数学人教版九年级下册特殊三角函数值
- 格式:doc
- 大小:48.50 KB
- 文档页数:2
特殊三角函数值对照表(特殊角的三角函数值)《特殊角的三角函数值》是人教版数学九年级下册第二十八章的内容,特殊三角函数值一般指在0,30°,45°,60°,90°,180°角下的正余弦值。
这些角度的三角函数值是经常用到的。
并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。
具体的三角函数值如下表:扩展资料:黄金三角函数介绍:α=18°(π/10) sinα=(√5-1)/4 cosα=√(10+2√5)/4tαnα=√(25-10√5)/5cscα=√5+1 secα=√(50-10√5)/5 cotα=√(5+2√5)α=36°(π/5) sinα=√(10-2√5)/4 cosα=(√5+1)/4tαnα=√(5-2√5)cscα=√(50+10√5)/5 secα=√5-1 cotα=√(25+10√5)/5α=54°(3π/10) sinα=(√5+1)/4 cosα=√(10-2√5)/4 tαnα=√(25+10√5)/5是数学中属于初等函数中的超越函数的一类函数。
它们的本质是任意角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。
另一种定义是在直角三角形中,但并不完全。
扩展资料:三角函数在复数中有重要的应用。
三角函数也是物理学中的常用工具。
它有六种基本函数函数名正弦余弦正切余切正割余割符号 sin cos tan cot sec csc正弦函数sin(A)=a/c余弦函数cos(A)=b/c正切函数tan(A)=a/b余切函数cot(A)=b/a其中a为对边,b为邻边,c为斜边特殊角的值如下表:在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A 的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。
扩展资料:sinα = tanα × cosα(即sinα / cosα = tanα )cosα = cotα × sinα (即cosα / sinα = cotα)tanα = sinα × secα (即tanα / sinα = secα)sin ( α ± β ) = sinα · cosβ ± cosα · sinβsin ( α + β + γ ) = sinα · cosβ · cosγ +cosα · sinβ · cosγ + cosα · cosβ · sinγ - sinα · sinβ · sinγcos ( α ± β ) = cosα cosβ ∓ sinβ sinαtan ( α ± β ) = ( tanα ± tanβ ) / ( 1 ∓ tanα tanβ )完整初中三角函数值表如下图所示:常见的三角函数有正弦函数、余弦函数和正切函数。
28.1锐角三角函数第3课时特殊角的三角函数1.经历探索30°、45°、60°角的三角函数值的过程,进一步体会三角函数的意义;(重点)2.能够进行30°、45°、60°角的三角函数值的计算;(重点)3.能够结合30°、45°、60°的三角函数值解决简单实际问题.(难点)一、情境导入问题1:一个直角三角形中,一个锐角的正弦、余弦、正切值是怎么定义的?问题2:两块三角尺中有几个不同的锐角?各是多少度?设每个三角尺较短的边长为1,分别求出这几个锐角的正弦值、余弦值和正切值.二、合作探究探究点一:特殊角的三角函数值【类型一】利用特殊的三角函数值进行计算计算:(1)2cos60°·sin30°-6sin45°·sin60°;(2)sin30°-sin45°cos60°+cos45°.解析:将特殊角的三角函数值代入求解.解:(1)原式=2×12×12-6×22×32=12-32=-1;(2)原式=12-2212+22=22-3.方法总结:解决此类题目的关键是熟记特殊角的三角函数值.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型二】已知三角函数值求角的取值范围若cosα=23,则锐角α的大致范围是()A.0°<α<30°B.30°<α<45°C.45°<α<60°D.0°<α<30°解析:∵cos30°=32,cos45°=22,cos60°=12,且12<23<22,∴cos60°<cosα<cos45°,∴锐角α的范围是45°<α<60°.故选C.方法总结:解决此类问题要熟记特殊角的三角函数值和三角函数的增减性.【类型三】根据三角函数值求角度若3tan(α+10°)=1,则锐角α的度数是()A.20°B.30°C.40°D.50°解析:∵3tan(α+10°)=1,∴tan(α+10°)=33.∵tan30°=33,∴α+10°=30°,∴α=20°.故选A.方法总结:熟记特殊角的三角函数值是解决问题的关键.变式训练:见《学练优》本课时练习“课堂达标训练”第9题探究点二:特殊角的三角函数值的应用【类型一】利用三角形的边角关系求线段的长如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.解析:由题意可知△BCD为等腰直角三角形,则BD=BC,在Rt△ABC中,利用锐角三角函数的定义求出BC的长即可.解:∵∠B=90°,∠BDC=45°,∴△BCD为等腰直角三角形,∴BD=BC.在Rt△ABC中,tan∠A=tan30°=BCAB,即BCBC+4=33,解得BC=2(3+1).方法总结:在直角三角形中求线段的长,如果有特殊角,可考虑利用三角函数的定义列出式子,求出三角函数值,进而求出答案.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】判断三角形的形状已知△ABC中的∠A与∠B满足(1-tan A)2+|sin B-32|=0,试判断△ABC的形状.解析:根据非负性的性质求出tan A及sin B的值,再根据特殊角的三角函数值求出∠A及∠B的度数,进而可得出结论.解:∵(1-tan A)2+|sin B-32|=0,∴tan A=1,sin B=32,∴∠A=45°,∠B=60°,∠C=180°-45°-60°=75°,∴△ABC是锐角三角形.方法总结:一个数的绝对值和偶次方都是非负数,当几个数或式的绝对值或偶次方相加和为0时,则其中的每一项都必须等于0.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型三】构造三角函数模型解决问题要求tan30°的值,可构造如图所示的直角三角形进行计算.作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,那么BC=3,∠ABC=30°,∴tan30°=ACBC=13=33.在此图的基础上,通过添加适当的辅助线,探究tan15°与tan75°的值.解析:根据角平分线的性质以及勾股定理首先求出CD的长,进而得出tan15°=CDBC,tan75°=BCCD求出即可.解:作∠B的平分线交AC于点D,作DE⊥AB,垂足为E.∵BD平分∠ABC,CD⊥BC,DE⊥AB,∴CD=DE.设CD=x,则AD=1-x,AE=2-BE=2-BC=2- 3.在Rt△ADE中,DE2+AE2=AD2,x2+(2-3)2=(1-x)2,解得x=23-3,∴tan15°=23-33=2-3,tan75°=BCCD=323-3=2+ 3.方法总结:解决问题的关键是添加辅助线构造含有15°和75°的直角三角形,再根据三角函数的定义求出15°和75°的三角函数值.变式训练:见《学练优》本课时练习“课后巩固提升”第2题三、板书设计1.特殊角的三角函数值:2.应用特殊角的三角函数值解决问题.课程设计中引入非常直接,由三角尺引入,直击课题,同时也对前两节学习的知识进行了整体的复习,效果很好.在讲解特殊角的三角函数值时讲解的也很细,可以说前面部分的教学很成功,学生理解的很好.学生励志寄语:人生,想要闯出一片广阔的天地,就要你们努力去为自己的目标奋斗、勤奋刻苦、充满自信的过好每一天,雏鹰总会凌空翱翔。
部审人教版九年级数学下册教学设计28.1 第3课时《特殊角的三角函数值》一. 教材分析人教版九年级数学下册第28.1节《特殊角的三角函数值》是三角函数基础知识的重要组成部分。
本节课主要让学生掌握30°、45°、60°特殊角的正弦、余弦、正切函数值,并能够运用这些知识解决实际问题。
教材通过引入特殊角的三角函数值,为学生深入学习三角函数奠定基础。
二. 学情分析九年级的学生已经掌握了锐角三角函数的概念,对直角三角形的边角关系有一定的了解。
但部分学生对函数值的计算和应用还不够熟练,需要在本节课中加强训练。
此外,学生对于解决实际问题的能力有待提高,需要教师在教学中进行引导和培养。
三. 教学目标1.让学生掌握30°、45°、60°特殊角的正弦、余弦、正切函数值。
2.培养学生运用三角函数知识解决实际问题的能力。
3.提高学生的数学思维能力和团队协作能力。
四. 教学重难点1.重点:掌握30°、45°、60°特殊角的三角函数值。
2.难点:灵活运用特殊角的三角函数值解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究特殊角的三角函数值。
2.运用合作学习法,培养学生团队协作能力和沟通能力。
3.利用案例分析法,让学生学会将理论知识应用于实际问题。
六. 教学准备1.准备相关案例,用于引导学生解决实际问题。
2.准备多媒体教学设备,用于展示特殊角的三角函数值。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用多媒体展示特殊角的三角函数值,引导学生回顾已学知识,为新课的学习做好铺垫。
2.呈现(10分钟)介绍30°、45°、60°特殊角的正弦、余弦、正切函数值,让学生直观地感受这些特殊角的三角函数值。
3.操练(10分钟)让学生分组讨论,运用特殊角的三角函数值解决实际问题。
教师巡回指导,帮助学生克服困难。