九年级数学上册 24.3 特殊角的三角函数值(第2课时) 华东师大版
- 格式:ppt
- 大小:629.50 KB
- 文档页数:4
24.3.1课时2 特殊角的三角函数值【知识与技能】1.熟记30°、45°、60°角的三角函数值.2.让学生经历30°、45°、60°角的三角函数值推导过程,从而掌握特殊角的三角函数的运用方法.【过程与方法】学生经历30°、45°、60°角的三角函数值推导过程,发展学生的推理能力和计算能力.【情感态度与价值观】通过本节课的学习了让学生体会锐角三角函数的数学美,从而培养学生的数学应用意识.熟记30°、45°、60°角的三角函数值.根据函数值说出对应的锐角度数.多媒体课件.上节课我们学习了锐角三角函数的定义.复习如图所示Rt△DEC,∠E=90°,DE=6,CD=10,求∠D的三个三角函数值.(sinD=4/5,cosD=3/5,tanD=4/3)一、思考探究,获取新知你能否根据锐角三角函数的定义求出30°角的三个三角函数值?1.探究3.填表思考:(1)sinα随着α的增大而增大;(2)cosα随着α的增大而减小;(3)tanα随着α的增大而增大.例1 求值:sin30°·tan30°+cos60°·tan60°解:原式1312332323=⨯+⨯=.二、运用新知,深化理解2.直线y=kx-4与y轴相交所成的锐角的正切值为12,则k的值为_______.4.已知,如图,在△ABC中,∠B=45°,∠C=60°,AB=6,求BC的长.(结果保留根号)【教师点拨】第1题的计算,注意理清运算顺序;第2题可构造直角三角形再运用锐角三角函数的知识解决,注意两种情况;第3题先求出α的三角函数值,再根据其值求角的度数.1.知识回顾.2.谈谈这节课你有哪些收获?【教学说明】教师应与学生一起进行交流,共同回顾本节知识,理清解题思路与方法.1.布置作业:从教材“习题24. 3”中选取.本节从复习锐角三角函数的定义入手,提出求解30°角的三角函数值,让学生动手探究45°、60°角的三角函数值,加以归纳总结,并学会应用.在教学上充分体现以学生为主体的思想,在教学中以调动学生的思维为主,充分培养学生的自主性和创造性.。
第2课时 特殊角的三角函数值1.熟记30°,45°,60°角的三角函数值.2.让学生经历30°,45°,60°角的三角函数值推导过程,从而掌握特殊角的三角函数的运用方法.重点熟记30°,45°,60°角的三角函数值. 难点根据函数值说出对应的锐角度数.一、情境引入教师利用课件展示例题,复习上节内容. 上节课我们学习了锐角三角函数的定义.复习 如图,在Rt △DEC 中,∠E =90°,DE =6,CD =10,求∠D 的三个三角函数值.(sin D =45,cos D =35,tan D =43) 二、探究新知你能否根据锐角三角函数的定义求出30°角的三个三角函数值? 1.探究如图,在Rt △ABC 中,∠C =90°,∠A =30°.思考:(1)BC =__12__AB ;(2)由勾股定理可得 AC 2=__AB 2__-__BC 2__, AC =AB 2-BC 2=__32, sin 30°=BC AB =12AB AB =12,cos 30°=AC AB =32ABAB=32,tan 30°=BC AC=12AB 32AB =33. 问:如何求60°角的三角函数值?sin 60°=AC AB =__32__,cos 60°=BC AB =__12__, tan 60°=AC BC=__3__.2.做一做在Rt △ABC 中,∠C =90°,∠A =45°,根据锐角三角函数的定义求出∠A 的三角函数值.思考:(1)AC =BC ; (2)由勾股定理可知AB =AC 2+BC 2=__2__AC. 归纳:sin 45°=__22,cos 45°=__22__, tan 45°=__1__.3.填表α sin αcos αtan α30° 12 45° 1 60°12思考:(1)sin α随着α的增大而__增大__; (2)cos α随着α的增大而__减小__; (3)tan α随着α的增大而__增大__.例 求值:sin 30°·tan 30°+cos 60°·tan 60°. 解:原式=12×33+12×3=233.三、练习巩固教师利用课件展示练习,可由学生独立完成,教师点名展示,教师点评:第1题的计算,注意理清运算顺序;第2题可构造直角三角形,再运用锐角三角函数的知识解决,注意两种情况;第3题可先求出α的三角函数值,再根据其值求角的度数.1.计算:(1)|3-12|+(62+2)0+cos230°-4sin60°;(2)2(2cos45°-sin60°)+24 4;(3)(sin30°)-1-20200+|-43|-tan60°.2.直线y=kx-4与y轴相交所成的锐角的正切值为12,则k的值为________.3.求下列锐角α的大小:(1)4cos2α-32sin45°=0;(2)tan2α-(3+1)tanα+3=0.4.如图,在△ABC中,∠B=45°,∠C=60°,AB=6,求BC的长.(结果保留根号)四、小结与作业小结本节课你学到了哪些知识?有哪些收获?布置作业从教材相应练习和“习题24.3”中选取.本节从复习锐角三角函数的定义入手,提出求解30°角的三角函数值,让学生动手探究45°,60°角的三角函数值,加以归纳总结,并学会应用.在教学上充分体现以学生为主体的思想,在教学中以调动学生的思维为主,充分培养学生的自主性和创造性.。