整式的加减三
- 格式:doc
- 大小:85.00 KB
- 文档页数:2
北师大版数学七年级上册3.4《整式的加减》(第3课时)教学设计一. 教材分析《整式的加减》是北师大版数学七年级上册第3.4节的内容,本节课主要介绍整式的加减运算。
学生在之前的学习中已经掌握了整式的概念和基本运算,本节课将进一步深入学习整式的加减运算,为后续学习更复杂的代数式打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于整式的概念和基本运算已经有了一定的了解。
但学生在进行整式的加减运算时,可能会遇到一些困难,如合并同类项的方法不够熟练,对于复杂的式子缺乏运算技巧等。
因此,在教学过程中,需要引导学生回顾和巩固已学的知识,提供适当的例子和练习,帮助学生掌握整式的加减运算方法。
三. 教学目标1.理解整式加减的概念和意义。
2.掌握整式加减的运算方法,能够正确进行整式的加减运算。
3.能够运用整式加减解决实际问题,提高解决问题的能力。
四. 教学重难点1.重点:整式加减的概念和意义,整式加减的运算方法。
2.难点:整式加减的运算方法,特别是合并同类项的方法和技巧。
五. 教学方法采用问题驱动法、引导发现法、合作交流法等教学方法。
通过提出问题,引导学生思考和探索,激发学生的学习兴趣和积极性。
同时,通过合作交流,让学生互相学习和帮助,提高学生的合作能力和沟通能力。
六. 教学准备1.教学课件:制作教学课件,包括整式的加减运算的定义、方法和例子等。
2.练习题:准备一些整式的加减运算的练习题,包括不同难度的题目。
3.黑板:准备黑板,用于板书和展示解题过程。
七. 教学过程1.导入(5分钟)通过提问方式回顾整式的概念和基本运算,引导学生思考整式的加减运算的意义和必要性。
2.呈现(15分钟)展示一些实际的例子,让学生观察和分析整式的加减运算的过程和结果。
引导学生总结整式加减的运算方法。
3.操练(15分钟)让学生分组合作,进行一些整式的加减运算的练习题。
教师巡回指导,解答学生的问题,并及时给予反馈和评价。
4.巩固(10分钟)让学生独立完成一些整式的加减运算的练习题,巩固所学的知识。
整式的加减教案(第三课时)
1.什么是同类项?怎样合并同类项?
2.去括号法则如何叙述?
3先看以下各题. 求和与求差;
(1)求5x2y,-2x2y,2xy2,-4x2y的和;
(2)求3x2-6x+5与4x2+7x-6的和;
(3)求2x2+xy+3y2与-x2-xy+2y2的差.
(4)什么叫求几个数的和?至学生答出“把这几个数相加”之后,接着追问,那么什么叫求几个单项式的和?
(5)求多项式的和或差,一定要注意什么?
1. 学习目标:
(1)使学生掌握整式的加减运算,进一步巩固前面所学的去括号、合并同类项的方法;
(2).使学生进一步增强运算能力.
2. 能力目标:
1)培养学生的观察、分析、归纳能力。
2)锻炼学生的语言概括能力和表达能力。
3)培养学生的知识分解、知识整合能力。
3. 情感目标:
1)让学生感受知识的产生、发展及形成过程,培养其勇于探索的精神。
2)通过学生间的相互交流、沟通,培养他们的协作意识
更多精彩推荐:初中gt;初一gt;数学gt;初一数学教案。
整式的加减知识点总结整式的加减知识点总结一、引言整式是在代数学中常见的一种表达形式,也是解决各种代数问题的基础工具。
整式的加减运算是整式运算中最基础、最常见的操作之一,掌握整式的加减运算规则对于学习代数学非常重要。
本文将从整式的定义、整式的加减运算规则、练习题与解析等方面,对整式的加减运算知识点进行总结。
二、整式的定义整式是由字母、常数及其乘方以及它们的积与和组成的代数表达式。
整式的一般形式为:aₙxⁿ + aₙ₋₁xⁿ⁻¹ + … + a₁x + a₀其中,aₙ、aₙ₋₁…、a₁和a₀是常数系数,x是字母。
三、整式的加减运算规则1. 相同的字母幂相加减:当两个整式的相同字母幂相加减时,直接把系数相加减即可。
例如:3x² + 5x² = 8x²;6x³ - 2x³ = 4x³2. 不同的字母幂相加减:当两个整式中的字母幂不相同时,无法进行直接加减运算,需要按照字母幂的大小进行整理。
例如:4x³ - 2x² + 3x⁴ - 5 = 3x⁴ + 4x³ - 2x² - 53. 加减运算的性质:(1) 交换律:a + b = b + a,a - b ≠ b - a(2) 结合律:(a + b) + c = a + (b + c),(a - b) - c ≠a - (b - c)(3) 分配律:a(b + c) = ab + ac,a(b - c) = ab - ac针对整式的加减运算规则,需要注意运算符的使用和字母幂的整理。
四、练习题与解析1. 计算下列整式的和:2x² + 3 - 5x + 4x² + 7解析:同类项相加,得到:(2x² + 4x²) + (3 + 7) - 5x =6x² + 10 - 5x = 6x² - 5x + 102. 计算下列整式的差:6x³ - 4x² + 2x - 8 - 2x³ + 5x² - 7x + 6解析:同类项相加,得到:(6x³ - 2x³) + (-4x² + 5x²) + (2x - 7x) + (-8 + 6) = 4x³ + x² - 5x - 2五、总结整式的加减运算是代数学中重要的基础知识点,常见的代数问题中都需要用到整式的加减运算。
第三章整式及其加减4 整式的加减第3课时一、教学目标1.在具体情境中体会去括号的必要性.2.利用乘法分配律理解去括号法则的符号变化规律,并能熟练地去括号.3.能利用去括号法则进行运算.4.培养学生观察、语言组织与表达的能力.二、教学重难点重点:利用乘法分配律理解去括号法则的符号变化规律,并能熟练地去括号.难点:能利用去括号法则进行运算.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【操作】教师活动:教师出示要求,学生动手计算并集体交流反馈.数字游戏1两个数相加后的结果有什么规律?预设答案:能被11整除.追问:换一些数试试,对于任意一个两位数都成立吗?学生活动:学生换一些数进行计算,并验证,然后集体交流.预设答案:都成立.【证明】如果用a,b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为:.预设答案:10a+b交换这个两位数的十位数字和个位数字,得到的数是:.预设答案:10b+ a将这两个数相加:(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b)小结:这些和都是11的倍数【操作】数字游戏2两个数相减后的结果有什么规律?预设答案:它们的差是99的倍数追问:换一些数试试,对于任意一个三位数都成立吗?学生活动:学生换一些数进行计算,并验证,然后集体交流.预设答案:都成立.【证明】任意一个三位数可以表示为:100a+10b+c交换它的百位数字和个位数字,得到的数为:100c+10b+a将这两个数相减:(100a+10b+c)-(100c+10b+a)=100a+10b+c-100c-10b-a=99a-99c=99(a-c)小结:它们的差都是99的倍数.【议一议】在上面的两个问题中,分别涉及了整式的什么运算?说说你是如何运算的?思维导图的形式呈现本节课的主要内容:。
整式的加减整式加减的三种形式:直接的整式加减问题,间接的整式加减问题,正式的化简求值问题。
1、直接的整式加减问题:这类问题是最简单的整式加减问题,可以按照去括号法则去掉括号,然后再合并同类项。
当算式中没有同类项时,这个算式就是运算的最后结果。
例:计算2x 2y-5x 2y+32x 2y+5xy 2练一练:计算:(21+2x-x 2)-2(3x 2+7x-2)2、间接的整式加减问题:这类问题可根据题意列出代数式。
即用加减符号将各个多项式连接成整式加减的算式,每一个多项式都要用括号括起来,然后去括号、合并同类项。
例:求多项式-8ab 2+3a 2b 与-2ab 2+5a 2b 的差。
练一练:若多项式(2ax 2-x 2+3x+2)-(5x 2-4x 2+3x )的值与x 无关,求啊的值。
3、整式的化简求值问题:求多项式的时候,一般思路是先化简,再把字母的取值代入到化简后的算式中求值。
例:当a=31时,求5a 2-5a+4-3a 2+6a-5的值。
练一练:化简并求值,5a 2b-{2a 2b-【3ab 2-(4ab 2-12a 2b)】}其中a=2、b=-1同步练习1一、填空题:1.单项式2xy,6x 2y 2,-3xy,-4x 2y 2的和为__________.2.单项式-3x 2依次减去单项式-4x 2y ,-5x 2,2x 2y 的差为_________.3.283m n x y +与2342m n x y+-是同类项,则m+n=_________. 4.计算(3a 2+2a+1)-(2a 2+3a-5)的结果是_________.5.个位上数字是a,十位上数字是b,百位上的数字是c 的三位数与把该三位数的个位数字、百位数字对调位置后所得的三位数的差为________.6.已知A=3x 2y-4y 3,B=-x 2y 2+2y 3,则2A-3B=___________.7.(3)23ππ--- =_________。
整式的加减运算整式是代数式中的一种重要形式,由变量和常数通过加、减、乘运算符号组合而成。
整式的加减运算是指对两个或多个整式进行加法和减法运算,以求得它们的和或差的过程。
本文将详细介绍整式的加减运算规则和相关知识。
一、整式的定义和基本形式整式由一系列项的和或差组成,每个项由常数与变量的乘积组成,常数称为系数,变量称为因式。
整式的基本形式为:a1x^n1 + a2x^n2 + … + anx^1 + anx^0,其中a1、a2等为常数系数,x为变量,n1、n2等为整数指数,0为常数项。
二、整式的加法运算两个整式相加,只需把相同指数的同类项的系数相加即可,不同指数的项合并后保持不变。
例如,对于整式3x^2 + 2x + 5和4x^2 - 3x + 1的相加运算,只需将同类项的系数相加:(3x^2 + 2x + 5) + (4x^2 - 3x + 1) = (3 + 4)x^2 + (2 - 3)x + (5 + 1) =7x^2 - x + 6三、整式的减法运算两个整式相减,可视为加法运算中的减法操作。
即将减数中各项的系数取相反数,然后按加法运算的规则进行计算。
例如,对于整式3x^2 + 2x + 5和4x^2 - 3x + 1的相减运算,可以转化为加法运算:(3x^2 + 2x + 5) - (4x^2 - 3x + 1) = (3x^2 + 2x + 5) + (-4x^2 + 3x - 1) = (3 - 4)x^2 + (2 + 3)x + (5 - 1) = -x^2 + 5x + 4四、整式的加减混合运算整式的加减混合运算即同时进行加法和减法运算。
运算步骤为先进行括号内的加减运算,然后再进行外层的加减运算。
例如,对于整式2x^2 + (3x - 4) - (x^2 + 2x - 1)的加减混合运算,先进行括号内的运算,再进行外层的运算:2x^2 + (3x - 4) - (x^2 + 2x - 1) = 2x^2 + 3x - 4 - x^2 - 2x + 1 = (2x^2 - x^2) + (3x - 2x) + (-4 + 1) = x^2 + x - 3五、整式的合并同类项整式的合并同类项是指将具有相同指数、相同因式的项合并成一个项。
整式的加减知识点总结整式的加减知识点总结一、整式的加法整式是指由常数、变量和它们的乘积及乘方组成的代数式。
整式的加法是指将同类项相加的运算。
1. 同类项同类项是指具有相同字母和相同指数的项。
例如,a^2b和2a^2b是同类项,但a^2b和ab^2不是同类项。
2. 加法法则将同类项的系数相加,字母和指数保持不变。
例如,将3ab+2ab相加时,可将系数相加得到5ab,字母和指数保持不变。
3. 零多项式零多项式是指系数为0的整式。
将零多项式与任何整式相加的结果都是原来的整式。
例如,将3ab+(-3ab)相加,结果为0。
二、整式的减法整式的减法是指将两个整式相减的运算。
1. 减法法则将减数改变符号后,再按照加法法则进行运算。
例如,将3ab-2ab相减,可将减数改变符号得到-2ab,然后按照加法法则将同类项相减得到ab。
2. 减法的特例减法的特例是指减数和被减数相等的情况,结果为零多项式。
例如,a^2b-a^2b的结果为0。
三、整式的加减混合运算整式的加减混合运算是指包含加法和减法的整式运算。
1. 先化简同类项在进行加减混合运算时,首先将同类项按照加法法则化简。
例如,将3ab-2ab+5ab-4ab化简为(3-2+5-4)ab。
2. 再合并同类项化简后,将同类项的系数相加,字母和指数保持不变。
例如,将(3-2+5-4)ab合并为2ab。
3. 注意符号在进行加减混合运算时,注意同类项前的正负号。
对于同类项之间的减法,可以看作是将减数改变符号后与被减数进行加法运算。
例如,将3ab+(-2ab)相加,得到ab。
四、实例分析下面通过一些实例来对整式的加减进行更详细的说明。
例1:将4a^2b-3ab+2b^2-5a^2b化简为最简整式。
解:首先化简同类项,得到(4-5)a^2b+(-3)b^2。
然后合并同类项,得到(-1)a^2b+(-3)b^2。
最终结果为-a^2b-3b^2。
例2:将a^3+2a^2-3ab+4b^2-5a^3+6ab-7b^2化简为最简整式。
整式的加减法在数学中,整式是指由常数、变量及它们的乘积组成的表达式。
整式的加减法是指将两个或多个整式进行相加或相减的运算。
在本文中,我们将详细介绍整式的加减法的定义、性质以及如何进行求解。
一、整式的定义整式是由常数、变量及它们的乘积组成的代数表达式。
常数可以是正数、负数或零,变量通常用字母表示,可以是任意实数。
整式的基本形式为:f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀,其中,aₙ, aₙ₋₁, ..., a₁, a₀是常数系数,n 是整数指数,x 是变量。
二、整式的加法整式的加法是指将同类项进行合并,并将系数相加的运算。
同类项是指含有相同变量的乘积项。
例如,对于整式 f(x) = 3x² + 2x + 5 和 g(x) = 4x² - 3x + 2,它们的和为:f(x) + g(x) = (3x² + 4x²) + (2x - 3x) + (5 + 2) = 7x² - x + 7。
三、整式的减法整式的减法是指将两个整式相减的运算。
减法可以通过将被减数的各项取相反数,然后与减数进行加法运算来实现。
例如,对于整式 f(x) = 3x² + 2x + 5 和 g(x) = 4x² - 3x + 2,它们的差为:f(x) - g(x) = (3x² - 4x²) + (2x + 3x) + (5 - 2) = -x² + 5x + 3。
四、整式的加减混合运算在整式的加减混合运算中,可以先将同类项进行合并,然后再进行加减运算。
例如,考虑整式 f(x) = 3x² + 2x + 5、g(x) = 4x² - 3x + 2 和h(x) = 2x² + x - 1,则它们的和减去差的结果为:(f(x) + g(x)) - (f(x) - h(x)) = (3x² + 4x² - 3x²) + (2x - 3x + x) + (5 + 2 + 1) = 6x² - 2。
第三章整式的加减知识点总结1、代数式:由数和字母用运算符号连接所成的式子称为代数式。
单独的一个数或一个字母也是代数式。
(凡是式子中含有等号、不等号式子的都不是代数式)2、代数式的书写规则:(1)、数和表示数的字母相乘,或字母和字母相乘时,乘号可以省略不写,或用“.”来代替。
( 2)、当数和字母相乘,省略乘号时,要把数字写到前面,字母写后面。
如:100a或100•a,na或n•a。
(3)、后面接单位的相加式子要用括号括起来。
如:( 5s +1)元。
(4)、除法运算写成分数形式(5)、带分数与字母相乘时,带分数要写成假分数的形式。
3、列代数式时要注意:(1)、语言叙述中关键词的意义,如“大”“小”“增加”“减少”“倍”“几分之几”等词语与代数式中的运算符号之间的关系。
(2)、要理清运算顺序和正确使用括号,以防出现颠倒等错误,例如“积的和”与“和的积”“平方差”“差的平方”等等。
(3)、在同一问题中,不同的数量必须用不同的字母表示.4、代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式值(当数值是负数或者分数时,一般要打上括号)5、单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
(凡是含有+、-,分母含字母的均不是单项式)6、单项式系数:单项式中不为零的数字因数,叫单项式数字系数,简称单项式的系数;7、单项式的次数:单项式中所有字母的指数的和,叫单项式的次数.8、多项式:几个单项式的和叫做多项式。
9、多项式的项与项数:多项式中每个单项式叫多项式的项; 不含字母的项叫做常数项。
多项式里所含单项式的个数就是多项式的项数。
(多项式的项要包含前面的+、-号)10、多项式的次数:多项式里,次数最高项的次数叫多项式的次数;常数项的次数为0注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.11、多项式的升幂排列:把一个多项式的各项按某个字母的指数从小到大排列起来,叫做按这个字母的升幂排列。
2.2整式的加减(3)
【学习目标】:
1、 能运用运算律探究去括号法则,并且利用去括号法则将整式化简.
2、类比带有括号的有理数的运算,归纳出去括号法则,培养观察、分析、归纳能力.
【学习重点】去括号法则,准确应用法则将整式化简.
【学习难点】括号前面是“-”号去括号时,括号内各项变号容易产生错误.
【学习过程】
一、预习新知:
问题: 在格尔木到拉萨路段,如果列车通过冻土地段要t 小时,•那么它通过非冻土地段的时间为(t -0.5)小时,于是,冻土地段的路程为100t 千米,•非冻土地段的路程为120(t -0.5)千米,因此,这段铁路全长为
100t+120(t -0.5)千米 ①
冻土地段与非冻土地段相差
100t -120(t -0.5)千米 ②
上面的式子①、②都带有括号,它们应如何化简?
【提示】类比数的运算, 利用分配律,可以去括号,合并同类项,得:
100t+120(t -0.5)=100t+120t+120×(-0.5)=220t -60
100t -120(t -0.5)=100t -120t -120×(-0.5)=-20t+60
我们知道,化简带有括号的整式,首先应先去括号.
上面两式去括号部分变形分别为:
+120(t -0.5)=+120t -60 ③
-120(t -0.5)=-120+60 ④
比较③、④两式,你能发现去括号时符号变化的规律吗?
二、学习新知:
1.添括号的法则:
①观察:分别把前面去括号的(1)、(2)两个等式中等号的两边对调,并观察对调后两个等式中括号和各项符号的变化,你能得出什么结论?
②通过观察与分析,可以得到添括号法则:
所号。
添括号前面是“+”号,括到括号里的各项都不变符号;
所添括号前面是“-”号,括到括号里的各项都改变符号。
【法则顺口溜】添括号,看符号:是“+”号,不变号;是“―”号,全变号。
1、做一做:
(1)a+(b-c)= (2)a- (-b+c)=
(3)(a+b)+(c+d)= (4)-(a+b)-(-c-d )=
2、化简下列各式:
(1)8a+2b+(5a -b ); (2)(5a -3b )-3(a 2-2b ).
3、课本第68页练习1、2题.
4、计算:
(1)(2x―3y)+(5x+4y); (2)(8a ―7b)―(4a ―5b);
(3)a ―(2a +b)+2(a ―2b); (4)3(5x+4)―(3x―5);
(5)(8x―3y)―(4x+3y―z)+2z; (6)―5x 2+(5x―8x 2)―(―12x 2+4x)+5
1;
(7)2―(1+x)+(1+x+x 2―x 2); (8)3a 2+a 2―(2a 2―2a )+(3a ―a 2);
(9)5xy 2-[3xy 2-(4xy 2-2x 2y )]+2x 2y -xy 2. (10) -(m-2n )+(3m-2n)-(m+n)。
三、拓展提高:
按要求,将多项式3a ―2b+c 添上括号:
(1)把它放在前面带有“+”号的括号里。
(2把它放在带有)“-”的括号里。
四、归纳小结:
五、当堂检测:
1、做一做:在括号内填入适当的项:
(1)x 2―x+1= x 2―(__________); (2) 2x 2―3x―1= 2x 2+(__________);
(3)(a -b)―(c―d)=a -(______________)(4)(a +b―c)(a ―b+c)=[a +( )][a ―( )]
2、用简便方法计算:
(1)214a +47a +53a ; (2)214a -39a -61a .
3、按下列要求,将多项式x 3―5x 2―4x+9的后两项用( )括起来:
(1)括号前面带有“+”号; (2)括号前面带有“―”号
4、按要求将2x 2+3x―6:
(1)写成一个单项式与一个二项式的和; (2)写成一个单项式与一个二项式的差。