点集上的连续函数
- 格式:pdf
- 大小:169.88 KB
- 文档页数:11
§ 3 二元函数的连续性一 二元函数的连续性定义 设f 为定义在点集2R D ⊂上的二元函数.()。
的孤立点的聚点,或者是它或者是D D D P ∈0对于任给的正数ε,总存在相应的正数δ,只要(),;D P U P δ0∈,就有 ()()ε<-0P f P f ,()1则称f 关于集合D 在点0P 连续。
在不至于误解的情况下,也称f 在点0P 连续。
若f 在D 上任何点都关于集合D 连续,则称f 为D 上的连续函数。
由上述定义知道:若0P 是D 的孤立点,则0P 必定是f 关于D 的连续点;若0P 是D 的聚点,则f 关于D 在连续等价于()().lim 00P f P f DP P P =∈→()2如果0P 是D 的聚点,而()2式不成立()应情形相同其含义与一元函数的对,则称0P 是f 的不连续点或称间断点。
特别当()2式左边极限存在但不等于)(0P f 时,0P 是f 的可去间断点.如上节例1、2给出的函数在原点连续;例4给出的函数在原点不连续,又若把例3的函数改为{}⎪⎪⎩⎪⎪⎨⎧=+≠=∈+=),0,0(),(,1,0,|),(),(,),(222y x m m x m x y y x y x y x xyy x f其中m 为固定实数,亦即函数f 只定义在直线mx y =上,这时由于(),0,01),(lim 2),(),(00f m my x f mx y y x y x =+==→ 因此f 在原点沿着直线mx y =是连续的。
设()000,y x P 、()00,,,y y y x x x D y x P -=∆-=∆∈则称()()()0000,,,y x f y x f y x f z -=∆=∆ ()()0000,,y x f y y x x f -∆+∆+=为函数f 在点0P 的全增量。
和一元函数一样,可用增量形式来描述连续性,即当0l i m ),()0,0(),(=∆∈→∆∆z Dy x y x时,f 在点0P 连续。
第十六章 多元函数的极限与连续§ 1平面点集与多元函数1. 判断下列平面点集中哪些是开集、闭集、有界集、区域?并分别指出它们的聚点和界点:(1)[a,b )⨯[c,d ); (2){(x,y )|xy ≠0}; (3){(x,y )|xy =0};(4){(x,y )|y >x 2}; (5){(x,y )|x <2,y <2,x +y >2};(6){(x,y )|x 2+y 2=1或y =0,0≤x ≤1};(7){(x,y )|x 2+y 2≤1或y =0,1≤x ≤2}; (8){(x,y )|x,y 均为整数};(9){(x,y )|y =sin x1,x >0};解:(1)有界区域.其聚点为[a,b]⨯[c,d]中任一点.界点为矩形[a,b]⨯[c,d]的四条边上的任一点.(2)无界开集.聚点集为R 2.界点集为{(x,y )|xy =0}. (3)无界闭集.聚点集和界点集都是{(x,y )|xy =0}.(4)无界开域.聚点集为{(x,y )|y ≥x 2}.界点集为{(x,y )|y =x 2}. (5)有界开域.聚点集为{(x,y )|x ≤2,y ≤2,x +y ≥2}.界点为直线x = 2,y = 2和x + y =2所围成的三角形三边上的点.(6)无界闭集.没有聚点.有界点集,聚点:E = {(x,y )|x 2+y 2=1或y =0,0≤x ≤1}.界点:∂E = E.(7)闭集,有界集.聚点E ={(x,y )|x 2+y 2≤1或y =0,1≤x ≤2} ,δE = {(x,y )|x 2+y 2=1或y =0,1≤x ≤2}.(8)是闭集,界点集{(x,y )|x,y 均为整数}.(9)是非开非闭的无界集.聚点E ={(x,y )|y =sinx1,x >0}⋃ {(0,y)|-1≤y ≤1},∂E= E.2. 试问集合{(x,y )|0<|x - a |<δ,0<|y - b |<δ}与集合{(x,y )||x - a |<δ,|y - b |<δ,(x,y)≠(a,b)}是否相同?解:不相同,因为点集1E ={(x,y )|x = a, 0<|y - b |<δ}与2E ={(x,y )|y = b,0<|x - a |<δ}不属于第一个点集,但却属于第二个点集.3. 证明:当且仅当存在各点互不相同的点列{n P }E ⊂, n P ≠0P ,0lim P P n n =∞→ 时, 0P 是E 的聚点.解:证 充分性 若存在{n P }E ⊂且各点互不相同, n P ≠0P ,但0lim P P n n =∞→,则ε∀> 0.,0>∃N 当N n >时,),;(0εP U P On ∈又{n P }E ⊂从而0P 的任何空心邻域);(00εP U 内都含有E 中的点.即0P 是E 的聚点.必要性:若0P 是E 的聚点,则ε∀> 0,存在∈P );(00εP U E ⋂. 令 11=ε,则存在∈1P );(00εP U E ⋂;令⎭⎬⎫⎩⎨⎧-=)(,21min 012P P ρε,则存在 ∈2P );(00εP U E ⋂;且显然),()(01202P P P P -≤<-ρερ知12P P ≠;令 ⎭⎬⎫⎩⎨⎧-=-)(,1min 01P P n n n ρε,则存在∈n P );(00εP U E ⋂,且n P 与,1P …1-n P 互异.无限地重复以上步骤,得到E 中各项互异的点列{n P }, n P ≠0P 且由,1)(0nP P n n ≤<-ερ易得0lim P P n n =∞→.4. 证明:闭域必为闭集.举例说明反之不真.解:设D 为闭域,且P 是D 的任一聚点,则);(δP U ∀内含有D 的无穷多个点.若(1)0δ∃使,);(0D P U ⊂δ则D P ∈;(2)否则P 的没每一);(δP U 内既含有D 的点又含有不属于D 的点,则P 是D 的界点,由闭域定义,D P ∈由(1),(2)得D P ∈,由P 的任意性得D 上的一切点都是D 的聚点,所以D 是闭集.反之,例如,1),{(22=+y x y x 或}32,0≤≤=x y 是闭集,然而E 中的开域是=1E }1),{(22<+y x y x 及=∂1E }1),{(22=+y x y x 且E E E ≠∂⋃11,则可知E 不是闭域.5. 证明:点列)},({n n n y x P 收敛于),(000y x P 的充要条件是0lim x x n n =∞→和0lim y y n n =∞→.证 必要性 设点列)},({n n n y x P 收敛于),(000y x P ,即0lim P P n n =∞→.则0>∀ε,存在N ,当N n >时,有);(0εP U P n ∈,即ερ<-+-=-20200)()()(y y x x P P n n n .于是 )()()(20200N n y y x x x x n n n ><-+-≤-ε.从而 0lim x x n n =∞→.同理, 0lim y y n n =∞→.充分性 设0lim x x n n =∞→,0lim y y n n =∞→,则0>∀ε,存在N ,当Nn >时,20ε<-x x n , 20ε<-y y n .因此ε<-+-2020)()(y y x x n n .则可知)},({n n n y x P 收敛于),(000y x P . 6. 求下列个函数的函数值:(1)⎥⎦⎤⎢⎣⎡-+=)arctan()arctan(),(y x y x y x f ,求⎪⎪⎭⎫⎝⎛-+231,231f ;(2)222),(y x xy y x f +=,求⎪⎭⎫⎝⎛x y f ,1;(3)yxxy y x y x f tan),(22-+= ,求),(ty tx f . 解:(1) ⎪⎪⎭⎫⎝⎛-+231,231f = 23arctan 1arctan ⎪⎪⎭⎫⎝⎛= 16934=⎪⎪⎪⎪⎭⎫ ⎝⎛ππ(2) 222212,1y x xy x y x yx y f +=⎪⎭⎫⎝⎛+⋅=⎪⎭⎫ ⎝⎛ (3)())tan (tan,22222222yx xy y x t y x xy t y t x t ty tx f -+=-+= 7. 设,ln ln ),(y x y x F =证明:若,0,0>>υμ则).,(),(),(),(),(υμυμμυy F y F x F x F xy F +++= 证:因为,ln ln ),(y x y x F =,0,0>>υμ所以 )ln()ln(),(μυμυxy xy F =)ln )(ln ln (ln υμ++=y xυμυμln ln ln ln ln ln ln ln y y x x +++= ).,(),(),(),(υμυμy F y F x F x F +++=8. 求下列各函数的定义域,画出定义域的图形,并说明这是何种点集:(1)2222),(y x y x y x f -+=; (2) ;321),(22yx y x f += (3)xy y x f =),(; (4)11),(22-+-=y x y x f ;(5)y x y x f ln ln ),(+=; (6))sin(),(22y x y x f +=; (7))ln(),(x y y x f -=; (8))(22),(y x e y x f +-=;(9)1),,(22++=y x zz y x f ;(10) 222222221),,(rz y x z y x R z y x f -+++---=(R >r);解:(1)定义域:}),{(x y y x D ±≠=,是开集但不是开域. (2)定义域:}0),{(22≠+=y x y x D ,是开集也是开域. (3)定义域:}0),{(≥=xy y x D ,是闭集也是闭域.(4)定义域:}1,1),{(≥≤=y x y x D ,是闭集,但不是区域. (5)定义域:}0,0),{(>>=y x y x D ,是开集,也是开域.(6)定义域:,....}1,0,)12()(2),{(22=+≤+≤=k k y x k y x D ππ, 是闭集,但不是区域.(7)定义域:}),{(x y y x D >= 是开集,也是开域. (8)定义域:,2R D = 是开集,又是闭集,是闭域也是开域. (9)定义域:3R D =, 是开集,又是闭集,是闭域也是开域.(10)定义域:}),,{(22222R z y x r z y x D ≤++<=,是有界集,但既不是开集也不是闭集.§2 二元函数的极限1. 试求下列极限(包括非正常极限)(1)2222)0,0(),(lim y x y x y x +→; (2) 2222)0,0(),(1lim yx y x y x +++→; (3)11lim2222)0,0(),(-+++→y x y x y x ; (4)44)0,0(),(1limy x xy y x ++→;(5)y x y x -→21lim)2,1(),(; (6) 22)0,0(),(1sin )(lim y x y x y x ++→;(7) 2222)0,0(),()sin(lim y x y x y x ++→解(1)对函数自变量作极坐标变换:θθsin ,cos r y r x == 这时0),0,0(),(→→r y x 即由于22222222cos sin 0),(r r yx y x y x f ≤=+=-θθ 因此,对时,就有,当取δεδε<+=<=>∀2200y x rε≤≤-20),(r y x f由此可知 2222)0,0(),(lim y x y x y x +→(2)令θθsin ,cos r y r x ==.这时0),0,0(),(→→r y x 即+∞=+=+++→→2202222)0,0(),(1lim 1lim rr y x y x r y x . (3) 令θθsin ,cos r y r x ==.这时0),0,0(),(→→r y x 即=-+++→11lim2222)0,0(),(y x y x y x 2101(lim )11(lim2022)0,0(),(=++=+++→→r y x r y x(4) 令θθsin ,cos r y r x ==.这时0),0,0(),(→→r y x 即,不妨限制10<<r . 则对时当⎭⎬⎫⎩⎨⎧<<>∀421,1min 00Mr M因为)4cos 3(41cos sin44θθθ+=则M rr r r r y x xy ≥>++=++=++44244424442)4cos 3(2sin 24)sin (cos 1cos sin 1θθθθθθ 故+∞=++→44)0,0(),(1limy x xy y x(5)对,212,4110时当My M x M <-<->∀就有M yx y x y x >-+-≥-+-=-2121)2()1(2121所以+∞=-→y x y x 21lim)2,1(),((6)对时,就有当2,2,0εεε<<>∀y x ε<+≤++y x y x y x 221sin)(所以01sin)(lim 22)0,0(),(=++→y x y x y x(7) 令θθsin ,cos r y r x ==.这时0),0,0(),(→→r y x 即1sin lim )sin(lim 2202222)0,0(),(==++→→rry x y x r y x2. 讨论下列函数在点(0,0)的重极限和累次极限:(1)222),(yx y y x f +=; (2) y x y x y x f 1sin 1sin )(),(+=; (3) 22222)(),(y x y x y x y x f -+=; (4) yx y x y x f ++=233),(; (5) x y y x f 1sin ),(=; (6) 3322),(y x y x y x f += (7) xye e y xf yx sin ),(-=;解(1)当动点),(y x P 沿直线kx y =趋于点)0,0(时有22221222)0,0(),(11lim lim k k k k y x y x kxy y x +=+=+→=→ 其极限值依赖于k,因此不存在,而222)0,0(),(lim y x y kxy y x +=→0lim lim 22200=+→→y x y y x ,1lim lim 22200=+→→y x y x y (2) 因为:)当0,0(),(,01sin 1sin )(0→→+≤+≤y x y x yx y x , 当)0,0(),(→y x ,所以2,0εδε=∃>∀,当)0,0(),(,,≠<=y x y x δδ时,εδ=<+≤+21sin 1sin)(y x yx y x ,即01sin 1sin )(lim )0,0(),(=+→y x y x y x .当,2,1,1±±=≠k k x π…,0→y 时, y x y x 1sin 1sin )(+的极限不存在,因此),(lim lim 00y x f y x →→不存在,同法得),(lim lim 00y x f x y →→不存在.(3) 1)当沿x y =时,有=→),(lim )0,0(),(y x f y x ,1),(lim 0=→y x f x2)当沿0=y 时有=→),(lim )0,0(),(y x f y x ,0),(lim 0=→y x f x因此),(lim )0,0(),(y x f y x →不存在,而00lim),(lim lim 200==→→→xy x f x y x , 00lim),(lim lim 200==→→→yy x f y x y (4) 1) 当沿x y =时,有=→),(lim)0,0(),(y x f y x 02lim 230=+→xx x x . 2)当沿32x x y +-=时,有=→),(lim)0,0(),(y x f y x 1])1(1[lim 330=-+→x x x ,因此),(lim )0,0(),(y x f y x →不存在,0lim ),(lim lim 00==→→→x y x f x y x ,0lim ),(lim lim 20==→→→y y x f y x y .(5) 因为).0,0(),(,01sin0→→≤≤y x y xy 所以对0>∀ε,取,εδ= 当)0,0(),(,,≠<=y x y x δδ时εδ=<≤y xy 1sin 即0),(lim )0,0(),(=→y x f y x而,00lim 1sinlim lim 000==→→→x y x x y xy x y 1sin lim lim 00→→不存在.总练习题十六1. 设E 2R ⊂是有界闭集,d(E)为E 的直径。
点集拓扑学点集拓扑学(Point Set Topology),有时也被称为一般拓扑学(General Topology),是数学的拓扑学的一个分支。
它研究拓扑空间以及定义在其上的数学结构的基本性质。
这一分支起源于以下几个领域:对实数轴上点集的细致研究,流形的概念,度量空间的概念,以及早期的泛函分析。
它的表述形式大概在1940年左右就已经成文化了。
通过这种可以为所有数学分支适用的表述形式,点集拓扑学基本上抓住了所有的对连续性的直观认识。
具体地说,在点集拓扑学的定义和定理的证明中使用了一些基本术语,诸如:•开集和闭集•开核和闭包•邻域和邻近性•紧致空间•连续函数•数列的极限,网络,以及滤子•分离公理度量空间在数学中,度量空间是一个集合,在其中可以定义在这个集合的元素之间的距离(叫做度量)的概念。
度量空间中最符合我们对于现实直观理解的是三维欧几里得空间。
事实上,“度量”的概念就是对从欧几里得距离的四个周知的性质引发的欧几里得度量的推广。
欧几里得度量定义了在两个点之间的距离为连接它们的直线的长度。
空间的几何性质依赖于所选择的度量,通过使用不同的度量我们可以构造有趣的非欧几里得几何,比如在广义相对论中用到的几何。
度量空间还引发拓扑性质如开集和闭集,这导致了对更抽象的拓扑空间的研究。
【性质】度量空间是元组(M,d),这里的M 是集合而 d 是在M 上的度量(metric),就是函数使得•d(x, y) ≥ 0 (非负性)•d(x, y) = 0 当且仅当 x = y (不可区分者的同一性)•d(x, y) = d(y, x) (对称性)•d(x, z) ≤ d(x, y) + d(y, z) (三角不等式)。
函数d 也叫做“距离函数”或简单的叫做“距离”。
经常对度量空间省略d 而只写M,如果在上下文中可明确使用了什么度量。
不要求第二、第三或第四个条件分别导致伪度量空间、准度量空间或半度量空间的概念。
第一个条件实际上可以从其他三个得出: 2d(x, y) = d(x, y) + d(y, x) ≥ d(x,x) = 0.它做为度量空间的性质更恰当一些,但是很多课本都把它包括在定义中。
1.4点集上的连续函数
定义1.160,,n
E R f E x E ⊂∈设是定义在上的实值函数,00,0,(,)x E B x εδδ∀>∃>∈∩若对于使得当时,−<0|()()|,
f x f x ε00f E x f E x 就称函数在上的点连续或相对于在连续。
用极言描述若数的每点连续则称连续或相对00: ()=().x E
x x f x f x ∈→用极限语言描述
lim .f E f E E 若函数在的每一点连续,则称在连续或相对于连续0,()()().
k f E x x E x x f x f x k ⊂→→→∞函数在的点连续当且仅当对于任意的点列{}只要,便有当00k k
注:f (x )在E 的孤立点00: , , .
f E E E f E ⊂注若函数在连续而则在连续例19.121={|0}, ={
|0}, ()1())1()E x x E x x f x x E >≤=∈设2(-1(f x x E =∈或,12, f E E E E ∪
则分别在和上连续但在上不连续.
12121, E E f E E ∪2 若和都是闭集定义在上,且
在连续则相也定连续
121E E f E E ∪2分别在和上连续,则相对于也一定连续.E E E E 不妨设它为聚点因为为闭集12x ∈∪12若,不妨设它为聚点,因为,为闭集,E E x 内任一以}只能有两种情况:
120k ∪则内任以为极限的点列{y }只能有两种情况
, ()E E x E x E ∈∈其一从某一项起全部y 属于或相应或120102k 0010lim ()lim ()().
k k k k k y x y x E f y f y f x →→==不妨设y 都属于,因此121
y E E y E k k ∈∈∪012.
f x E E ∪故在相对于连续{其的无穷子列组成12{y }k E E 其二,由两个分别属于和的无穷子列组成,0120lim ()lim ()().x E E f x f x f x ∈==∩此时,,因为0012
x E x E x x x x ∈∈→→012lim ()()..k f y f x f E E =∪因此所以在上连续k →∞
:n
R 中有界闭集上的连续函数满足的一些性质n
f R E 设是中有界闭集上的连续函数,则
()={()|}R .f E f E f x x E ∈(1) 在上有界,即值域是中的有界集00, ,,f E x x E ′∈(2) 在上取得最大值和最小值即存在00()=sup{()|},()=inf{()|}.f x f x x E f x f x x E ′∈∈使得>0>0(3)上一致连续>0,>0,
,, |-|<, |()-()|<.f E x x E x x f x f x εδδε′′′∈(3) 在上一致连续,即对任意的存在使得
对任意的只要就有12R , n E f f E ⊂ 设,,
是上的连续函数列,且时上致收敛于函数则上连续{}k k f E f f E →∞当时,在上一致收敛于函数,则在上连续.00R R n n
x E x E ∈⊂=∈ 对于任意的和,定义到的距离为00(,)inf{(,)|}.d x E d x y y E
)()使得0000,(,,).E y E d x y d x E ∈=证明:若是闭集则存在,使得R , n A B A B 对于中的任意点集和定义和之间的距离为(,)inf{(,)|,}.
d A B d x y x A y B =∈∈,A B 证明:若和都是闭集其中至少一个有界,0000(,)(,).x A y B d x y d A B ∈∈=则存在和,使得)||0)证明先证前半部分设0000((,0),x E d x E x x ∉=−=证明:先证前半部分. 设否则,(,)inf{(,)|}(,),y E d x E d x y y E d x y ∈=∈≤任取显然1000110011(,(,)),i f{i f{E E B x d x y E E
d =∩因此,若令则为有界集,且00010101(,)inf{(,)|}inf{(,)|}
(,)(,).
d x x y y E d x y y E d x E d x y =∈=∈=≤
n ′由三角不等式此,对任意的0000,R ,(,)(,)(,)(,)(,)(,).y y d x y d x y d y y d x y d x y d y y ∈′′′′≤+≤+有和0()(,),|()()|(,)||.f y d x y f y f y d y y y y ′′′=−≤=−因此若令则上的连续函数限制在1R .n
f E 可见是
上的连续函数,限制在上也连续101001,()inf ()inf{(,)|},y E E E f y f y d x y y E ∈∈⊂==∈从而存在y 使
000(,)(,).
d x y d x E =也就是
A 设是有界闭集,因为
(,)inf{(,)|,}inf inf{(,)|}i f{x A y B
d A B d x y x A y B d x y y B B ∈∈=∈∈=∈inf{(,)}
x A
d x ∈=(,)(,)(,),d x y d x y d x x ′′≤+由三角不等式出发(,)(,)|(,),B d x B d x B d x x ′′∈−≤对y 取下确界可得|(,)d x B x A 故是的连续函数,特别在有界闭集上连续.i f{)00(,)inf{(,)|}(,x A d
x B d x B x A d A B ∈=∈=故存在使.(,)(,),B y B d x y d x B ∈=又因为是闭集,故存在使即000000(,)(,)d x y d A B =.
{|()}();
x E f x a E f a ∈>>写成集合的简单写法{|()}();
x E f x b E f b E a f x b E a f b ∈<<∈<<<<写成{|()}().
x 写成n 上连续则对任意的实数定理1.25.
n a a f E a G E f a G E ⊂⊂>∩若函数在点集R 上连续,则对任意的实数,
存在开集R ,使得()=.
n
a a H E f a H E ⊂<∩也存在开集R ,使得()=证明对任意的连续,(,)0,(,),().x E f a f E x x a y E B x f y a δδδ∈>=>∈>∩证明: 对任意的()由于在上的点连续,必存在使得时()(,),a a x E f a G B x G δ∈>=∪因此若令 则是开集,
().
a E f a G E >=∩并且
n
)=.a a H E f a H E ⊂<∩同理可证,存在开集R ,使得()n f E a ⊂若函数在R 上连续,则对于任意实数,存在
,.a a a a F K E f a F E E f a K E ≥≤∩∩闭集以及使得 ()=()=证明:因{}{}|()|()(),c a a a
x E f x a E x E f x a H E f a E H E H E ∈≥∈<≥=∩∩证明: 因
=\,故存在开集使得 ()=\R \,c
n a a H H =其中为闭集前一式得证,后一式的证明类似.f E 若函数在开集上连续,则对于任意实数a,
(上连续
.E f a E f a ><()和)是开集.f E a E f a E f a ≥≤若函数在闭集上连续,则对于任意实数,()和()是闭集
证明:: 因为开集与开集的交为开集,闭集与闭集的交为闭集。
是的函数则对于任意实数定理1.26,.n n f a E a E f a f ><若是R 的函数,则对于任意实数,
()和()总是开集则在R 上连续f 0:n
x ε∈证明设R ,为任意实数,则
00{||()()|}{|()()}.n x f x f x x f x f x x x f x εεεε=−<=<+>−I 为R 0{|()()}f ∩为内的开集0000,(,),x x B x εεδδ∈>∈⊂特别I ,故存在使得I 即00||,|()()|,
x x f x f x δε−<−<时n 连续因为是任意点故连续00f x x f 故在连续.因为是任意点,故在R 连续.。