齿轮啮合原理-第三章
- 格式:ppt
- 大小:3.88 MB
- 文档页数:29
齿轮机械原理
齿轮机械原理是指通过齿轮的运动和传动来实现机械设备的工作原理。
齿轮是一种圆盘状的零件,其表面上有许多等距分布的齿。
齿轮通过齿与齿之间的啮合来传递力量和运动。
在齿轮机械中,常见的运动方式包括直线运动、旋转运动和随动运动。
直线运动是指齿轮之间的啮合产生的运动以直线方式进行,如直接啮合齿轮传动系统。
旋转运动是指齿轮在轴线周围旋转的运动方式,如齿轮副传动系统。
随动运动是指齿轮在特定角度范围内移动的运动方式,如摆线针齿轮传动系统。
齿轮的啮合可以通过不同的方式来实现。
常见的啮合方式有直接啮合、外啮合和内啮合。
直接啮合是指两个齿轮的轴线平行且相交的啮合方式,如直齿轮传动系统。
外啮合是指两个齿轮的轴线不平行且相交的啮合方式,如斜齿轮传动系统。
内啮合是指齿轮的啮合点位于两个齿轮的轴线之间的啮合方式,如内齿轮传动系统。
齿轮机械的工作原理基于牛顿第三定律,即力的作用必有相等且反向的反作用力。
当一个齿轮转动时,其齿与另一个齿轮的齿进行啮合,使得两个齿轮通过啮合面传递力量和运动。
根据齿轮的大小和齿数的不同,可以实现传递不同的速度和转矩。
齿轮机械的应用广泛,包括汽车变速箱、工业机械、钟表、电动工具等。
通过合理设计和选择齿轮参数,可以实现不同速度比和传动效果,满足不同的工作需求。
齿轮机械的原理深入浅出,是机械工程领域中的基础知识。
实验三齿轮范成原理实验在工程中,齿轮齿廓的制造方法很多,但其中以用范成法(亦称展成法)制造最为普遍。
因此,有必要对这种方法的基本原理及齿廓的形成过程加以研究。
一、实验目的:1.了解用范成法加工渐开线齿轮的基本原理,观察齿廓渐开线部分及过渡曲线部分的形成过程。
2.了解渐开线齿轮在制造过程中产生根切现象的原因和避免根切现象的方法——变位法,并比较标准齿轮和变位齿轮各部分尺寸的异同点。
二、实验的原理和方法:1.基本原理:范成法是利用一对齿轮或齿条与齿轮啮合原理来加工齿轮的一种方法。
常见有滚齿(刀具为齿轮滚刀)法,插齿法(刀具为齿轮插刀,齿条插刀)。
我们这里只讨论齿条形刀具。
齿轮滚刀在绕其轴线自转时,其轴向剖面相当于一个沿轴线平移的齿条(见图2-1)。
滚刀范成加工齿轮是强制性地保证刀具和轮坯之间按齿条与齿轮啮合运动关系来保证齿形的准确和分度均匀。
同时再辅以切削及走刀等运动。
这样对于同一把刀具就能加工出同一模数m和压力角α的不同齿数z的齿轮。
齿条型刀具与传动用的齿条在齿形上的差别仅在于:刀具在其中线以上的高度为,比齿条高出了c*m,这部分的齿廓曲线是某种圆角部分,(图2-2)此圆角部分所范成出连接渐开线与齿根圆的某种过渡曲线,使被切齿轮在啮合传动时具有径向间隙。
由齿轮与齿条啮合传动的特点可知:用齿条型刀具加工齿轮时,被加工齿轮的分度圆始终等于节圆,而刀具上与之相切并作纯滚动的直线为节线。
齿轮范成加工中的两个重要因素是:a)运动条件:为了保证被加工齿轮的分度圆(始终等于节圆)与刀具的相切作纯滚动,一定要满足下列关系:。
b)刀具与轮坯的相对位置:加工标准齿轮时,必须以刀具的中线作为节线,使轮坯的分度圆与刀具中线相切作纯滚动,加工正(负)变位齿轮时,刀具的中线相对于轮坯中心外移(内移)一个xm使轮坯的分度圆与齿条刀具上另一条与中线平行的直线(节线)相切作纯滚动。
图2-3为一齿条刀具范成齿轮的过程,轮坯以ω回转,而齿条刀具以移动,通过机床运动链使,且轮坯分度圆与刀具节线相切,图中所示的是齿条插刀在对滚过程中在轮坯上切出的刀刃痕迹,这些刀刃痕迹的包络线即为被加工齿轮的渐开线齿廓曲线。
齿轮啮合谐振原理
齿轮啮合谐振原理指的是在齿轮传动系统中,当啮合处的齿数满足一定的条件时,会发生齿轮的共振现象。
具体原理如下:
1. 齿轮啮合产生的振动频率与啮合点的齿数有关。
对于正常的齿轮传动,啮合点的齿数之比可以用公式:速比=转数比=齿
数比来表示。
如果啮合点周围的齿数比接近整数或分数,那
么齿轮啮合时产生的振动频率将与整数倍或近似倍数的自然频率相接近。
2. 当啮合频率与齿轮系统的自然频率接近时,就会发生共振现象。
在共振状态下,齿轮传动系统会受到外力的作用而增加振幅,引起较大的振动。
这种振动不仅会影响传动的稳定性和精度,还会导致噪声和振动的增加,对装置的工作效果和寿命产生不利影响。
3. 防止齿轮啮合谐振的方法包括:选择合适的齿数比,避免啮合频率与自然频率接近;增加齿轮的重量或刚度,提高齿轮的固有频率,使其远离外界干扰频率;增强齿轮传动系统的阻尼,降低振动的能量传递,减小振幅;采用隔振措施,利用隔振材料或隔振装置来减缓振动的传播。
总之,齿轮啮合谐振原理是指当齿轮传动系统的啮合频率与自然频率接近时,会发生共振现象,影响传动的稳定性和精度。
为防止谐振,需选择合适的齿数比、增加齿轮的刚度、增强系统的阻尼和采用隔振措施。
齿轮啮合原理
齿轮是一种常见的机械传动装置,通过齿轮的啮合来实现转速和转矩的传递。
而齿轮的啮合原理是齿轮传动的基础,了解齿轮啮合原理对于理解齿轮传动的工作原理和应用具有重要意义。
齿轮的啮合原理主要包括啮合点、啮合线和啮合角。
啮合点是指两个齿轮齿面接触的点,啮合线是通过啮合点的轨迹,啮合角是齿轮齿面上两个相邻齿的啮合线之间的夹角。
在齿轮传动过程中,啮合点的位置会不断变化,而啮合线和啮合角则是决定齿轮啮合工作状态的重要参数。
齿轮的啮合原理可以通过几何学和力学原理来进行分析。
在几何学上,齿轮的啮合原理可以通过齿轮的齿数、模数、压力角等参数来确定齿轮的啮合状态。
而在力学原理上,齿轮的啮合原理可以通过齿轮的模量、齿面接触应力、啮合刚度等参数来确定齿轮的传动性能。
在实际应用中,齿轮的啮合原理对于齿轮传动的设计和制造具有重要意义。
通过合理选择齿轮的参数和啮合角度,可以实现齿轮传动的高效、稳定和可靠运行。
同时,了解齿轮的啮合原理还可以
帮助工程师优化齿轮传动系统的结构和性能,提高齿轮传动的工作效率和可靠性。
总之,齿轮的啮合原理是齿轮传动的基础,了解齿轮的啮合原理对于理解齿轮传动的工作原理和应用至关重要。
通过深入研究齿轮的啮合原理,可以为齿轮传动的设计、制造和应用提供重要的理论指导和技术支持。
希望本文对于读者对齿轮啮合原理有所帮助。
齿轮啮合图课程设计一、课程目标知识目标:1. 学生能理解齿轮啮合的基本概念,掌握齿轮啮合图的相关知识。
2. 学生能描述齿轮啮合图中的各个部分及其作用,如齿轮的模数、压力角、齿数等。
3. 学生能运用齿轮啮合原理,分析并解决简单的齿轮啮合问题。
技能目标:1. 学生能根据给定的齿轮参数,正确绘制齿轮啮合图。
2. 学生能运用齿轮啮合图,进行齿轮传动的设计和计算。
3. 学生能通过实际操作,验证齿轮啮合图的相关理论。
情感态度价值观目标:1. 培养学生对齿轮啮合原理的兴趣,激发他们探索机械传动领域的热情。
2. 培养学生的团队协作意识,使他们学会在齿轮啮合图设计和绘制过程中相互交流、合作。
3. 培养学生严谨的科学态度,使他们认识到齿轮啮合图在工程实践中的重要性。
课程性质:本课程为机械设计基础课程,旨在帮助学生掌握齿轮啮合图的基本知识和技能。
学生特点:学生处于中学阶段,具有一定的物理和数学基础,但对齿轮啮合图的知识较为陌生。
教学要求:结合学生特点,采用理论教学与实际操作相结合的方式,注重培养学生的动手能力和实际应用能力。
通过分解课程目标为具体的学习成果,使学生在学习过程中逐步达到预期目标,并为后续教学设计和评估提供依据。
二、教学内容1. 齿轮啮合原理:介绍齿轮啮合的基本概念,包括齿轮的分类、齿轮传动的特点及其应用场景。
- 教材章节:第二章第三节- 内容:直齿圆柱齿轮啮合原理、斜齿圆柱齿轮啮合原理、圆锥齿轮啮合原理。
2. 齿轮啮合图绘制方法:- 教材章节:第二章第四节- 内容:齿轮啮合图的绘制步骤、齿轮啮合图中的各个参数标注方法、齿轮啮合图的检查与修正。
3. 齿轮传动设计与计算:- 教材章节:第三章- 内容:齿轮传动的设计步骤、齿轮参数的选择、齿轮啮合图的应用计算。
4. 实际操作与练习:- 教材章节:第四章- 内容:实际操作齿轮啮合图的绘制、分析齿轮传动案例、课堂练习与讨论。
教学进度安排:第一周:齿轮啮合原理及其分类第二周:齿轮啮合图的绘制方法第三周:齿轮传动设计与计算第四周:实际操作与练习教学内容确保科学性和系统性,结合课程目标,使学生能够循序渐进地掌握齿轮啮合图的相关知识,为后续课程学习和实际应用打下基础。
齿轮啮合原理齿轮是一种常见的机械传动装置,它通过齿轮的啮合来传递动力和运动。
齿轮传动具有传递功率大、传动效率高、传动精度高等优点,因此在各种机械设备中得到广泛应用。
了解齿轮啮合原理对于理解齿轮传动的工作原理和性能具有重要意义。
齿轮啮合是指两个或多个齿轮的齿与齿之间相互啮合,从而传递动力和运动的过程。
在齿轮啮合中,齿轮的齿顶、齿谷和齿根都会发生接触和相互作用,这种接触和作用形成了齿轮传动的基础。
齿轮啮合的原理可以简单描述为齿轮的啮合是通过齿轮的齿顶和齿谷之间的相互啮合来传递动力和运动的。
当两个齿轮啮合时,它们的齿顶和齿谷会相互接触,并且在齿轮传动的过程中,齿轮的齿顶和齿谷会不断地相互进入和退出。
这种进入和退出的过程形成了齿轮的啮合运动,从而实现了齿轮的传动功能。
在齿轮啮合的过程中,齿轮的齿顶和齿谷之间的啮合是非常关键的。
齿顶和齿谷的啮合质量直接影响着齿轮传动的工作性能和传动效率。
如果齿轮的齿顶和齿谷啮合不良,就会导致齿轮传动的噪音增加、传动效率降低甚至损坏齿轮。
为了保证齿轮的啮合质量,需要注意以下几点。
首先,齿轮的齿顶和齿谷的啮合面要保持良好的光洁度和精度。
其次,齿轮的啮合面要保持一定的润滑条件,以减小摩擦和磨损。
最后,齿轮的啮合面要保持一定的啮合间隙,以便于齿轮的正常工作和运动。
总的来说,齿轮啮合原理是齿轮传动的基础,了解齿轮啮合原理对于理解齿轮传动的工作原理和性能具有重要意义。
在实际应用中,需要注意保证齿轮的啮合质量,以确保齿轮传动的正常工作和运动。
希望本文对于读者们对齿轮啮合原理有所帮助。
齿轮啮合原理
齿轮啮合原理简介
齿轮啮合原理是指两个或多个齿轮通过相互啮合而实现能量传递和转速变换的机械原理。
在齿轮传动中,通常有一个驱动齿轮和一个或多个被动齿轮,当驱动齿轮旋转时,通过齿轮之间的啮合,将驱动齿轮的旋转运动传递给被动齿轮。
这种传动方式可实现两个齿轮的同向、反向、同速等不同运动方式。
齿轮间的啮合是通过每个齿轮的齿与齿之间的啮合来完成的。
齿轮的齿面通常呈直线或弧状,齿根和齿槽的形状决定了齿轮的啮合方式。
常见的齿轮啮合方式有直齿啮合、斜齿啮合和蜗杆啮合等。
在齿轮啮合中,驱动齿轮的旋转将引起被动齿轮的转动。
根据欧拉定律,旋转中的齿轮将受到力矩的作用,力矩的大小与齿轮半径和作用力之间的乘积成正比。
因此,啮合齿轮的大小和齿数对于转动效果和力矩的传递起着重要作用。
齿轮啮合的优点是传动效率高、精度高、传动平稳等。
它广泛应用于各种机械传动装置,如汽车、机床、风力发电机等。
通过调整齿轮的模数、齿数比和材料等参数,可以实现不同转速和转矩要求下的传动效果,并且齿轮制造技术的进步使得齿轮的精密度和负载能力得到了不断提高。
螺旋面加工中刀具干涉检查研究1课题背景随着机械制造工业的发展,各种新型螺杆机构不断涌现。
螺杆泵、螺杆马达(钻具)、螺旋挤压机、螺杆式气体压缩机等设备在石油钻采、化工、轻工、军工、造船、橡塑等行业的应用日益广泛。
虽然螺杆机构的设计制造技术具有悠久的历史,但由于新型螺杆机构的螺旋面廓形设计比较复杂,精度要求不断提高[1][2],一些大型螺杆的加工效率和制造成本问题越来越突出,而且国内外尚未制定出系统的设计制造标准。
因此,从客观上促进了螺旋面加工技术的不断发展,使之成为目前机械制造领域中倍受关注的研究课题[3]。
目前,在三坐标数控螺杆铣床上,采用截面包络法加工复杂螺杆是一项新的螺杆加工工艺。
与传统的展成法与成形法加工相比,该工艺方法具有切削用量大、加工效率高、刀具结构简单、对工件型线适应广、调整方便、可控精度高等许多优点。
它是一种使标准刃形刀具相对于工件按一定规律作包络运动,加工出工件螺旋表面的铣削方法。
其编程思想是从端截面出发,采用等精度曲线逼近的方法,使刀具切削刃在工件的接触轨迹在给定的精度范围内逼近工件的理论轮廓。
使用这种编程方法加工出的螺杆能够满足一般精度螺杆的加工要求。
目前,国产及进口专用机床所提供的编程系统均采用平面包络的计算方法,即认为在加工过程中刀具与工件的接触点(简称刀触点)轨迹为平面曲线,而实际上在三坐标专用铣床上进行包络加工时,刀触点轨迹为复杂的空间曲线。
因此,按平面包络计算方法得到的刀具轨迹及数控程序必然存在理论误差,影响加工精度。
如何才能找到一种快速高效的基于空间包络加工原理的编程方法,已经成为螺旋面数控加工研究领域的热点问题[4]。
在众多的研究成果中,基于最小有向距离理论并结合五点寻优方法而得到的最小有向距离算法[5],是一种基于空间包络加工原理的编程方法,它解决了迭代算法中存在的收敛性问题,避免了全局区域内大量的点集计算,具有计算速度快、原理简单等特点,已成为一种非常有效的在复杂螺旋面数控加工中计算刀位轨迹的方法。
齿轮啮合仪工作原理
齿轮啮合仪是一种用于测试齿轮啮合性能的仪器。
它的工作原理基于齿轮啮合时产生的声音和振动信号。
齿轮啮合仪首先将待测试的齿轮装上仪器的夹持装置上,并使其与齿轮啮合仪中的参考齿轮啮合。
然后,通过控制电机转动齿轮,使其进行旋转。
当齿轮旋转时,它会产生啮合声音和振动信号。
齿轮啮合仪中的传感器会捕捉到这些声音和振动信号,并将其转化为电信号。
这些电信号会经过放大和滤波等处理,然后发送到连接的计算机或显示屏上。
计算机或显示屏会对接收到的信号进行分析和处理。
它会根据信号的频率、振幅等特征,判断齿轮的啮合性能。
如果齿轮存在啮合不良、偏斜、噪音过大等问题,则会通过计算机或显示屏显示出来,以便进行修正或更换。
总的来说,齿轮啮合仪通过监测齿轮啮合过程中产生的声音和振动信号,来评估齿轮的啮合性能。
这种测试方法准确度高、速度快,并且能够帮助及时发现齿轮的问题,提高生产效率。