液体泄漏蒸发量及发生爆炸所需时间的计算
- 格式:doc
- 大小:46.00 KB
- 文档页数:5
一分钟学会蒸发量的简单计算公式蒸发是一个常见的自然现象。
在日常生活中,我们可能会遇到需要计算蒸发量的情况,比如农民需要了解农作物的蒸发量,工厂需要计算设备的蒸发量等。
虽然计算蒸发量听起来有些复杂,但实际上有一个简单的公式可以帮助我们轻松计算。
首先,蒸发量是指单位时间内液体从液态到气态的质量。
在计算蒸发量之前,我们需要了解液体的特性,比如密度、表面积、温度和大气压强等因素。
这些因素将会影响蒸发率的变化。
接下来,我们来看一下蒸发量的简单计算公式:蒸发量 = (液体初始重量 - 液体最终权重) x 蒸发时间其中,液体初始重量指的是放置在容器中的液体重量,液体最终权重指的是在蒸发过程中液体重量的最终状态,蒸发时间是指单位时间内的时间。
为了更好地理解,我们来看一个实例。
假设我们有一个容器,容器中放置了1000克的水,初始重量就是1000克。
我们将其放置在室温下,然后每天测量容器中的水重量。
三天后,我们发现容器中的水重量只有950克了。
这意味着有50克的水已经蒸发掉了。
因此,我们可以使用上述公式来计算蒸发量:蒸发量 = (1000克 - 950克) x 3天 = 150克因此,在这个实例中,水的蒸发量是150克。
需注意的是,这个公式可以用来计算任何类型的液体的蒸发量,但是不同的液体可能具有不同的密度和蒸发速率,因此所得到的结果也将有所不同。
此外,大气压强、温度、风速等环境因素也会对蒸发量产生影响。
总结来说,计算蒸发量并不是一件复杂的工作,只需要根据公式进行简单的计算即可。
同时,我们也应该了解影响蒸发量的各种因素,以便更好地计算蒸发量并正确地应用于实际生产活动中。
环境风险评价中的泄漏液体蒸发
Q1=FWT /t1 式中:
Q1闪蒸量,kg/S; WT液体泄漏总量,kg; t1闪蒸蒸发时间,s; F 蒸发的液体占液体总量的比例;按下式计算 F=Cp(TL-Tb)/H 式中:
Cp液体的定压比热,J/(kgK); TL泄漏前液体的温度,K;Tb液体在常压下的沸点,K; H 液体的气化热,J/kg。
2 热量蒸发估算当液体闪蒸不完全,有一部分液体在地面形成液池,并吸收地面热量而气化称为热量蒸发。
热量蒸发的蒸发速度Q2按下式计算:
Q2=λS(T0-Tb)/[H(παt)^0、5] 式中:
Q2热l量蒸发速度,kg/s; T0环境温度,k; Tb沸点温度;k; S 液池面积,m2; H液体气化热,J/kg;λ表面热导系数,W/mk;α表面热扩散系数,m2/s; t蒸发时间,s。
3 质量蒸发估算当热量蒸发结束,转由液池表面气流运动使液体蒸发,称之为质量蒸发。
质量蒸发速度Q3计算公式可以查阅专著,或咨询我。
液池最大直径取决于泄漏点附近的地域构型、泄漏的连续性或瞬时性。
有围堰时,以围堰最大等效半径为液池半径;无围堰时,设定液体瞬间扩散到最小厚度时,推算液池等效半径。
4 液体蒸发总量的计算Wp=Q1t1+Q2t2+Q3t3 液体泄漏估算中密度的单位通常是kg/m3。
泄露计算⽅法⒈确定池半径将液池假定为半径为r 的圆形池⼦。
当池⽕灾发⽣在油罐或油罐区时,可根据防护堤所围池⾯积计算池直径:5.03??? ??=πS D式中:D —池直径,m ;S —防护堤所围池⾯积,m 2;当池⽕灾发⽣在输油管道区,且⽆防⽕堤时,假定泄漏的液体⽆蒸发,并已充分蔓延、地⾯⽆渗透,则根据泄漏的液体量和地⾯性质计算最⼤池⾯积:ρmin H WS = 式中:S —最⼤池⾯积,m 2;W —泄漏的液体量,kg ;H min —最⼩油厚度,与地⾯性质和状态油罐,如表4-2所⽰。
ρ—油的密度,kg/ m 3。
表4-2 不同地⾯的最⼩油厚度第⼀节泄漏模型第 1 页:19.1.1泄漏情况分析第 2 页:19.1.2泄漏量的计算⽕灾、爆炸、中毒是常见的重⼤事故,经常造成严重的⼈员伤亡和巨⼤的财产损失,影响社会安定。
这⾥重点介绍有关⽕灾、爆炸和中毒事故(热辐射、爆炸波、中毒)后果分析,在分析过程中运⽤了数学模型。
通常⼀个复杂的问题或现象⽤数学模型来描述,往往是在⼀个系列的假设前提下按理想的情况建⽴的,有些模型经过⼩型试验的验证,有的则可能与实际情况有较⼤出⼊,但对辨识危险性来说是可参考的。
由于设备损坏或操作失误引起泄漏,⼤量易燃、易爆、有毒有害物质的释放,将会导致⽕灾、爆炸、中毒等重⼤事故发⽣。
因此,事故后果分析由泄漏分析开始。
19.1.1泄漏情况分析1)泄漏的主要设备根据各种设备泄漏情况分析,可将⼯⼚(特别是化⼯⼚)中易发⽣泄漏的设备归纳为以下10类:管道、挠性连接器、过滤器、阀门、压⼒容器或反应器、泵、压缩机、储罐、加压或冷冻⽓体容器及⽕炬燃烧装置或放散管等。
(1)管道。
它包括管道、法兰和接头,其典型泄漏情况和裂⼝尺⼨分别取管径的20%~100%、20%和20%~100%。
(2)挠性连接器。
它包括软管、波纹管和铰接器,其典型泄漏情况和裂⼝尺⼨为:①连接器本体破裂泄漏,裂⼝尺⼨取管径的20%~100%;②接头处的泄漏,裂⼝尺⼨取管径的20%;③连接装置损坏泄漏,裂⼝尺⼨取管径的100%。
泄漏量计算公式详解首先,泄漏量的计算公式可以分为两种情况:液体泄漏和气体泄漏。
液体泄漏量计算公式:液体泄漏量(单位:升/小时)=Cs×CL×CD×A其中,Cs为液体的泄漏系数(单位:升/分钟/根),表示单位时间内从泄漏源产生的液体流动速率。
CL为液体的泄漏系数修正系数,用于修正液体泄漏速率,例如考虑液体的黏度、密度等影响因素。
CD为泄漏装置的排泄系数,表示液体从泄漏源排出的比例。
A为泄漏孔的截面积(单位:平方米)。
气体泄漏量计算公式:气体泄漏量(单位:立方米/小时)=Cv×PL×PA×PD其中,Cv为气体的泄漏系数(单位:立方米/分钟/根),表示单位时间内从泄漏源产生的气体流动速率。
PL为气体的密度(单位:千克/立方米)。
PA为气体的绝对压力(单位:帕斯卡)。
PD为气体泄漏的压力差(单位:巴)。
上述的泄漏系数是通过实验或理论计算得出的,可以根据不同的液体或气体特性进行选择。
通过选择合适的泄漏系数和修正系数,结合泄漏孔的尺寸和工况参数,可以计算出具体的泄漏量。
另外,需要注意的是,以上公式仅适用于单孔泄漏条件下。
如果存在多个泄漏孔,需要将每个泄漏孔的泄漏量相加得到总泄漏量。
同时,如果泄漏源的工况参数(如压力、温度等)存在变化,需要对公式进行修正。
除了上述的计算公式,在实际应用中,还可以通过实验测量、数值模拟等方法来计算泄漏量。
实验测量可以通过使用流量计、称量仪器等来实时测量泄漏量。
数值模拟则是通过建立泄漏的数学模型,基于流体动力学方程、质量守恒方程等进行计算。
综上所述,泄漏量计算是一个重要的安全和环境问题,可以通过液体泄漏量计算公式和气体泄漏量计算公式进行计算。
通过选择合适的泄漏系数和修正系数,并考虑泄漏源的工况参数,可以准确地计算出泄漏量。
同时,实验测量和数值模拟也是计算泄漏量的常用方法。
重大事故后果分析方法:泄漏事故后果分析是安全评价的一个重要组成部分,其目的在于定量地描述一个可能发生的重大事故对工厂、厂内职工、厂外居民,甚至对环境造成危害的严重程度。
分析结果为企业或企业主管部门提供关于重大事故后果的信息,为企业决策者和设计者提供关于决策采取何种防护措施的信息,如防火系统、报警系统或减压系统等的信息,以达到减轻事故影响的目的。
火灾、爆炸、中毒是常见的重大事故,可能造成严重的人员伤亡和巨大的财产损失,影响社会安定。
世界银行国际信贷公司(IFC)编写的《工业污染事故评价技术手册》中提出的易燃、易爆、有毒物质的泄漏、扩散、火灾、爆炸、中毒等重大工业事故的事故模型和计算事故后果严重度的公式,主要用于工业污染事故的评价。
该方法涉及内容,也可用于火灾、爆炸、毒物泄漏中毒等重大事故的事故危险、危害程度的评价。
由于设备损坏或操作失误引起泄漏从而大量释放易燃、易爆、有毒有害物质,可能会导致火灾、爆炸、中毒等重大事故发生。
1 泄漏情况1.1 泄漏的主要设备根据各种设备泄漏情况分析,可将工厂(特别是化工厂)中易发生泄漏的设备分类,通常归纳为:管道、挠性连接器、过滤器、阀门、压力容器或反应器、泵、压缩机、储罐、加压或冷冻气体容器及火炬燃烧装置或放散管等十类。
一个工厂可能有各种特殊设备,但其与一般设备的差别很小,可以容易地将其划归至所属的类型中去。
图6—1~图6—10提供了各类设备的典型损坏情况及裂口尺寸,可供后果分析时参考。
这里所列出的损坏典型,仅代表事故后果分析的最基本的典型损坏。
评价人员还可以增加其他一些损坏的形式和尺寸,例如阀的泄漏、开启式贮罐满溢等人为失误事故,也可以作为某些设备的一种损坏形式。
1.2 泄漏后果分析一旦泄漏,后果不单与物质的数量、易燃性、毒性有关,而且与泄漏物质的相态、压力、温度等状态有关。
这些状态可有多种不同的结合,在后果分析中,常见的可能结合有4种:(1)常压液体;(2)加压液化气体;(3)低温液化气体;(4)加压气体。
液体蒸发量的计算
本计算方法适用于硫酸的酸液蒸发量的计算,其计算公式如下:
Gz=M〔0.000352+0.000786V〕P·F
式中,Gz——液体的蒸发量,kg/h;
M——液体的分子量,98;
V——;
P——相应于液体温度下的空气中的蒸气分压力,mmHg。
当液体重量浓度高于10%时,可查表5-150。
mmHg
F——液体蒸发面的外表积,m3。
〔取0.25m开口直径,一个罐开口〕
表5-150 溶液蒸气压〔mmHg〕
个罐同时打开情况,0.143 kg/h
发烟硫酸是浓度超过100%的硫酸,也就是它含有游离的三氧化硫气体.该液体在敞开状态时,由于三氧化硫气体的逸出,三氧化硫气体与空气中的水分有很强的结合性,形成白色酸雾,好象冒烟一样,故称发烟硫酸.浓硫酸一般指浓度大于75%的硫酸。
两者环境影响截然不同,普通硫酸是随水蒸气挥发产生的污染。
按《危险化学品重大危险源辨识》GN18218-2009发烟硫酸量大于100吨就构成重大危险源,三氧化硫大于75吨就重大危险源,而普酸数量再多也不构成重大危险源。
按照《建设项目环境风险评价技术导则》三氧化硫生产场所30吨,贮存场所75吨为临界量。
硫酸厂卫生防护距离标准。
蒸发量的简单计算公式蒸发量是指单位时间内液体表面蒸发的量,通常以毫米/小时或毫米/天为单位。
蒸发量的计算公式可以帮助我们更好地了解水分的流失情况,从而为农业、气象学、环境保护等领域的工作提供参考依据。
蒸发量的计算公式一般包括气象因素和水面因素。
在气象因素方面,主要考虑气温、湿度、风速和日照等因素对蒸发量的影响。
气温越高,湿度越低,风速越大,日照时间越长,蒸发量就会相应增加。
而水面因素则取决于水体的温度、风速和水面积等因素。
在实际应用中,常用的蒸发量计算公式包括Penman公式、Thornthwaite公式、Priestley-Taylor公式等。
这些公式都是根据不同的气象和水面条件推导得出,可以根据具体情况选用适合的公式进行计算。
以Penman公式为例,该公式考虑了气象因素对蒸发量的影响,包括风速、湿度、日照时间等因素。
Penman公式是一个较为复杂的公式,需要考虑多个参数的影响,但能够较为准确地估算蒸发量。
除了数学模型,实际测量也是估算蒸发量的一种常用方法。
常见的测量方法包括蒸发皿法、蒸发计法、重量法等。
这些方法通过监测水面的蒸发情况,结合气象数据,可以得出较为准确的蒸发量数据。
蒸发量的计算对于农业生产、水资源管理、气象预测等领域具有重要意义。
在农业生产中,了解土壤和植被的蒸发量可以帮助合理安排灌溉和施肥,提高作物产量;在水资源管理中,掌握水体的蒸发量可以帮助科学调配水资源,保障城市供水和农田灌溉;在气象预测中,准确估算蒸发量可以提高气象预报的准确性,为社会公众提供更好的气象服务。
蒸发量的计算公式是一个复杂而重要的课题,涉及多个因素的相互作用。
通过合理选择计算公式和测量方法,我们可以更准确地估算蒸发量,为各领域的工作提供科学依据,促进可持续发展和资源合理利用。
希望在未来的研究和实践中,能够进一步完善蒸发量的计算方法,提高其精度和适用性,为人类社会的发展进步做出贡献。
关于TNT计算关于爆炸性化学品TNT摩尔量计算问题的质疑和探讨在新的《危险化学品建设项⽬安全评价细则》中,第4章中有“固有危险程度的分析”,第3节“通过下列计算,定量分析建设项⽬安全评价范围内和各个评价单元的固有危险程度”,⾥⾯有“具有爆炸性的化学品的质量及相当于梯恩梯(TNT)的摩尔量”。
这⾥指的爆炸性化学品是否包括我们常见的易燃液体和可燃⽓体,如果包括,那么计算TNT摩尔量的公式⽤下⾯哪种?1.蒸汽云爆炸模型⾥的TNT当量法计算WTNT=α* Wf* Qf / QTNT式中:WTNT——蒸汽云的TNT当量,kg;Wf——蒸汽云中燃料的总质量,kg;α——蒸汽云当量系数,统计平均值为0.04;Qf——蒸汽的燃烧热,J/kg;QTNT——TNT的爆炸热, 4.52MJ/kg;2.WTNT=物质的质量*物质的燃烧热/TNT的爆热这2种计算⽅法的区别在于第⼀种⽅法蒸汽云模型⾥对物质取了0.04的当量系数,这样计算出的TNT当量要⼩。
第⼆种⽅法只是简单的把物质的燃烧总热量除以TNT的爆热,这样计算的TNT当量要数量⽐较⼤。
在我接触的安评报告中,这2种计算⽅法都见过,还有⼀种说法,这⾥所指的爆炸物质的TNT摩尔量不应该包括可燃⽓体和液体。
请各位专家和同⾏探讨⼀下,哪种⽅法更合理,更科学。
⼀般我们危化易燃液体是⽤第⼀个公式,带地⾯爆炸系数1.8和蒸汽云当量0.04。
你说的第⼆个公式我不知道出⾃哪⾥,也许是计算固体爆炸物的TNT当量吧。
这个爆炸性⽓体的TNT当量计算,个⼈认为总局没有具体明确。
爆炸性⽓体蒸汽云计算的定量取值怎么取,都应有个明确说法。
“具有爆炸性的化学品的质量及相当于梯恩梯(TNT)的摩尔量”我觉得只适⽤于有些物质,不是所有物质都要算的,⽐如你做⼀个硫酸⼚,不⼀定就要计算这个TNT当量的,⽽且⼀般计算我采⽤的是第⼀公式。
第⼀:易燃液体、⽓体,第⼆:固体.⼄炔蒸汽云爆炸模型⾥的TNT当量法计算;WTNT=α* Wf* Qf / QTNT式中:WTNT——蒸汽云的TNT当量,kg;Wf——蒸汽云中燃料的总质量,kg;α——α为蒸⽓云爆炸的效率因⼦,表明参与爆炸的可燃⽓体的分数(爆炸涉及的总能量中只有⼀⼩部分真正对爆炸有贡献,这⼀分数称为效率因⼦),⼄炔的效率因⼦为19%;Qf——蒸汽的燃烧热,J/kg;⼄炔的燃烧热为48.10MJ/kg QTNT——TNT的爆炸热, 4.52MJ/kg;具有爆炸性的化学品----是指能够形成爆炸性混合物的物质,相当于GB50058⾥的爆炸性⽓体危险环境的概念。
有机溶剂的蒸发量(即散发量)可按马扎克(B.T.M)公式和相对挥发度计算.
(1)(1)敞露物料散发量的计算
利用马扎克公式:
G S=(5.38+4.1u)·P H·F·M1/2
式中,G S ——有害物质散发量,g/h;
u ——室内风速,m/s,往往利用当地气象台的年平均风速;
F ——有害物质的散露面积,m2;
M ——有害物质的分子量;
P H——有害物质在室温时的饱和蒸汽压,b ;
lgP H=-0.05223A/T+B
T ——绝对温度,K;
A,B——各种物质的经验系数。
各种常见物质的经验系数
(2)各种酸雾的排放(H2SO4、HNO3、HCl、HAC、HF)
G S=M(0.000352+0.000786u)·P·F
式中,G S ——酸雾散发量,kg/h;
M ——酸的分子量;
u ——U应该是蒸发液体表面上的空气流速,取0.2-0.3m/s
F ——蒸发面的面积,m2;
P——相应于液体温度时的饱和蒸汽分压,mmHg,可以查手册得出,当酸的浓度小于10%时可以用水饱和蒸汽代替。
扩散速率的计算
扩散速率的计算可采用气体扩散定律
格拉罕姆气体扩散定律
一.内容
1831年英国物理学家格拉罕姆(Graham)指出:同温同压下各种不同气体扩散速度与气体密度的平方根成反比。
这就是气体扩散定律(Graham's Law of Effusion(Diffusion))
二.定律的数学表达式
A气体扩散速度:B气体扩散速度=√(根号下)B气体分子质量:√(根号下)A气体分子质量。
举例:(气体扩散速度)H2:O2=√32:√2=√16:√1=4:1,所以氢气扩散速度是氧气扩散速度的4倍(同温同压下)。
转化为容易理解的公式即为:V1/V2 = (M2/M1)1/2
通常情况下,计算某种蒸汽或气体的扩散速度,可考虑在风速的影响下,根据假设的风速来计算气体的扩散速率。
具有爆炸性、可燃性的化学品的作业场所出现泄漏后,具备造成爆炸、火灾事故的条件和需要的时间
假设发生泄露后扩散,需要遇到明火、火花等点火源才能引起燃烧或爆炸,假设泄漏源最近的建构筑物内存在点火源,那么以泄露源为中心,以周边存在点火源的设施到泄露场所的距离为半径,构成的半球形的空间内全部充满泄露扩散的爆炸性混合气体,且混合气体的浓度达到了爆炸下限,则可以计算出此爆炸范围内可燃蒸汽或气体的质量(根据爆炸下限的体积百分数,乘以其密度),然后根据泄露后液体的蒸发量或气体的量,计算出达到在半球形空间内爆炸下限的量所需要的蒸发时间,再加上扩散所需要的时间,即为发生火灾、爆炸事故所需的时间。
计算的步骤如下
1、首先确认周边可能存在点火源的建筑物到泄漏源的距离S(可
按照距离泄漏源最近的建筑物考虑)。
2、以S为半径,计算出半球形泄露空间的体积V。
V =2πS3/3
3、假设半球形空间内的混合气体达到了爆炸下限a,计算出半球
形空间内可燃气体的质量Q ,已知气体的密度为ρ
Q=V*a*ρ
4、根据得出的Q值,可以根据前面得出的蒸发(G S)计算出蒸发
所需的时间t1
t1= Q/ G S
5、根据其扩散速率ν,计算出从泄漏源到达最近建筑物所需的时
间t2。
6、达到火灾、爆炸所需的时间即为扩算时间和蒸发时间之和,即
t = t1 +t2。