻Ectocarpus 2010.06Nature 水云属 196 Mb 17团藻Volvox carteri2010.07Science团藻属138 Mb 18蓖麻Ricinus communis 2010.08Nature Biotechnology大戟科、蓖麻属350 Mb 19小球藻Chlorella variabilis 2010.09Plant Cell 小球藻科46 Mb 20苹果Malus × domestica 2010.09Nature Genetics 蔷薇科、苹果属742 Mb 21森林草莓Fragaria vesca 2010.12Nature Genetics 蔷薇科、草莓属240 Mb 22可可树Theobroma cacao 2010.12Nature Genetics梧桐科、可可属430- Mb 23野生大豆Glycine soja2010.12PNAS 豆科、大豆属915.4 Mb 24褐潮藻类Aureococcus anophagefferens2011.02PNAS 57 Mb 25麻风树Jatropha curcas2010.12DNA Research大戟科、麻风树属410 Mbs ci en ce ne t.cn : Gr an t l uj i an g26卷柏Selaginella moellendorffii 2011.05Science 卷柏属212 Mb 27枣椰树Phoenix dactylifera 2011.05Nature Biotechnology 棕榈科685 Mb 28琴叶拟南芥Arabidopsis lyrata 2011.05Nature Genetics十字花科、鼠耳芥属206.7 Mb 29马铃薯Solanum tuberosum 2011.07Nature 茄目、茄科、茄属844 Mb 30条叶蓝芥Thellugiella parvula 2011.08Nature Genetics 盐芥属140 Mb 31白菜Brassica rapa 2011.08Nature Genetics 十字花科、芸薹属485 Mb 32印度大麻Cannabis sativa 2011.01Genome Biology 大麻属534 Mb 33木豆Cajanus cajan 2011.11Nature Biotechnology豆科、木豆属833 Mb 34蒺藜苜蓿Medicago truncatula 2011.11Nature 豆科苜蓿属500 Mb 35蓝载藻Cyanophora paradoxa2012.02Science 灰胞藻门70 Mb 36谷子Setaria italica 2012.05Nature Biotechnology 禾本科、狗尾草属490 Mb 37谷子Setaria italica 2012.05Nature Biotechnology禾本科、狗尾草属510 Mb 38番茄Solanum lycopersicum2012.05Nature 茄科、茄属900 Mb 39甜瓜Cucumis melo 2012.07PNAS 葫芦科、甜瓜属450 Mb 40亚麻Linum usitatissimum 2012.07Plant Journal 亚麻科、亚麻属373 Mb 41盐芥Thellungiella salsuginea2012.07PNAS 十字花科、盐芥属260 Mb 42香蕉Musa acuminata 2012.07Nature 芭蕉科、芭蕉属523 Mb 43雷蒙德氏棉 Gossypium raimondii 2012.08Nature Genetics锦葵科、棉属775.2 Mb 44大麦Hordeum vulgare 2012.01Nature禾本科、大麦属 5.1 Gb 45梨Pyrus bretschneideri 2012.11Genome Research 蔷薇科、梨属527 Mb 46西瓜Citrullus lanatus 2012.11Nature Genetics 葫芦科、西瓜属425 Mb 47甜橙Citrus sinensis 2012.11Nature Genetics芸香科、柑橘属367 Mb 48小麦Triticum aestivum 2012.11Nature 禾本科、小麦属17 Gb 49两种小型藻Bigelowiella natans, Guillardiatheta2012.11Nature 95 Mb, 87 Mb 50棉花(雷蒙德氏棉)Gossypium raimondii2012.12Nature 锦葵科、棉属761.4 Mb 51梅花Prunus mume 2012.12Nature Communications 蔷薇科、梨属280 Mb 52鹰嘴豆Cicer arietinum2013.01Nature Biotechnology豆科、鹰嘴豆属738 Mbs ci en ce ne t.cn :Gr an tl uj i an g53橡胶树Hevea brasiliensis 2013.02BMC Genomics 大戟科、橡胶树属2.15 Gb 54毛竹Phyllostachys heterocycla 2013.02Nature Genetics 竹科、钢竹属 2.075 Gb 55短花药野生稻Oryza brachyantha 2013.03Nature Communications禾本科稻属342 Mb-362 Mb56小麦A Triticum urartu 2013.03Nature 禾本科、小麦属 4.94 Gb 57小麦D grassAegilops tauschii 2013.03Nature 禾本科、小麦属 4.36 Gb 58桃树Prunus persica 2013.03Nature Genetics 蔷薇科、梨属265 Mb 59丝叶狸藻Utricularia gibba 2013.05Nature 狸藻科、狸藻属82 Mb 60中国莲Nelumbo nucifera Gaertn2013.05Genome Biology睡莲科、莲属929 Mb 61挪威云杉Picea abies 2013.05Nature 松科、云杉属19.6 Gb 62海洋球石藻Emiliania huxleyi 2013.06Nature 定鞭藻纲141.7 Mb 63虫黄藻Symbiodinium minutum 2013.07Current Biology甲藻门1.5 Gb 64油棕榈Elaeis guineensis 2013.07Nature棕榈科、油棕榈属1.8 Gb 65枣椰树Phoenix dactylifera 2013.08Nature Communications棕榈科、刺葵属671 Mb 66醉蝶花Tarenaya hassleriana 2013.08Plant Cell 醉蝶花科、醉蝶花属290 Mb 67莲Nelumbo nucifera 2013.08Plant Journal 睡莲科、莲属879 Mb 68桑树Morus notabilis 2013.09Nature Communications 桑科、桑属357 Mb 69猕猴桃Actinidia chinensis 2013.01Nature Communications 猕猴桃属616.1 Mb 70胡杨Populus euphratica 2013.11Nature Communications杨属496.5 Mb 71八倍体草莓 F. x ananassa 2013.12DNA Research 草莓属698 Mb 72康乃馨Dianthus caryophyllus L.2013.12DNA Research石竹属622 Mb 73甜菜Beta vulgaris ssp. vulgaris 2013.12Nature 藜科甜菜属566.6 Mb 74无油樟(互叶梅)Amborella trichopoda 2013.12Science 无油樟属748 Mb 75辣椒Capsicum annuum 2014.01Nature Genetics 辣椒属 3.48 Gb 76芝麻Sesamum indicum 2014.02Genome Biology胡麻科胡麻属274 Mb 77辣椒Capsicum annuum (Zunla-1)2014.03PNAS 辣椒属 3.48 Gb 78火炬松Pinus taeda (Loblolly pine)2014.03Genome Biology 松属23.2 Gb 79棉花(亚洲棉)Gossypium arboreum2014.05Nature Genetics锦葵科、棉属1694 Mbs ci en ce ne t.cn : Gr an t l uj i a n g80萝卜Raphanus sativus L. 2014.05DNA Research 十字花科、萝卜属402 Mb 81甘蓝Brassica oleracea 2014.05Nature Communications十字花科、芸薹属630 Mb 82菜豆Phaseolus vulgaris L .2014.06Nature Genetics 豆科,菜豆属587 Mb 83野生大豆Glycine soja 2014.07Nature Communications豆科、大豆属868 Mb 84普通小麦Triticum aestivum 2014.07Science 禾本科17 Gb 85野生西红柿Solanum pennellii 2014.07Nature Genetics茄科942 Mb 86非洲野生稻Oryza glaberrima 2014.08Nature Genetics禾本科316 Mb 87油菜Brassica napus 2014.08Science 十字花科630 Mb 88中果咖啡Coffea canephora 2014.09Science 茜草科,咖啡属710 Mb 89茄子Solanum melongena2014.09DNA Research 茄科、茄属1093 Mb 90多个野生大豆Glycine soja 2014.09Nature Biotechnology 豆科、大豆属889.33~1,118.34 Mb91枣Ziziphus jujuba 2014.10Nature Communications鼠李科、枣属444 Mb92绿豆Vigna radiata 2014.10Nature Communications 豆科、豇豆属543 Mb 93啤酒花Humulus lupulus 2014.11Plant and Cell Physiology 大麻科、葎草属 2.57 Gb 94蝴蝶兰Phalaenopsis equestris 2014.11Nature Genetics 兰科、蝴蝶兰属 1.16 Gb 95铁皮石斛Dendrobium officinale2014.12Molecular Plant 兰科、石斛属 1.35 Gb 96青稞Lasa goumang 2015.01PNAS 禾本科、大麦属 4.5 Gb 97报春花Primula veris2015.01Genome Biology 报春花科、报春花属479 Mb 98陆地棉(南农)Gossypium hirsutum L. acc. TM-12015.03Nature Biotechnology 锦葵科、棉属 2.5 Gb 99陆地棉(棉花所)Gossypium hirsutum L. acc. TM-12015.03Nature Biotechnology 锦葵科、棉属2.173 Gb 100海带Saccharina japonica 2015.04Nature Communications 海带科、海带属537 Mb 101长春花Catharanthus roseus 2015.04The Plant Journal夹竹桃科、长春花属738 Mb 102科民茄Solanum commersor 2015.04Plant cell 茄科、茄属830 Mb 103茭白Zizania latifolia 2015.06The Plant Journal 禾本科、菰属590 Mb 104黑麦草Lolium perenne 2015.09The Plant Journal 禾本科、黑麦草属 2 Gb 105小豆Vigna angularis 2015.10Nature Communications豆科、豇豆属542 Mb 106菠萝Ananas comosus2015.11Nature Genetics 凤梨科、凤梨属526 Mbs ci en ce ne t.cn : Gr an t l uj i an g107复活草Oropetium thomaeum 2015.11Nature 虎尾草亚科245 Mb 108丹参Salvia miltiorrhiza 2015.12GigaScience 唇形科、鼠尾草属641 Mb 109铁皮石斛Dendrobium catenatum 2016.01Scientific Reports 兰科、石斛属 1.11 Gbs ci en ce ne t.cn : Gr an t l uj i a n g。
种子植物的全基因组复制事件Angiosp erms被子植物Polyplo idy多倍体Orthogr oup纯正群WGD全基因组的复制phyloge nomics种系基因组学同义现场发散(KS)Eudicot s双子叶植物MLT最大似然树unigene是Unive rsal Gene的英文缩写,意为广泛通用的基因数据库全基因组的复制( WGD ),或多倍体,伴随着基因的损失和二倍化,长期以来被认为是动物,真菌和其他生物,尤其是植物一个重要的进化动力。
被子植物的成功归功于在某种程度上,与基因或全基因组复制相关的革新,在保存的基因序列的分析中找到了能阐明单子叶植物和双子叶植物分化时间、同时更为古老的基因组复制的证据,但这些证据仍然模棱两可。
在这里,我们用测序的植物基因组的全面的系统发育基因组分析和系统发育,基因举足轻重的谱系超过12.6万个新的表达序列标签序列阐明两组古老的基因重复一中现存种子植物的共同祖先和其他在现存被子植物的共同祖先。
基因复制事件进行了强烈集中在3.19亿年前和1.92亿年前,暗示在祖先谱系两次全基因组复制在现存种子植物和被子植物分别多样化前不久。
显著,这些祖先全基因组复制导致调节基因重要的种子和花发育的多样化,这表明他们参与了重大创新,最终促成种子植物和被子植物的兴起和最终的霸主地位。
被子植物是目前陆生植物中最大的群体,拥有超过300,000的生物物种。
显著,大多数开花植物谱系反映了一轮或多轮古多倍体。
例如,对拟南芥进行的完整基因组序列分析支持了最近的两次全基因组复制(命名为a和b),在这期间,十字花科植物(十字花科)的直系和一个三重事件(c),可能由所有核心双子叶植物共享。
毛果杨基因组显示了核心双子叶植物三重证据以及更近的全基因组复制。
水稻、玉米、大豆、甘蓝、白菜、高粱、黄瓜、西瓜、马铃薯、番茄、拟南芥、杨树、麻风树、苹果、桃、葡萄、花生拟南芥籼稻粳稻葡萄番木瓜高粱黄瓜玉米栽培大豆苹果蓖麻野草莓马铃薯白菜野生番茄番茄梨甜瓜香蕉亚麻大麦普通小麦西瓜甜橙陆地棉梅毛竹桃芝麻杨树麻风树卷柏狗尾草属花生甘蓝物种基因组大小和开放阅读框文献Sesamum indicum L. Sesame 芝麻(2n = 26)293.7 Mb, 10,656 orfs 1Oryza brachyantha短药野生稻261 Mb, 32,038 orfs 2Chondrus crispus Red seaweed爱尔兰海藻105 Mb, 9,606 orfs 3Pyropia yezoensis susabi-nori海苔43 Mb, 10,327 orfs 4Prunus persica Peach 桃226.6 of 265 Mb 27,852 orfs 5Aegilops tauschii 山羊草(DD)4.23 Gb (97% of the 4.36), 43,150 orfs 6 Triticum urartu 乌拉尔图小麦(AA)4.66 Gb (94.3 % of 4.94 Gb, 34,879 orfs 7 moso bamboo (Phyllostachys heterocycla) 毛竹2.05 Gb (95%) 31,987 orfs 8Cicer arietinum Chickpea鹰嘴豆~738-Mb,28,269 orfs 9 520 Mb (70% of 740 Mb), 27,571 orfs 10Prunus mume 梅280 Mb, 31,390 orfs 11Gossypium hirsutum L.陆地棉2.425 Gb 12Gossypium hirsutum L. 雷蒙德氏棉761.8 Mb 13Citrus sinensis甜橙87.3% of ~367 Mb, 29,445 orfs 14甜橙367 Mb 15Citrullus lanatus watermelon 西瓜353.5 of ~425 Mb (83.2%) 23,440 orfs 16 Betula nana dwarf birch,矮桦450 Mb 17Nannochloropsis oceanica CCMP1779微绿球藻(产油藻类之一)28.7 Mb,11,973 orfs 18Triticum aestivum bread wheat普通小麦17 Gb, 94,000 and 96,000 orfs 19 Hordeum vulgare L. barley 大麦1.13 Gb of 5.1 Gb,26,159 high confidence orfs,53,000 low confidence orfs 20Gossypium raimondii cotton 雷蒙德氏棉D subgenome,88% of 880 Mb 40,976 orfs 21Linum usitatissimum flax 亚麻302 mb (81%), 43,384 orfs 22Musa acuminata banana 香蕉472.2 of 523 Mb, 36,542 orfs 23Cucumis melo L. melon 甜瓜375 Mb(83.3%)27,427 orfs 24Pyrus bretschneideri Rehd. cv. Dangshansuli 梨(砀山酥梨)512.0 Mb (97.1%), 42,812 orfs 25,26Solanum lycopersicum 番茄760/900 Mb,34727 orfs 27S. pimpinellifolium LA1589野生番茄739 MbSetaria 狗尾草属(谷子、青狗尾草)400 Mb,25000-29000 orfs 28,29 Cajanus cajan pigeonpea木豆833 Mb,48,680 orfs 30Nannochloropis gaditana 一种海藻~29 Mb, 9,052 orfs 31Medicago truncatula蒺藜苜蓿350.2 Mb, 62,388 orfs 32Brassica rapa 白菜485 Mb 33Solanum tuberosum 马铃薯0.73 Mb,39031 orfs 34Thellungiella parvula条叶蓝芥13.08 Mb 29,338 orfs 35Arabidopsis lyrata lyrata 玉山筷子芥? 183.7 Mb, 32670 orfs 36Fragaria vesca 野草莓240 Mb,34,809 orfs 37Theobroma cacao 可可76% of 430 Mb, 28,798 orfs 38Aureococcus anophagefferens褐潮藻32 Mb, 11501 orfs 39Selaginella moellendorfii江南卷柏208.5 Mb, 34782 orfs 40Jatropha curcas Palawan麻疯树285.9 Mb, 40929 orfs 41Oryza glaberrima 光稃稻(非洲栽培稻)206.3 Mb (0.6x), 10 080 orfs (>70% coverage) 42Phoenix dactylifera 棕枣380 Mb of 658 Mb, 25,059 orfs 43Chlorella sp. NC64A小球藻属40000 Kb, 9791 orfs 44Ricinus communis蓖麻325 Mb, 31,237 orfs 45Malus domestica (Malus x domestica)苹果742.3 Mb 46Volvox carteri f. nagariensis 69-1b一种团藻120 Mb, 14437 orfs 47 Brachypodium distachyon 短柄草272 Mb,25,532 orfs 48Glycine max cultivar Williams 82栽培大豆1.1 Gb, 46430 orfs 49Zea mays ssp. Mays Zea mays ssp. Parviglumis Zea mays ssp. Mexicana Tripsacum dactyloides var. meridionale 无法下载附表50Zea mays mays cv. B73玉米2.06 Gb, 106046 orfs 51Cucumis sativus 9930 黄瓜243.5 Mb, 63312 orfs 52Micromonas pusilla金藻21.7 Mb, 10248 orfs 53Sorghum bicolor 高粱697.6 Mb, 32886 orfs 54Phaeodactylum tricornutum 三角褐指藻24.6 Mb, 9479 orfs 55Carica papaya L. papaya 番木瓜271 Mb (75%), 28,629 orfs 56 Physcomitrella patens patens小立碗藓454 Mb, 35805 orfs 57Vitis vinifera L. Pinot Noir, clone ENTAV 115葡萄504.6 Mb, 29585 orfs 58 Vitis vinifera PN40024葡萄475 Mb 59Ostreococcus lucimarinus绿色鞭毛藻13.2 Mb, 7640 orfs 60 Chlamydomonas reinhardtii 莱茵衣藻100 Mb, 15256 orfs 61Populus trichocarpa黑三角叶杨550 Mb, 45000 orfs 62Ostreococcus tauri 绿藻12.6 Mb, 7892 orfs 63Oryza sativa ssp. japonica 粳稻360.8 Mb, 37544 orfs 64Thalassiosira pseudonana 硅藻25 Mb, 11242 orfs 65Cyanidioschyzon merolae 10D红藻16.5 Mb, 5331 orfs 66Oryza sativa ssp. japonica粳稻420 Mb, 50000 orfs 67Oryza sativa L. ssp. Indica籼稻420 Mb, 59855 orfs 68Guillardia theta -蓝隐藻,551 Kb, 553 orfs 69Arabidopsis thaliana Columbia拟南芥119.7 Mb, 31392 orfs 70参考文献1 Zhang, H. et al. Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biology 14, 401 (2013).2 Chen, J. et al. Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nat Commun 4, 1595 (2013).3 Collén, J. et al. Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proceedings of the National Academy of Sciences 110, 5247-5252 (2013).4 Nakamura, Y. et al. The first symbiont-free genome sequence of marine red alga, susabi-nori Pyropia yezoensis. PLoS ONE 8, e57122 (2013).5 Verde, I. et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics advance online publication (2013).6 Jia, J. et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496, 91-95 (2013).7 Ling, H.-Q. et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496, 87-90 (2013).8 Peng, Z. et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nature Genetics 45, 456-461 (2013).9 Jain, M. et al. A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant Journal, DOI: 10.1111/tpj.12173 (2013).10 Varshney, R. K. et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotech 31, 240-246 (2013).11 Zhang, Q. et al. The genome of Prunus mume. Nat Commun 3, 1318 (2012).12 Lee, M.-K. et al. Construction of a plant-transformation-competent BIBAC library and genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.). BMC Genomics 14, 208 (2013).13 Paterson, A. H. et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492, 423-427 (2012).14 Xu, Q. et al. The draft genome of sweet orange (Citrus sinensis). Nat Genet 45,59–66 (2013).15 Belknap, W. R. et al. Characterizing the citrus cultivar Carrizo genome through 454 shotgun sequencing. Genome 54, 1005-1015 (2011).16 Guo, S. et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45, 51–58 (2013).17 Wang, N. et al. Genome sequence of dwarf birch (Betula nana) and cross-species RAD markers. Mol Ecol Article first published online: 21 NOV 2012 DOI:10.1111/mec.12131 (2012).18 Vieler, A. et al. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8, e1003064 (2012).19 Brenchley, R. et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491, 705-710 (2012).20 Consortium, T. I. B. G. S. A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711–716 (2012).21 Wang, K. et al. The draft genome of a diploid cotton Gossypium raimondii. Nature Genetics 44, 1098–1103 (2012).22 Wang, Z. et al. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. The Plant Journal 72, 461-473 (2012).23 D'Hont, A. et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488, 213–217 (2012).24 Garcia-Mas, J. et al. The genome of melon (Cucumis melo L.). PNAS 109, 11872-11877 (2012).25 reporter, A. G. s. Consortium releases pear genome data. GenomeWeb Daily News (2012).26 Wu, J. et al. The genome of pear (Pyrus bretschneideri Rehd.). GenomeRes.Published in Advance November 13, 2012, doi:10.1101/gr.144311.112 (2012).27 Consortium, T. T. G. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635–641 (2012).28 Bennetzen, J. L. et al. Reference genome sequence of the model plant Setaria. Nat Biotech 30, 555-561 (2012).29 Zhang, G. et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotech 30, 549-554 (2012).30 Varshney, R. K. et al. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotech 30, 83-89 (2012).31 Radakovits, R. et al. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun 3, 686 (2012).32 Young, N. D. et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480, 520–524 (2011).33 Wang, X. et al. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43, 1035-1039 (2011).34 Consortium, T. P. G. S. Genome sequence and analysis of the tuber crop potato. Nature 475, 189-195 (2011).35 Dassanayake, M. et al. The genome of the extremophile crucifer Thellungiella parvula. Nat. Genet. 43, 913-918 (2011).36 Hu, T. T. et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43, 476-481 (2011).37 Shulaev, V. et al. The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 43, 109-116 (2011).38 Argout, X. et al. The genome of Theobroma cacao. Nat. Genet. 43, 101-108 (2011).39 Gobler, C. J. et al. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. PNAS 108, 4352-4357 (2011).40 Banks, J. A. et al. The selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332, 960-963 (2011).41 Sato, S. et al. Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res. 18, 65-76 (2011).42 Sakai, H. et al. Distinct evolutionary patterns of Oryza glaberrima deciphered by genome sequencing and comparative analysis. Plant Journal 66, 796-805 (2011).43 Al-Dous, E. K. et al. De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotech 29, 521-527 (2011).44 Blanc, G. et al. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22, 2943-2955 (2010).45 Chan, A. P. et al. Draft genome sequence of the oilseed species Ricinus communis. Nat Biotech 28(951-956 (2010).46 Velasco, R. et al. The genome of the domesticated apple (Malus x domestica Borkh.). Nat. Genet. 42, 833-839 (2010).47 Prochnik, S. E. et al. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329, 223-226 (2010).48 Initiative, T. I. B. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463, 763-768 (2010).49 Schmutz, J. et al. Genome sequence of the palaeopolyploid soybean. Nature 463, 178-183 (2010).50 Hufford, M. B. et al. Comparative population genomics of maize domestication and improvement. Nat Genet 44, 808-811 (2012).51 Wei, F. et al. The physical and genetic framework of the maize B73 genome. PLoS Genet 5, e1000715 (2009).52 Huang, S. et al. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41, 1275-1281 (2009).53 Worden, A. Z. et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324, 268-272 (2009).54 Paterson, A. H. et al. The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551-556 (2009).55 Bowler, C. et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239-244 (2008).56 Ming, R. et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452, 991-996 (2008).57 Rensing, S. A. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64-69 (2008).58 Velasco, R. et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2, e1326 (2007).59 Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463-467 (2007).60 Palenik, B. et al. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. PNAS 104, 7705-7710 (2007).61 Merchant, S. S. et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245-250 (2007).62 Tuskan, G. A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596-1604 (2006).63 Derelle, E. et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. PNAS 103, 11647-11652 (2006). 64 Project, I. R. G. S. The map-based sequence of the rice genome. Nature 436,793-800 (2005).65 Armbrust, E. V. et al. The genome of the diatom Thalassiosira Pseudonana: ecology, evolution, and metabolism. Science 306, 79-86 (2004).66 Matsuzaki, M. et al. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428, 653-657 (2004).67 Goff, S. A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92-100 (2002).68 Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79-92 (2002).69 Douglas, S. et al. The highly reduced genome of an enslaved algal nucleus. Nature 410, 1091-1096 (2001).70 Kaul, S. et al. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815 (2000).。
部分植物基因组数据库汇总⽜年⼤吉
植物基因组数据库:
1、NCBI中的genome,直接下载NCBI上的基因组⽂件
ftp:///genomes/
2、植物基因组数据库(包含约30个左右的植物,具体查看:)
30个左右植物基因组对应列表下载
3、包含多个物种的基因组数据(如:柑橘、黄⽠、桉树、海棠等约100个左右)100个左右植物基因组对应列表下载
4、Ensembl数据库(植物)
70个左右植物基因组对应列表下载
5、拟南芥数据库
6、另外⼀个综合性的(包含番茄,马铃薯,烟草、茄⼦等)
7、⽔稻
8、马铃薯基因组数据库(较为全⾯)
9、百脉根
10、⾖科植物
11、葡萄基因组
12、⼩麦
13、最全⾯的杨树整合数据(⽬前我看到的)
14、棉花
15、茶
16、苜蓿
17、蔷薇科
18、荞麦
19、各种柑类
20、萝⼘
21、茄⼦
22、各种⽠类(西⽠,甜⽠、南⽠等)
23、梨
24、被⼦植物基因组数据库
25、菠萝
26、⽢草
27、板栗
28、花⽣
29、⽑⽵
30、薄荷
31、蓝莓
32、橡胶草
33、杜仲
33、圣罗勒
34、青蒿
35、向⽇葵
36、胡桃科
37、物种如下图所⽰
38、杨树等
祝⼤家新春快乐,阖家幸福!
⽜年⼤吉,多发Papper,顺利毕业,科研顺利!蚂蚁⽣信和⼤家在新的⼀年⾥⼀起加油!
⽜年更⽜。
nature plants 基因组文章
随着基因组文章越来越受到重视,Nature Plants就成为基因组文章研究的重要杂志之一。
它为研究者提供了一个非常有用的有机结构,可以收集和整理基因组学文章,以及其它有关分子生物学的研究方面的研究。
虽然Nature Plants不是唯一的致力于基因组文章的杂志,但它以探究动植物的分子基础构成及其影响相关因素的综合研究而受到赞誉。
Nature Plants首发于三 years,是一份发表研究成果,研究进展和最新进展的杂志。
其审稿政策严格且有效,特别是与基因组学文章和其他生物学文章有关。
同时,该杂志也接受优秀的新观点和概念独立的文章。
Nature Plants的文章主要由四个部分组成,分别是介绍背景、实验概要、结果和讨论。
在介绍部分,研究者需要清晰地阐明背景信息和研究的主要目的,详细介绍研究的研究设计,及其对研究结果的影响。
实验概要部分描述了实验材料、方法和结果。
结果部分除了表格或图片形式的结果外,还需要专家对结果进行分析和概括。
讨论部分则应该深入探讨结果的科学意义,指出其对未来的研究的影响,以及提出可能的未来研究方向。
研究者在提交基因组学文章时,需要注意一些与杂志要求相关的细节,如引用格式、摘要格式、文章结构等。
此外,研究者还要做好这些文章的报告,使其让人清楚易懂,以及避免任何抄袭等行为,以便让研究原创性得以最大程度地显现。
Nature Plants杂志将积极发掘和支持优秀的基因组学文章,以及其它研究方面的文章,它是基因组学研究领域的一个重要贡献者。
对于基因组学文章的研究者来说,Nature Plants一个在研究领域大展身手的好地方。
植物[编辑]物种基因组大小和开放阅读框文献Sesamum indicum L. Sesame 芝麻(2n = 26)293.7 Mb, 10,656 orfs 1 Oryza brachyantha短药野生稻261 Mb, 32,038 orfs 2Chondrus crispus Red seaweed爱尔兰海藻105 Mb, 9,606 orfs 3Pyropia yezoensis susabi-nori海苔43 Mb, 10,327 orfs 4Prunus persica Peach 桃226.6 of 265 Mb 27,852 orfs 5Aegilops tauschii 山羊草(DD)4.23 Gb (97% of the 4.36), 43,150 orfs 6 Triticum urartu 乌拉尔图小麦(AA)4.66 Gb (94.3 % of 4.94 Gb, 34,879 orfs 7 moso bamboo (Phyllostachys heterocycla) 毛竹2.05 Gb (95%) 31,987 orfs 8 Cicer arietinum Chickpea鹰嘴豆~738-Mb,28,269 orfs 9 520 Mb (70% of 740 Mb), 27,571 orfs 10Prunus mume 梅280 Mb, 31,390 orfs 11Gossypium hirsutum L.陆地棉2.425 Gb 12Gossypium hirsutum L. 雷蒙德氏棉761.8 Mb 13Citrus sinensis 甜橙87.3% of ~367 Mb, 29,445 orfs 14甜橙367 Mb 15Citrullus lanatus watermelon 西瓜353.5 of ~425 Mb (83.2%) 23,440 orfs 16 Betula nana dwarf birch,矮桦450 Mb 17Nannochloropsis oceanica CCMP1779微绿球藻(产油藻类之一)28.7 Mb,11,973 orfs 18Triticum aestivum bread wheat普通小麦17 Gb, 94,000 and 96,000 orfs 19 Hordeum vulgare L. barley 大麦1.13 Gb of 5.1 Gb,26,159 high confidence orfs,53,000 low confidence orfs 20Gossypium raimondii cotton 雷蒙德氏棉D subgenome,88% of 880 Mb 40,976 orfs 21Linum usitatissimum flax 亚麻302 mb (81%), 43,384 orfs 22Musa acuminata banana 香蕉472.2 of 523 Mb, 36,542 orfs 23Cucumis melo L. melon 甜瓜375 Mb(83.3%)27,427 orfs 24Pyrus bretschneideri Rehd. cv. Dangshansuli 梨(砀山酥梨)512.0 Mb (97.1%), 42,812 orfs 25,26Solanum lycopersicum 番茄760/900 Mb,34727 orfs 27S. pimpinellifolium LA1589野生番茄739 MbSetaria 狗尾草属(谷子、青狗尾草)400 Mb,25000-29000 orfs 28,29Cajanus cajan pigeonpea木豆833 Mb,48,680 orfs 30Nannochloropis gaditana 一种海藻~29 Mb, 9,052 orfs 31Medicago truncatula蒺藜苜蓿350.2 Mb, 62,388 orfs 32Brassica rapa 白菜485 Mb 33Solanum tuberosum 马铃薯0.73 Mb,39031 orfs 34Thellungiella parvula条叶蓝芥13.08 Mb 29,338 orfs 35Arabidopsis lyrata lyrata 玉山筷子芥? 183.7 Mb, 32670 orfs 36Fragaria vesca 野草莓240 Mb,34,809 orfs 37Theobroma cacao 可可76% of 430 Mb, 28,798 orfs 38Aureococcus anophagefferens褐潮藻32 Mb, 11501 orfs 39Selaginella moellendorfii江南卷柏208.5 Mb, 34782 orfs 40Jatropha curcas Palawan麻疯树285.9 Mb, 40929 orfs 41Oryza glaberrima 光稃稻(非洲栽培稻)206.3 Mb (0.6x), 10 080 orfs (>70% coverage) 42Phoenix dactylifera 棕枣380 Mb of 658 Mb, 25,059 orfs 43Chlorella sp. NC64A小球藻属40000 Kb, 9791 orfs 44Ricinus communis蓖麻325 Mb, 31,237 orfs 45Malus domestica (Malus x domestica) 苹果742.3 Mb 46Volvox carteri f. nagariensis 69-1b一种团藻120 Mb, 14437 orfs 47Brachypodium distachyon 短柄草272 Mb,25,532 orfs 48Glycine max cultivar Williams 82栽培大豆1.1 Gb, 46430 orfs 49Zea mays ssp. Mays Zea mays ssp. Parviglumis Zea mays ssp. Mexicana Tripsacum dactyloides var. meridionale 无法下载附表50Zea mays mays cv. B73玉米2.06 Gb, 106046 orfs 51Cucumis sativus 9930 黄瓜243.5 Mb, 63312 orfs 52Micromonas pusilla金藻21.7 Mb, 10248 orfs 53Sorghum bicolor 高粱697.6 Mb, 32886 orfs 54Phaeodactylum tricornutum 三角褐指藻24.6 Mb, 9479 orfs 55Carica papaya L. papaya 番木瓜271 Mb (75%), 28,629 orfs 56Physcomitrella patens patens小立碗藓454 Mb, 35805 orfs 57Vitis vinifera L. Pinot Noir, clone ENTAV 115葡萄504.6 Mb, 29585 orfs 58Vitis vinifera PN40024葡萄475 Mb 59Ostreococcus lucimarinus绿色鞭毛藻13.2 Mb, 7640 orfs 60Chlamydomonas reinhardtii 莱茵衣藻100 Mb, 15256 orfs 61Populus trichocarpa黑三角叶杨550 Mb, 45000 orfs 62Ostreococcus tauri 绿藻12.6 Mb, 7892 orfs 63Oryza sativa ssp. japonica 粳稻360.8 Mb, 37544 orfs 64Thalassiosira pseudonana 硅藻25 Mb, 11242 orfs 65Cyanidioschyzon merolae 10D红藻16.5 Mb, 5331 orfs 66Oryza sativa ssp. japonica 粳稻420 Mb, 50000 orfs 67Oryza sativa L. ssp. Indica籼稻420 Mb, 59855 orfs 68Guillardia theta -蓝隐藻,551 Kb, 553 orfs 69Arabidopsis thaliana Columbia拟南芥119.7 Mb, 31392 orfs 70参考文献1 Zhang, H. et al. Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biology 14, 401 (2013).2 Chen, J. et al. Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nat Commun 4, 1595 (2013).3 Collén, J. et al. Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proceedings of the National Academy of Sciences 110, 5247-5252 (2013).4 Nakamura, Y. et al. The first symbiont-free genome sequence of marine red alga, susabi-nori Pyropia yezoensis. PLoS ONE 8, e57122 (2013).5 Verde, I. et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics advance online publication (2013).6 Jia, J. et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496, 91-95 (2013).7 Ling, H.-Q. et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496, 87-90 (2013).8 Peng, Z. et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nature Genetics 45, 456-461 (2013).9 Jain, M. et al. A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant Journal, DOI: 10.1111/tpj.12173 (2013).10 Varshney, R. K. et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotech 31, 240-246 (2013).11 Zhang, Q. et al. The genome of Prunus mume. Nat Commun 3, 1318 (2012).12 Lee, M.-K. et al. Construction of a plant-transformation-competent BIBAC library and genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.). BMC Genomics 14, 208 (2013).13 Paterson, A. H. et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492, 423-427 (2012).14 Xu, Q. et al. The draft genome of sweet orange (Citrus sinensis). Nat Genet 45, 59–66 (2013).15 Belknap, W. R. et al. Characterizing the citrus cultivar Carrizo genome through 454 shotgun sequencing. Genome 54, 1005-1015 (2011).16 Guo, S. et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45, 51–58 (2013).17 Wang, N. et al. Genome sequence of dwarf birch (Betula nana) andcross-species RAD markers. Mol Ecol Article first published online: 21 NOV 2012 DOI: 10.1111/mec.12131 (2012).18 Vieler, A. et al. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8, e1003064 (2012).19 Brenchley, R. et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491, 705-710 (2012).20 Consortium, T. I. B. G. S. A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711–716 (2012).21 Wang, K. et al. The draft genome of a diploid cotton Gossypium raimondii. Nature Genetics 44, 1098–1103 (2012).22 Wang, Z. et al. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. The Plant Journal 72, 461-473 (2012).23 D'Hont, A. et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488, 213–217 (2012).24 Garcia-Mas, J. et al. The genome of melon (Cucumis melo L.). PNAS 109, 11872-11877 (2012).25 reporter, A. G. s. Consortium releases pear genome data. GenomeWeb Daily News (2012).26 Wu, J. et al. The genome of pear (Pyrus bretschneideri Rehd.). Genome Res.Published in Advance November 13, 2012, doi:10.1101/gr.144311.112 (2012).27 Consortium, T. T. G. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635–641 (2012).28 Bennetzen, J. L. et al. Reference genome sequence of the model plant Setaria. Nat Biotech 30, 555-561 (2012).29 Zhang, G. et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotech 30, 549-554 (2012).30 Varshney, R. K. et al. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotech 30, 83-89 (2012).31 Radakovits, R. et al. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun 3, 686 (2012).32 Young, N. D. et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480, 520–524 (2011).33 Wang, X. et al. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43, 1035-1039 (2011).34 Consortium, T. P. G. S. Genome sequence and analysis of the tuber crop potato. Nature 475, 189-195 (2011).35 Dassanayake, M. et al. The genome of the extremophile crucifer Thellungiella parvula. Nat. Genet. 43, 913-918 (2011).36 Hu, T. T. et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43, 476-481 (2011).37 Shulaev, V. et al. The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 43, 109-116 (2011).38 Argout, X. et al. The genome of Theobroma cacao. Nat. Genet. 43, 101-108 (2011).39 Gobler, C. J. et al. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. PNAS 108, 4352-4357 (2011).40 Banks, J. A. et al. The selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332, 960-963 (2011).41 Sato, S. et al. Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res. 18, 65-76 (2011).42 Sakai, H. et al. Distinct evolutionary patterns of Oryza glaberrima deciphered by genome sequencing and comparative analysis. Plant Journal 66, 796-805 (2011).43 Al-Dous, E. K. et al. De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotech 29, 521-527 (2011).44 Blanc, G. et al. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22,2943-2955 (2010).45 Chan, A. P. et al. Draft genome sequence of the oilseed species Ricinus communis. Nat Biotech 28(951-956 (2010).46 Velasco, R. et al. The genome of the domesticated apple (Malus x domestica Borkh.). Nat. Genet. 42, 833-839 (2010).47 Prochnik, S. E. et al. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329, 223-226 (2010).48 Initiative, T. I. B. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463, 763-768 (2010).49 Schmutz, J. et al. Genome sequence of the palaeopolyploid soybean. Nature 463, 178-183 (2010).50 Hufford, M. B. et al. Comparative population genomics of maize domestication and improvement. Nat Genet 44, 808-811 (2012).51 Wei, F. et al. The physical and genetic framework of the maize B73 genome. PLoS Genet 5, e1000715 (2009).52 Huang, S. et al. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41, 1275-1281 (2009).53 Worden, A. Z. et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324, 268-272 (2009).54 Paterson, A. H. et al. The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551-556 (2009).55 Bowler, C. et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239-244 (2008).56 Ming, R. et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452, 991-996 (2008).57 Rensing, S. A. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64-69 (2008).58 Velasco, R. et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2, e1326 (2007).59 Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463-467 (2007).60 Palenik, B. et al. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. PNAS 104, 7705-7710 (2007).61 Merchant, S. S. et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245-250 (2007).62 Tuskan, G. A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596-1604 (2006).63 Derelle, E. et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. PNAS 103, 11647-11652 (2006).64 Project, I. R. G. S. The map-based sequence of the rice genome. Nature 436, 793-800 (2005).65 Armbrust, E. V. et al. The genome of the diatom Thalassiosira Pseudonana: ecology, evolution, and metabolism. Science 306, 79-86 (2004).66 Matsuzaki, M. et al. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428, 653-657 (2004).67 Goff, S. A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92-100 (2002).68 Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79-92 (2002).69 Douglas, S. et al. The highly reduced genome of an enslaved algal nucleus. Nature 410, 1091-1096 (2001).70 Kaul, S. et al. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815 (2000).动物[编辑]•Anopheles gambiae - 疟蚊•Apis mellifera - 蜜蜂•Bos taurus cattle - 牛•Caenorhabditis briggsae - 一种线虫•Caenorhabditis elegans - 秀丽隐杆线虫,模式生物•Canis lupus familiaris dog- 狗•Ciona intestinalis - 一种海鞘•Ciona savignyi - 一种海鞘•Drosophila melanogaster - 黑腹果蝇,模式生物•Fugu rubripes - 河豚•Gallus gallus - 鸡•Homo sapiens - 人•Mus musculus - 小鼠, 模式生物•Pan troglodytes - 黑猩猩•Rattus norvegicus - 大鼠•Schistosoma haematobium - 埃及血吸虫•Anabaena spec. - Fadenblaualge•Gloeobacter violaceus - primitive Blaualge •Synechococcus spec. - Meeres-Blaualge•Synechocystis spec. - Meeres-Blaualge•Thermosynechococcus elongatus - Thermophile Blaualge。
水稻、玉米、大豆、甘蓝、白菜、高粱、黄瓜、西瓜、马铃薯、番茄、拟南芥、杨树、麻风树、苹果、桃、葡萄、花生拟南芥籼稻粳稻葡萄番木瓜高粱黄瓜玉米栽培大豆苹果蓖麻野草莓马铃薯白菜野生番茄番茄梨甜瓜香蕉亚麻大麦普通小麦西瓜甜橙陆地棉梅毛竹桃芝麻杨树麻风树卷柏狗尾草属花生甘蓝物种基因组大小和开放阅读框文献Sesamum indicum L. Sesame 芝麻(2n = 26)293.7 Mb, 10,656 orfs 1Oryza brachyantha短药野生稻261 Mb, 32,038 orfs 2Chondrus crispus Red seaweed爱尔兰海藻105 Mb, 9,606 orfs 3Pyropia yezoensis susabi-nori海苔43 Mb, 10,327 orfs 4Prunus persica Peach 桃226.6 of 265 Mb 27,852 orfs 5Aegilops tauschii 山羊草(DD)4.23 Gb (97% of the 4.36), 43,150 orfs 6 Triticum urartu 乌拉尔图小麦(AA)4.66 Gb (94.3 % of 4.94 Gb, 34,879 orfs 7 moso bamboo (Phyllostachys heterocycla) 毛竹2.05 Gb (95%) 31,987 orfs 8Cicer arietinum Chickpea鹰嘴豆~738-Mb,28,269 orfs 9 520 Mb (70% of 740 Mb), 27,571 orfs 10Prunus mume 梅280 Mb, 31,390 orfs 11Gossypium hirsutum L.陆地棉2.425 Gb 12Gossypium hirsutum L. 雷蒙德氏棉761.8 Mb 13Citrus sinensis甜橙87.3% of ~367 Mb, 29,445 orfs 14甜橙367 Mb 15Citrullus lanatus watermelon 西瓜353.5 of ~425 Mb (83.2%) 23,440 orfs 16 Betula nana dwarf birch,矮桦450 Mb 17Nannochloropsis oceanica CCMP1779微绿球藻(产油藻类之一)28.7 Mb,11,973 orfs 18Triticum aestivum bread wheat普通小麦17 Gb, 94,000 and 96,000 orfs 19 Hordeum vulgare L. barley 大麦1.13 Gb of 5.1 Gb,26,159 high confidence orfs,53,000 low confidence orfs 20Gossypium raimondii cotton 雷蒙德氏棉D subgenome,88% of 880 Mb 40,976 orfs 21Linum usitatissimum flax 亚麻302 mb (81%), 43,384 orfs 22Musa acuminata banana 香蕉472.2 of 523 Mb, 36,542 orfs 23Cucumis melo L. melon 甜瓜375 Mb(83.3%)27,427 orfs 24Pyrus bretschneideri Rehd. cv. Dangshansuli 梨(砀山酥梨)512.0 Mb (97.1%), 42,812 orfs 25,26Solanum lycopersicum 番茄760/900 Mb,34727 orfs 27S. pimpinellifolium LA1589野生番茄739 MbSetaria 狗尾草属(谷子、青狗尾草)400 Mb,25000-29000 orfs 28,29 Cajanus cajan pigeonpea木豆833 Mb,48,680 orfs 30Nannochloropis gaditana 一种海藻~29 Mb, 9,052 orfs 31Medicago truncatula蒺藜苜蓿350.2 Mb, 62,388 orfs 32Brassica rapa 白菜485 Mb 33Solanum tuberosum 马铃薯0.73 Mb,39031 orfs 34Thellungiella parvula条叶蓝芥13.08 Mb 29,338 orfs 35Arabidopsis lyrata lyrata 玉山筷子芥? 183.7 Mb, 32670 orfs 36Fragaria vesca 野草莓240 Mb,34,809 orfs 37Theobroma cacao 可可76% of 430 Mb, 28,798 orfs 38Aureococcus anophagefferens褐潮藻32 Mb, 11501 orfs 39Selaginella moellendorfii江南卷柏208.5 Mb, 34782 orfs 40Jatropha curcas Palawan麻疯树285.9 Mb, 40929 orfs 41Oryza glaberrima 光稃稻(非洲栽培稻)206.3 Mb (0.6x), 10 080 orfs (>70% coverage) 42Phoenix dactylifera 棕枣380 Mb of 658 Mb, 25,059 orfs 43Chlorella sp. NC64A小球藻属40000 Kb, 9791 orfs 44Ricinus communis蓖麻325 Mb, 31,237 orfs 45Malus domestica (Malus x domestica)苹果742.3 Mb 46Volvox carteri f. nagariensis 69-1b一种团藻120 Mb, 14437 orfs 47 Brachypodium distachyon 短柄草272 Mb,25,532 orfs 48Glycine max cultivar Williams 82栽培大豆1.1 Gb, 46430 orfs 49Zea mays ssp. Mays Zea mays ssp. Parviglumis Zea mays ssp. Mexicana Tripsacum dactyloides var. meridionale 无法下载附表50Zea mays mays cv. B73玉米2.06 Gb, 106046 orfs 51Cucumis sativus 9930 黄瓜243.5 Mb, 63312 orfs 52Micromonas pusilla金藻21.7 Mb, 10248 orfs 53Sorghum bicolor 高粱697.6 Mb, 32886 orfs 54Phaeodactylum tricornutum 三角褐指藻24.6 Mb, 9479 orfs 55Carica papaya L. papaya 番木瓜271 Mb (75%), 28,629 orfs 56 Physcomitrella patens patens小立碗藓454 Mb, 35805 orfs 57Vitis vinifera L. Pinot Noir, clone ENTAV 115葡萄504.6 Mb, 29585 orfs 58 Vitis vinifera PN40024葡萄475 Mb 59Ostreococcus lucimarinus绿色鞭毛藻13.2 Mb, 7640 orfs 60 Chlamydomonas reinhardtii 莱茵衣藻100 Mb, 15256 orfs 61Populus trichocarpa黑三角叶杨550 Mb, 45000 orfs 62Ostreococcus tauri 绿藻12.6 Mb, 7892 orfs 63Oryza sativa ssp. japonica 粳稻360.8 Mb, 37544 orfs 64Thalassiosira pseudonana 硅藻25 Mb, 11242 orfs 65Cyanidioschyzon merolae 10D红藻16.5 Mb, 5331 orfs 66Oryza sativa ssp. japonica粳稻420 Mb, 50000 orfs 67Oryza sativa L. ssp. Indica籼稻420 Mb, 59855 orfs 68Guillardia theta -蓝隐藻,551 Kb, 553 orfs 69Arabidopsis thaliana Columbia拟南芥119.7 Mb, 31392 orfs 70参考文献1 Zhang, H. et al. Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biology 14, 401 (2013).2 Chen, J. et al. Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nat Commun 4, 1595 (2013).3 Collén, J. et al. Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proceedings of the National Academy of Sciences 110, 5247-5252 (2013).4 Nakamura, Y. et al. The first symbiont-free genome sequence of marine red alga, susabi-nori Pyropia yezoensis. PLoS ONE 8, e57122 (2013).5 Verde, I. et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics advance online publication (2013).6 Jia, J. et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496, 91-95 (2013).7 Ling, H.-Q. et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496, 87-90 (2013).8 Peng, Z. et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nature Genetics 45, 456-461 (2013).9 Jain, M. et al. A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant Journal, DOI: 10.1111/tpj.12173 (2013).10 Varshney, R. K. et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotech 31, 240-246 (2013).11 Zhang, Q. et al. The genome of Prunus mume. Nat Commun 3, 1318 (2012).12 Lee, M.-K. et al. Construction of a plant-transformation-competent BIBAC library and genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.). BMC Genomics 14, 208 (2013).13 Paterson, A. H. et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492, 423-427 (2012).14 Xu, Q. et al. The draft genome of sweet orange (Citrus sinensis). Nat Genet 45,59–66 (2013).15 Belknap, W. R. et al. Characterizing the citrus cultivar Carrizo genome through 454 shotgun sequencing. Genome 54, 1005-1015 (2011).16 Guo, S. et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45, 51–58 (2013).17 Wang, N. et al. Genome sequence of dwarf birch (Betula nana) and cross-species RAD markers. Mol Ecol Article first published online: 21 NOV 2012 DOI:10.1111/mec.12131 (2012).18 Vieler, A. et al. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8, e1003064 (2012).19 Brenchley, R. et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491, 705-710 (2012).20 Consortium, T. I. B. G. S. A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711–716 (2012).21 Wang, K. et al. The draft genome of a diploid cotton Gossypium raimondii. Nature Genetics 44, 1098–1103 (2012).22 Wang, Z. et al. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. The Plant Journal 72, 461-473 (2012).23 D'Hont, A. et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488, 213–217 (2012).24 Garcia-Mas, J. et al. The genome of melon (Cucumis melo L.). PNAS 109, 11872-11877 (2012).25 reporter, A. G. s. Consortium releases pear genome data. GenomeWeb Daily News (2012).26 Wu, J. et al. The genome of pear (Pyrus bretschneideri Rehd.). GenomeRes.Published in Advance November 13, 2012, doi:10.1101/gr.144311.112 (2012).27 Consortium, T. T. G. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635–641 (2012).28 Bennetzen, J. L. et al. Reference genome sequence of the model plant Setaria. Nat Biotech 30, 555-561 (2012).29 Zhang, G. et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotech 30, 549-554 (2012).30 Varshney, R. K. et al. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotech 30, 83-89 (2012).31 Radakovits, R. et al. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun 3, 686 (2012).32 Young, N. D. et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480, 520–524 (2011).33 Wang, X. et al. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43, 1035-1039 (2011).34 Consortium, T. P. G. S. Genome sequence and analysis of the tuber crop potato. Nature 475, 189-195 (2011).35 Dassanayake, M. et al. The genome of the extremophile crucifer Thellungiella parvula. Nat. Genet. 43, 913-918 (2011).36 Hu, T. T. et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43, 476-481 (2011).37 Shulaev, V. et al. The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 43, 109-116 (2011).38 Argout, X. et al. The genome of Theobroma cacao. Nat. Genet. 43, 101-108 (2011).39 Gobler, C. J. et al. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. PNAS 108, 4352-4357 (2011).40 Banks, J. A. et al. The selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332, 960-963 (2011).41 Sato, S. et al. Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res. 18, 65-76 (2011).42 Sakai, H. et al. Distinct evolutionary patterns of Oryza glaberrima deciphered by genome sequencing and comparative analysis. Plant Journal 66, 796-805 (2011).43 Al-Dous, E. K. et al. De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotech 29, 521-527 (2011).44 Blanc, G. et al. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22, 2943-2955 (2010).45 Chan, A. P. et al. Draft genome sequence of the oilseed species Ricinus communis. Nat Biotech 28(951-956 (2010).46 Velasco, R. et al. The genome of the domesticated apple (Malus x domestica Borkh.). Nat. Genet. 42, 833-839 (2010).47 Prochnik, S. E. et al. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329, 223-226 (2010).48 Initiative, T. I. B. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463, 763-768 (2010).49 Schmutz, J. et al. Genome sequence of the palaeopolyploid soybean. Nature 463, 178-183 (2010).50 Hufford, M. B. et al. Comparative population genomics of maize domestication and improvement. Nat Genet 44, 808-811 (2012).51 Wei, F. et al. The physical and genetic framework of the maize B73 genome. PLoS Genet 5, e1000715 (2009).52 Huang, S. et al. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41, 1275-1281 (2009).53 Worden, A. Z. et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324, 268-272 (2009).54 Paterson, A. H. et al. The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551-556 (2009).55 Bowler, C. et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239-244 (2008).56 Ming, R. et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452, 991-996 (2008).57 Rensing, S. A. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64-69 (2008).58 Velasco, R. et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2, e1326 (2007).59 Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463-467 (2007).60 Palenik, B. et al. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. PNAS 104, 7705-7710 (2007).61 Merchant, S. S. et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245-250 (2007).62 Tuskan, G. A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596-1604 (2006).63 Derelle, E. et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. PNAS 103, 11647-11652 (2006). 64 Project, I. R. G. S. The map-based sequence of the rice genome. Nature 436,793-800 (2005).65 Armbrust, E. V. et al. The genome of the diatom Thalassiosira Pseudonana: ecology, evolution, and metabolism. Science 306, 79-86 (2004).66 Matsuzaki, M. et al. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428, 653-657 (2004).67 Goff, S. A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92-100 (2002).68 Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79-92 (2002).69 Douglas, S. et al. The highly reduced genome of an enslaved algal nucleus. Nature 410, 1091-1096 (2001).70 Kaul, S. et al. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815 (2000).。
[转载]已经公布的真菌基因组摘要:真菌基因组学研究可以推动生物化学、分子生物学、病原菌的致病机理、与宿主相互作用等基础研究,还能更好的寻找抗菌药物靶点,促进疫苗和抗菌药物的开发研制、促进工业生产。
目前已有48种真菌的基因组序列公布,包括子囊菌门(Ascomycota)42种,担子菌门(Basidiomycota)5种,微孢子虫(Microsporidia)1种。
基因组大小超过30倍,从2.5 Mb~81.5Mb。
本文整理翻译了NCBI上关于真菌基因组的信息,对已测序真菌的重要性和其基因组相关信息进行了简要.真菌种类庞大而多样,据估计,全世界有真菌150万种,已被描述的约7万种。
真菌在自然界中分布极为广泛,它们存在于土壤、水、空气和生物体内外。
真菌在自然界的碳素和氮素循环中起主要作用。
真菌参与淀粉、纤维素、木质素等有机含碳化合物的分解,生成CO2,为植物提供碳源。
比如许多担子菌能够利用纤维素和木质素作为生长的碳源和氮源,因此可以分解木材、纸张、棉布和其他自然界中含碳的复杂有机物。
真菌对蛋白质及其他含氮化合物的分解所释放的NH3,一部分可供植物和微生物吸收同化,一部分可转化为硝酸盐,成为氮素循环中不可替代的一步。
某些真菌在发酵工业、食品加工业、抗生素生产中具有重要作用;而某些真菌又具有严重的破坏作用,有的真菌是许多重要经济作物的病原菌,如玉米腥黑穗病、小麦锈病、黄瓜黑腥病等;少数真菌是人类和动物的致病菌,如白色念珠菌等。
因此合理利用有益真菌,消灭和预防有害真菌具有重要意义。
基因组信息可以加深人们对真菌遗传和生理多样性的认识。
1997年,由欧洲、美国、加拿大和日本共96个实验室的633位科学家通力协作下,第一个真核生物酿酒酵母(Saccharomyces cereuisiae )的基因组测序完成。
2002年粟酒裂殖酵母(Schizosaccharomyces pombe)基因组测序完成,两年后第一个丝状真菌粗糙脉孢菌(Neurospora crassa)基因组测序完成。
nature plants 基因组文章基因组学技术的发展为研究植物的基因组信息提供了数据支持,有效推动了植物的研究与进步。
《Nature Plants》杂志来自自然出版集团,主要用于发表植物分子科学研究方面的文章,特别是与基因组学相关的研究。
《Nature Plants》杂志发表的文章主要涉及植物基因组的各种领域,包括基因的结构和功能、基因表达调控、基因网络、种子开花时间、耐冷性等。
文章会着重介绍不同植物的基因组结构和功能的研究,以及基因表达调控、种子开花时间、耐冷性等植物表型属性的研究。
《Nature Plants》杂志还会发表其他植物基因组学相关文章,如生物信息学、基因组比较、植物重组研究和植物分子进化等。
基于进步的技术,《Nature Plants》杂志可以发表高质量的文章来描述植物系统和植物基因组学研究成果。
在过去的几年中,《Nature Plants》杂志在植物基因组学方面发表了大量重要研究文章,为植物科学研究做出了巨大的贡献。
比如,去年发表的一篇文章中,研究者详细介绍了他们对水稻基因组的分析,研究发现水稻基因组真正的大小比之前的估计大出很多。
这一发现可以帮助科学家更好地理解水稻遗传特征及其在适应环境变化中的作用。
此外,植物基因组学的发展也带来了一些新技术,比如CRISPR/Cas细胞基因编辑,它可以有效地诱变植物基因,实现对特定基因的精确操控。
在去年发表的一篇文章中,研究者报道了他们在水稻中通过CRISPR/Cas编辑产生了新的黄瓜块状萎凋病毒抗病基因。
该文章发表在《Nature Plants》杂志上,引发了人们对植物基因组学在植物抗病育种方面的期望。
随着基因组学技术的发展,《Nature Plants》杂志发表的文章更加强调了植物基因组学研究的重要性。
此外,文章中发表的研究结果也可以为植物生物学及植物研究领域的研究者提供资源和参考。
在未来,人们将继续利用基因组学技术,深入研究植物的基因组结构和功能关系,实现植物基因调控和改造,进一步推动植物科学的发展。