岩体力学岩石流变理论
- 格式:ppt
- 大小:817.50 KB
- 文档页数:40
3.4岩石的流变性质解析3.4岩石的流变性质在上节中所讨论的岩石变形特性都是在加载后瞬时的变形特性,这些变形特性与时间是无关。
但实际上,种类岩土工程的变形都不同程度上与时间有关。
例如,在中硬以下岩石及软岩中开掘的隧道、矿山巷道等地下工程,经常出现顶板下沉、边墙挤进和底板隆起等工程使用空间缩小现象。
这就是岩石流变性质的显现。
研究岩石流变性质,对解决岩土工程的维护设计和长期稳定性问题有十分重要的意义。
其中,蠕变现象是岩土工程中显现最明显,对工程稳定性影响最大的流变现象,是岩石流变理论研究中的常规内容。
3.4.1典型蠕变曲线特征以应变 为纵座标,时间t为横座标,作应变与时间的关系曲线(如图3.24所示),该曲线就是蠕变曲线。
它的形状和特性与岩石性质、加载水平等多种因素有关,各种蠕变曲线的形状和特性不尽相同。
图3.24是一条典型的蠕变曲线。
从曲线形态上看,可将该曲线分成三个阶段:Ⅰ.AB阶段,称作为瞬态蠕变阶段(或称初始蠕变阶段)。
加载:首先岩石特产生瞬时的弹性应变,这一应变是与时间无关的,如图中所示的OA段。
当外荷载维持一定的时间后,岩石将产生一部分随时间而增大的应变,此时的应变速率将随时间的增长远渐减小,曲线呈下凹型,并向直线状态过渡。
卸载:岩石的瞬时弹性应变最先恢复,如图中的PQ段。
之后,随着时间的增加,其剩余应变亦能逐渐地恢复,如图中的QR段。
QR段曲线的存在,说明岩石具有随时间的增长应变逐渐恢复的特性,这一特性被称作为弹性后效。
Ⅱ.BC阶段,被称作为稳定蠕变阶段(或称等速蠕变阶段)。
加载:在这一阶段最明显的特点是应变与时间的关系近似地呈直线变化,应变速率为一常数,该应变率与作用的外荷载的大小和介质的粘滞系数 有关。
卸载:出现与第一阶段卸载时一样的特性,弹性后效仍然存在,但是这时的应变已无法全部恢复,存在着部分不能恢复的永久变形。
Ⅲ.C点以后阶段,为非稳态蠕变(或称加速蠕变阶段)。
加载:当应变达到C点后,岩石将进入非稳态蠕变阶段。
一.岩石的物理力学性质1.岩体:位于一定地质环境中,在各种宏观地质界面(断层、节理、破碎带等)分割下形成的有一定结构的地质体。
由结构面与结构体组成的地质体。
2.岩石:是经过地质作用而天然形成的一种或多种矿物的集合体。
具有一定结构构造的矿物(含结晶和非结晶的)集合体。
3.岩(体)石力学:是力学的一个分支学科,是研究岩(体)石在各种力场作用下变形与破坏规律的理论及其实际应用的一门基础学科。
4.结构面:指在地质历史发展过程中,岩体内形成的具有一定的延伸方向和长度,厚度相对较小的宏观地质界面或带。
5.岩石质量指标(RQD):指大于10cm的岩芯累计长度与钻孔进尺长度之比的百分数。
6.空隙指数:指在0.1MPa压力条件下,干燥岩石吸入水的重量与岩石干重量的比值。
7.软化性:软化性是指岩石浸水饱和后强度降低的性质。
8.软化系数:指岩石试件的饱和抗压强度与干燥状态下的抗压强度的比值。
9.膨胀性:是指岩石浸水后体积增大的性质。
10.单轴抗压强度:是指岩石试件在单轴压力下达到破坏的极限值。
,11.抗拉强度:是指岩石试件在单向拉伸条件下试件达到破坏的极限值。
12.抗剪强度:指岩石抵抗剪切破坏的能力。
13.形状效应:在岩石试验中,由于岩石试件形状的不同,得到的岩石强度指标也就有所差异。
这种由于形状的不同而影响其强度的现象称为“形状效应”。
14.尺寸效应:岩石试件的尺寸愈大,则强度愈低,反之愈高,这一现象称为“尺寸效应”。
引起结构面尺寸效应的基本因素:结构面的强度与峰值剪胀角。
15.延性度:指岩石在达到破坏前的全应变或永久应变。
16.流变性:指在外界条件不变时,岩石应变或应力随时间而变化的性质。
17.蠕变:指在应力不变的情况下,岩石的变形随时间不断增长的现象。
18.应力松弛:是指当应变不变时,岩石的应力随时间增加而不断减小的现象。
19.弹性后效:是指在加荷或卸荷条件下,弹性应变滞后于应力的现象。
20.峰值强度:若岩石应力—应变曲线上出现峰值,峰值最高点的应力称为峰值强度。
目录1岩石强度、变形及时间效应 (1)1.1 岩石强度和强度准则 (1)1.2 岩石的变形与流变特性 (1)1.2.1岩石的变形 (1)1.2.2岩石流(蠕)变模型 (2)1.2.3岩石的流(蠕)变试验 (3)2岩石断裂与损伤力学 (3)2.1 断裂与损伤机制 (3)2.2 裂纹扩展机制 (4)3岩石多场耦合与应用 (4)3.1 多场耦合关系类型 (5)3.2 多场耦合研究内容与方法 (5)3.3 多场耦合应用 (5)4岩石动力学与岩爆 (6)4.1 岩石动力特性 (6)4.2 岩石动力本构关系 (6)4.3 岩石声、电磁传播特性 (6)4.4 岩爆分析 (7)5岩体非线性理论与加固稳定分析 (8)5.1 岩体非线性理论 (8)5.2 软岩的力学特性与加固理论 (8)5.3 岩质边坡稳定分析 (9)6岩石力学试验技术 (10)6.1 岩石力学基本试验方法 (10)6.2 试验仪器设备 (10)6.3 岩体结构模型试验技术 (10)7岩石力学数值分析方法 (11)7.1 有限元法 (11)7.2 离散元法 (11)7.3 三维快速拉格朗日分析 (12)7.4 数字图像分析方法 (13)8展望岩石力学发展与挑战 (13)参考文献 (15)1岩石强度、变形及时间效应岩石作为自然界的一种天然材料,对其变形和破坏特性的研究是沿着材料力学、弹性力学、塑性力学、断裂力学和损伤力学等逐步发展的。
由于水库大坝、山岭隧道、跨江(海)桥隧等重大工程项目的兴建,以及地下采矿工程、人防工程及地下空间利用的快速发展,促进科技工作者对岩石力学性质与时间效应的持续研究,天然岩石材料的复杂性也越来越为人们所认识。
1.1 岩石强度和强度准则岩石强度理论或强度准则是岩体工程设计、结构安全性分析的基础知识,一直是工程力学界的一个热门课题。
1900年莫尔(O. Mohr)教授建立了著名的莫尔-库仑(Mohr-Coulomb)强度理论。
从那以后,岩石强度理论广泛吸引了工程师和物理学家(包括工程地质专家、力学家、地球物理学家、材料科学家和土木、机械工程师等)的注意。