函数极限的概念 课件
- 格式:ppt
- 大小:5.04 MB
- 文档页数:37
函数的极限课件函数的极限是微积分中的一个重要概念,它在数学分析、物理学和工程学等领域中有着广泛的应用。
本文将介绍函数的极限的概念、性质以及一些常见的计算方法。
一、函数的极限概念在微积分中,函数的极限描述了当自变量趋近于某个特定值时,函数的取值趋近于某个确定的值。
形式化地说,对于函数f(x),当x趋近于a时,如果存在一个实数L,使得对于任意给定的正数ε,都存在一个正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε成立,则称函数f(x)在x=a处的极限为L,记作lim(x→a)f(x)=L。
二、函数极限的性质函数的极限具有一些重要的性质,包括唯一性、局部性、保号性和四则运算性质。
1. 唯一性:如果函数f(x)在x=a处的极限存在,那么它的极限值是唯一的,即极限值L是唯一确定的。
2. 局部性:如果函数f(x)在x=a处的极限存在,那么它在x=a的某个邻域内的取值都会趋近于该极限值L。
3. 保号性:如果函数f(x)在x=a处的极限存在且大于0(或小于0),那么它在x=a的某个邻域内的取值都大于0(或小于0)。
4. 四则运算性质:对于两个函数f(x)和g(x),如果它们在x=a处的极限都存在,那么它们的和、差、积和商的极限也都存在,并且满足相应的运算规律。
三、函数极限的计算方法在实际计算函数的极限时,可以利用一些常见的计算方法,包括代入法、夹逼准则、无穷小量比较法和洛必达法则等。
1. 代入法:当函数在某个点处有定义,并且该点是极限所在的点时,可以直接将该点代入函数中计算极限值。
2. 夹逼准则:如果函数f(x)、g(x)和h(x)满足f(x)≤g(x)≤h(x)在x=a的某个邻域内成立,并且lim(x→a)f(x)=lim(x→a)h(x)=L,那么函数g(x)在x=a处的极限也存在且等于L。
3. 无穷小量比较法:如果函数f(x)和g(x)在x=a的某个邻域内成立,并且lim(x→a)f(x)=0,lim(x→a)g(x)=0,并且存在一个正数M,使得当0<|x-a|<δ时,|f(x)|≤M|g(x)|成立,那么函数f(x)在x=a处的极限也存在且等于0。