九年级数学特殊角的三角函数值
- 格式:pdf
- 大小:357.18 KB
- 文档页数:7
28.1.3 特殊角的三角函数值(第3课时)复习引入教师提问:一个直角三角形中,一个锐角正弦、余弦、正切值是怎么定义的?在学生回答了这个问题后,教师再复述一遍,提出新问题:两块三角尺中有几个不同的锐角?是多少度?分别求出这几个锐角的正弦值、余弦值和正切值.提醒学生:求时可以设每个三角尺较短的边长为1,•利用勾股定理和三角函数的定义可以求出这些三角函数值.探究新知(一)特殊值的三角函数学生在求完这些角的正弦值、余弦值和正切值后教师加以总结.30°、45°、60°的正弦值、余弦值和正切值如下表:教师讲解上表中数学变化的规律:对于正弦值,分母都是2,分子按角度增加分别为.对于余弦值,分母都是2.对于正切,60•个角的正切值.要求学生记住上述特殊角的三角函数值.教师强调:(sin60°)2用sin260°表示,即为(sin60°)·(sin60°).(二)特殊角三角函数的应用1.师生共同完成课本第82页例3:求下列各式的值.(1)cos260°+sin260°.(2)cos45sin45︒︒-tan45°.教师以提问方式一步一步解上面两题.学生回答,教师板书.解:(1)cos260°+sin260°=(12)2+(32)2=1(2)cos45sin45︒︒-tan45°=22÷22-1=02.师生共同完成课本第82页例4:教师解答题意:(1)如课本图28.1-9(1),在Rt△ABC中,∠C=90,AB=6,BC=3,求∠A的度数.(2)如课本图28.1-9(2),已知圆锥的高AO等于圆锥的底面半径OB的3倍,求a.教师分析解题方法:要求一个直角三角形中一个锐角的度数,可以先求它的某一个三角函数的值,如果这个值是一个特殊解,那么我们就可以求出这个角的度数.解:(1)在课本图28.1-9(1)中,∵sinA=36BCAB=22,∴∠A=45°.(2)在课本图28.1-9(2)中,∵tana=AO OB OB, ∴a=60°.教师提醒学生:当A 、B 为锐角时,若A ≠B ,则 sinA ≠sinB ,cosA ≠cosB ,tanA ≠tanB . 随堂练习学生做课本第83页练习第1、2题. 课时总结学生要牢记下表:对于sina 与tana ,角度越大函数值也越大;对于cosa ,角度越大函数值越小. 教后反思_____________________________________________________________________ ________________________________________________________________________ 第3课时作业设计 课本练习做课本第85页习题28.1复习巩固第3题. 双基与中考(本练习除了作为本课时的课外作业之外,余下的部分作为下一课时(习题课)学生的课堂作业.学生可以自己根据具体情况划分课内、课外作业的份量).一、选择题.1.已知:Rt△ABC中,∠C=90°,cosA=35,AB=15,则AC的长是().A.3 B.6 C.9 D.12 2.下列各式中不正确的是().A.sin260°+cos260°=1 B.sin30°+cos30°=1 C.sin35°=cos55°D.tan45°>sin45°3.计算2sin30°-2cos60°+tan45°的结果是().A.2 BCD.14.已知∠A为锐角,且cosA≤12,那么()A.0°<∠A≤60°B.60°≤∠A<90°C.0°<∠A≤30°D.30°≤∠A<90°5.在△ABC中,∠A、∠B都是锐角,且sinA=12,,则△ABC的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定6.如图Rt△ABC中,∠ACB=90°,CD⊥AB于D,BC=3,AC=4,设∠BCD=a,则tana•的值为().A.34B.43C.35D.457.当锐角a>60°时,cosa的值().A.小于12B.大于12C.大于2D.大于18.在△ABC中,三边之比为a:b:c=12,则sinA+tanA等于().A.311...6222B C D++9.已知梯形ABCD中,腰BC长为2,梯形对角线BD垂直平分AC•则∠CAB等于()A.30°B.60°C.45°D.以上都不对10.sin272°+sin218°的值是().A.1 B.0 C.12D.211)2+││=0,则△ABC().A.是直角三角形B.是等边三角形C.是含有60°的任意三角形D.是顶角为钝角的等腰三角形二、填空题.12.设α、β均为锐角,且sinα-cosβ=0,则α+β=_______.13.cos45sin301cos60tan452︒-︒︒+︒的值是_______.14.已知,等腰△ABC•的腰长为•底为30•°,•则底边上的高为______,•周长为______.15.在Rt△ABC中,∠C=90°,已知cosA=________.16.正方形ABCD边长为1,如果将线段BD绕点B旋转后,点D落在BC的延长线上的点D′处,那么tan∠BAD′=________.17.在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,得AB ACCD CD-的值为_______.三、解答题.18.求下列各式的值.(1)sin30°·cos45°+cos60°;(2)2sin60°-2cos30°·sin45°(3)2cos602sin302︒︒-; (4)sin45cos3032cos60︒+︒-︒-sin60°(1-sin30°).(5)tan45°·sin60°-4sin30°·cos45°·tan30°(6)sin45tan30tan60︒︒-︒+cos45°·cos30°19.在△ABC中,AD是BC边上的高,∠B=30°,∠C=45°,BD=10,求AC.20.如图,∠POQ=90°,边长为2cm的正方形ABCD的顶点B在OP上,C为CQ•上,•且∠OBC=30°,分别求点A,D到OP的距离.30︒QP ODCBA21.已知sinA,sinB是方程4x2-2mx+m-1=0的两个实根,且∠A,∠B是直角三角形的两个锐角,求:(1)m的值;(2)∠A与∠B的度数.22.如图,自卸车车厢的一个侧面是矩形ABCD,AB=3米,BC=0.5米,•车厢底部距离地面1.2米,卸货时,车厢倾斜的角度=60°,问此时车厢的最高点A距离地面是多少米?(精确到0.1m)23.如图,由于水资源缺乏,B、C两地不得不从黄河上的扬水站A处引水,•这就需要在A、B、C之间铺设地下输水管道.有人设计了三种铺设方案:如图(1)、(2)、(3),图中实线表示管道铺设线路,在图(2)中,AD⊥BC于D;在图(3)中,OA=OB=OC.为减少渗漏,节约水资源,并降低工程造价,铺设线路应尽量缩短.已知△ABC•恰好是一个边长是a的等边三角形,请你通过计算,判断哪个铺设方案最好.第3课时作业设计(答案)一、1.C 2.B 3.D 4.B 5.B 6.A 7.A 8.A 9.B 10.A 11.A二、12.90°13.21214.33155162173三、18.(1)222362(2)(3)1;(4)424+-(5)32;(6)019.∵AD是BC边上的高,∴△ABD和△ACD都是直角三角形.∵ADBD=tan30°,BD=10,∴AD=1033∴ADAC=sinC,∴AC=1031063sin32ADC==.20.过点A、D分别作AE⊥OP,DF⊥OP,DG⊥OQ,垂足分别为E、F、G.在正方形ABCD中,∠ABC=∠BCD=90°.∵∠OBC=30°,∴∠ABE=60°.在Rt△AEB中,AE=AB·sin60°=2×3=3(cm).∵四边形DFOG是矩形,∴DF=GO.∵∠OBC=30°,∴∠BCO=60°,∴∠DCG=30°.在Rt△DCG中,CG=CD·cos30°=2×32=3(cm).在Rt△BOC中,OC=12BC=1.21.m=22+1 A=45°B=45°22.A距地面4.8m23.(1)所示方案的线路总长为AB+BC=2a.(2)在Rt△ABD中,AD=ABsin60°=3a,∴(2)所示方案的线路总长为AD+BC=(3+1)a.(3)延长AO 交BC 于E ,∵AB=AC ,OB=OC ,∴OE ⊥BC ,BE=EC=2a .在Rt △OBE 中,∠OBE=•30°,OB=cos30BE .∴(3)所示方案的线路总长为.)a<2a ,∴图(3)•所示方案最好.。
特殊三角函数值对照表(特殊角的三角函数值)《特殊角的三角函数值》是人教版数学九年级下册第二十八章的内容,特殊三角函数值一般指在0,30°,45°,60°,90°,180°角下的正余弦值。
这些角度的三角函数值是经常用到的。
并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。
具体的三角函数值如下表:扩展资料:黄金三角函数介绍:α=18°(π/10) sinα=(√5-1)/4 cosα=√(10+2√5)/4tαnα=√(25-10√5)/5cscα=√5+1 secα=√(50-10√5)/5 cotα=√(5+2√5)α=36°(π/5) sinα=√(10-2√5)/4 cosα=(√5+1)/4tαnα=√(5-2√5)cscα=√(50+10√5)/5 secα=√5-1 cotα=√(25+10√5)/5α=54°(3π/10) sinα=(√5+1)/4 cosα=√(10-2√5)/4 tαnα=√(25+10√5)/5是数学中属于初等函数中的超越函数的一类函数。
它们的本质是任意角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。
另一种定义是在直角三角形中,但并不完全。
扩展资料:三角函数在复数中有重要的应用。
三角函数也是物理学中的常用工具。
它有六种基本函数函数名正弦余弦正切余切正割余割符号 sin cos tan cot sec csc正弦函数sin(A)=a/c余弦函数cos(A)=b/c正切函数tan(A)=a/b余切函数cot(A)=b/a其中a为对边,b为邻边,c为斜边特殊角的值如下表:在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A 的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。
扩展资料:sinα = tanα × cosα(即sinα / cosα = tanα )cosα = cotα × sinα (即cosα / sinα = cotα)tanα = sinα × secα (即tanα / sinα = secα)sin ( α ± β ) = sinα · cosβ ± cosα · sinβsin ( α + β + γ ) = sinα · cosβ · cosγ +cosα · sinβ · cosγ + cosα · cosβ · sinγ - sinα · sinβ · sinγcos ( α ± β ) = cosα cosβ ∓ sinβ sinαtan ( α ± β ) = ( tanα ± tanβ ) / ( 1 ∓ tanα tanβ )完整初中三角函数值表如下图所示:常见的三角函数有正弦函数、余弦函数和正切函数。
28.1锐角三角函数第3课时特殊角的三角函数1.经历探索30°、45°、60°角的三角函数值的过程,进一步体会三角函数的意义;(重点)2.能够进行30°、45°、60°角的三角函数值的计算;(重点)3.能够结合30°、45°、60°的三角函数值解决简单实际问题.(难点)一、情境导入问题1:一个直角三角形中,一个锐角的正弦、余弦、正切值是怎么定义的?问题2:两块三角尺中有几个不同的锐角?各是多少度?设每个三角尺较短的边长为1,分别求出这几个锐角的正弦值、余弦值和正切值.二、合作探究探究点一:特殊角的三角函数值【类型一】利用特殊的三角函数值进行计算计算:(1)2cos60°·sin30°-6sin45°·sin60°;(2)sin30°-sin45°cos60°+cos45°.解析:将特殊角的三角函数值代入求解.解:(1)原式=2×12×12-6×22×32=12-32=-1;(2)原式=12-2212+22=22-3.方法总结:解决此类题目的关键是熟记特殊角的三角函数值.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型二】已知三角函数值求角的取值范围若cosα=23,则锐角α的大致范围是()A.0°<α<30°B.30°<α<45°C.45°<α<60°D.0°<α<30°解析:∵cos30°=32,cos45°=22,cos60°=12,且12<23<22,∴cos60°<cosα<cos45°,∴锐角α的范围是45°<α<60°.故选C.方法总结:解决此类问题要熟记特殊角的三角函数值和三角函数的增减性.【类型三】根据三角函数值求角度若3tan(α+10°)=1,则锐角α的度数是()A.20°B.30°C.40°D.50°解析:∵3tan(α+10°)=1,∴tan(α+10°)=33.∵tan30°=33,∴α+10°=30°,∴α=20°.故选A.方法总结:熟记特殊角的三角函数值是解决问题的关键.变式训练:见《学练优》本课时练习“课堂达标训练”第9题探究点二:特殊角的三角函数值的应用【类型一】利用三角形的边角关系求线段的长如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.解析:由题意可知△BCD为等腰直角三角形,则BD=BC,在Rt△ABC中,利用锐角三角函数的定义求出BC的长即可.解:∵∠B=90°,∠BDC=45°,∴△BCD为等腰直角三角形,∴BD=BC.在Rt△ABC中,tan∠A=tan30°=BCAB,即BCBC+4=33,解得BC=2(3+1).方法总结:在直角三角形中求线段的长,如果有特殊角,可考虑利用三角函数的定义列出式子,求出三角函数值,进而求出答案.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】判断三角形的形状已知△ABC中的∠A与∠B满足(1-tan A)2+|sin B-32|=0,试判断△ABC的形状.解析:根据非负性的性质求出tan A及sin B的值,再根据特殊角的三角函数值求出∠A及∠B的度数,进而可得出结论.解:∵(1-tan A)2+|sin B-32|=0,∴tan A=1,sin B=32,∴∠A=45°,∠B=60°,∠C=180°-45°-60°=75°,∴△ABC是锐角三角形.方法总结:一个数的绝对值和偶次方都是非负数,当几个数或式的绝对值或偶次方相加和为0时,则其中的每一项都必须等于0.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型三】构造三角函数模型解决问题要求tan30°的值,可构造如图所示的直角三角形进行计算.作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,那么BC=3,∠ABC=30°,∴tan30°=ACBC=13=33.在此图的基础上,通过添加适当的辅助线,探究tan15°与tan75°的值.解析:根据角平分线的性质以及勾股定理首先求出CD的长,进而得出tan15°=CDBC,tan75°=BCCD求出即可.解:作∠B的平分线交AC于点D,作DE⊥AB,垂足为E.∵BD平分∠ABC,CD⊥BC,DE⊥AB,∴CD=DE.设CD=x,则AD=1-x,AE=2-BE=2-BC=2- 3.在Rt△ADE中,DE2+AE2=AD2,x2+(2-3)2=(1-x)2,解得x=23-3,∴tan15°=23-33=2-3,tan75°=BCCD=323-3=2+ 3.方法总结:解决问题的关键是添加辅助线构造含有15°和75°的直角三角形,再根据三角函数的定义求出15°和75°的三角函数值.变式训练:见《学练优》本课时练习“课后巩固提升”第2题三、板书设计1.特殊角的三角函数值:2.应用特殊角的三角函数值解决问题.课程设计中引入非常直接,由三角尺引入,直击课题,同时也对前两节学习的知识进行了整体的复习,效果很好.在讲解特殊角的三角函数值时讲解的也很细,可以说前面部分的教学很成功,学生理解的很好.学生励志寄语:人生,想要闯出一片广阔的天地,就要你们努力去为自己的目标奋斗、勤奋刻苦、充满自信的过好每一天,雏鹰总会凌空翱翔。
特殊角的三角函数值口诀
三角函数是数学中重要的概念,而特殊角的三角函数值口诀则是帮助我们快速记忆各种特殊角的三角函数值的方法。
下面将介绍一些有关特殊角的三角函数值口诀。
0度角
•正弦值:0
•余弦值:1
•正切值:0
30度角
•正弦值:1/2
•余弦值:√3/2
•正切值:√3/3
45度角
•正弦值:√2/2
•余弦值:√2/2
•正切值:1
60度角
•正弦值:√3/2
•余弦值:1/2
•正切值:√3
90度角
•不存在正弦值
•余弦值:0
•正切值:不存在
以上便是有关特殊角的三角函数值口诀,通过这些口诀,我们可以快速地了解各个特殊角的三角函数值,为解题提供便利。
希望这些口诀能够帮助你更加轻松地学习和记忆三角函数的知识。
要特别注意,这些口诀只适用于特殊角度,对于其他角度需要通过计算得出具体数值。
现实生活中,三角函数也被广泛应用于建筑、制图、物理等领域,深入了解三角函数将有助于更好地理解这些领域中的问题。
希望通过学习特殊角的三角函数值口诀,能够帮助我们更好地掌握三角函数的知识,提升数学能力,解决实际问题。
初中特殊角的三角函数值特殊角是指以45°、30°、60°为基础的角度,这些角度的三角函数值有一定的规律。
下面就详细介绍特殊角的三角函数值。
一、45°角:45°角是一个直角三角形的顶角,对于一个边长为1的等腰直角三角形,其两直角边的长度均为1、根据勾股定理可知,斜边的长度为√2因此,sin 45° = 对边 / 斜边= 1 / √2 = √2 / 2cos 45° = 邻边 / 斜边= 1 / √2 = √2 / 2tan 45° = 对边 / 邻边 = 1 / 1 = 1cot 45° = 邻边 / 对边 = 1 / 1 = 1sec 45° = 斜边 / 邻边= √2 / 1 = √2csc 45° = 斜边 / 对边= √2 / 1 = √2二、30°角:30°角是一个特殊的角度,也是一个等边三角形的顶角,对于一个边长为1的等边三角形,其两边的长度均为1,底边的长度为2因此,sin 30° = 对边 / 斜边 = 1 / 2cos 30° = 邻边 / 斜边= √3 / 2tan 30° = 对边 / 邻边= 1 / √3 = √3 / 3cot 30° = 邻边 / 对边= √3 / 1 = √3sec 30° = 斜边 / 邻边= 2 / √3 = 2√3 / 3csc 30° = 斜边 / 对边 = 2 / 1 = 2三、60°角:60°角是一个特殊的角度,也是一个等边三角形的顶角,对于一个边长为1的等边三角形,其两边的长度均为1,底边的长度为2因此,sin 60° = 对边 / 斜边= √3 / 2cos 60° = 邻边 / 斜边 = 1 / 2tan 60° = 对边 / 邻边= √3 / 1 = √3cot 60° = 邻边 / 对边= 1 / √3 = √3 / 3sec 60° = 斜边 / 邻边 = 2 / 1 = 2csc 60° = 斜边 / 对边= 2 / √3 = 2√3 / 3通过以上的推导,我们可以总结出特殊角的三角函数值的规律:1. 对于45°角:sin 45° = cos 45° = √2 / 2,tan 45° =cot 45° = 1,sec 45° = csc 45° = √22. 对于30°角:sin 30° = 1 / 2,cos 30° = √3 / 2,tan 30° = √3 / 3,cot 30° = √3,sec 30° = 2√3 / 3,csc 30° = 23. 对于60°角:sin 60° = √3 / 2,cos 60° = 1 / 2,tan 60° = √3,cot 60° = √3 / 3,sec 60° = 2,csc 60° = 2√3 / 3特殊角的三角函数值(即正弦、余弦、正切、余切、正割、余割值)是初中数学中需要掌握的重要知识点,通过掌握特殊角的三角函数值的规律,可以帮助我们在解题时更加灵活和准确地运用三角函数的知识。
特殊三角函数值初中
在初中数学学习中,三角函数是一个重要的内容。
其中,正弦函数、余弦函数和正切函数是最基本的三角函数之一。
这些函数在解决各种数学问题中起到重要作用。
今天我们来讨论一些特殊角的三角函数值。
特殊角
30度角
我们首先来看30度角。
在三角函数中,30度角是一个非常特殊的角度,因为它相对于三角函数的数值来说比较容易计算。
30度角的正弦值、余弦值和正切值如下:
•正弦值(sin 30°)= 1/2
•余弦值(cos 30°)= √3/2
•正切值(tan 30°)= 1/√3
45度角
接下来我们来看45度角。
45度角也是一个特殊的角度,其正弦值、余弦值和正切值如下:
•正弦值(sin 45°)= √2/2
•余弦值(cos 45°)= √2/2
•正切值(tan 45°)= 1
60度角
最后我们看60度角。
60度角同样是一个特殊的角度,其正弦值、余弦值和正切值如下:
•正弦值(sin 60°)= √3/2
•余弦值(cos 60°)= 1/2
•正切值(tan 60°)= √3
总结
通过以上的讨论,我们可以看出特殊角的三角函数值是相对容易计算的。
初中阶段的学生可以通过记忆这些特殊角的数值,简化计算过程,并更好地理解三角函数的概念。
希望这些内容对初中生学习三角函数有所帮助。
9个特殊角的三角函数值三角函数是数学中一类十分重要的函数,它们能够使用一种特定的方法将角度量化为一种数值。
三角函数包括正弦函数、余弦函数和正切函数,它们是由角度来定义的,用来表示特定角度的各种值。
在三角函数中,有九个特殊角,它们的角度值是固定的,即0°、30°、45°、60°、90°、120°、135°、150°和180°,是每种三角函数的关键角度。
这九个特殊角对应的三角函数值也有特定的定义,下面就来详细介绍它们的具体值。
1. 0°:此角度对应的正弦函数值为0,余弦函数值为1,正切函数值为0。
2. 30°:此角度对应的正弦函数值为1/2,余弦函数值为根号3/2,正切函数值为1/根号3。
3. 45°:此角度对应的正弦函数值为根号2/2,余弦函数值为根号2/2,正切函数值为1。
4. 60°:此角度对应的正弦函数值为根号3/2,余弦函数值为1/2,正切函数值为根号3。
5. 90°:此角度对应的正弦函数值为1,余弦函数值为0,正切函数值为无穷大。
6. 120°:此角度对应的正弦函数值为根号3/2,余弦函数值为-1/2,正切函数值为-根号3。
7. 135°:此角度对应的正弦函数值为根号2/2,余弦函数值为-根号2/2,正切函数值为-1。
8. 150°:此角度对应的正弦函数值为-1/2,余弦函数值为-根号3/2,正切函数值为-1/根号3。
9. 180°:此角度对应的正弦函数值为-1,余弦函数值为0,正切函数值为无穷小。
由以上介绍可以看出,九个特殊角的三角函数值都是固定的,在实际的应用中,我们可以根据这些特殊角的三角函数值来计算其他角度的三角函数值,从而更好地理解三角函数的特性。
三角函数与数学几何学关系密切,它们能够帮助我们更好地理解几何学中的许多定义,例如圆、椭圆、抛物线等。