食品分析-3.1水分分析
- 格式:ppt
- 大小:1.38 MB
- 文档页数:56
食品安全国家标准食品水分活度的测定1 范围本标准规定了康卫氏皿扩散法和水分活度仪扩散法测定食品中的水分活度。
本标准适用于预包装谷物制品类、肉制品类、水产制品类、蜂产品类、薯类制品类、水果制品类、蔬菜制品类、乳粉、固体饮料的食品水分活度的测定。
本标准不适用于冷冻和含挥发性成分的食品。
本标准的康卫氏皿扩散法适用食品水分活度的范围为0.00~0.98;水分活度仪扩散法为0.60~0.90。
第一法康卫氏皿扩散法2 原理在密封、恒温的康卫氏皿中,试样中的自由水与水分活度(A w)较高和较低的标准饱和溶液相互扩散,达到平衡后,根据试样质量的变化量,求得样品的水分活度。
3 试剂和材料3.1 试剂所有试剂均使用分析纯试剂;分析用水应符合GB/T 6682规定的三级水规格。
3.2 试剂配制按表1配制各种无机盐的饱和溶液。
表1 饱和盐溶液的配制(续)4 仪器和设备4.1 康卫氏皿(带磨砂玻璃盖):见图1。
4.2 称量皿:直径35 mm,高10 mm。
4.3 天平:感量0.0001 g和0.1 g。
4.4 恒温培养箱:0℃~40℃,精度± 1℃。
4.5 电热恒温鼓风干燥箱。
l1—外室外直径,100 mm;l2—外室内直径,92 mm;l3—内室外直径,53 mm;l4—内室内直径,45 mm;h1—内室高度,10 mm;h2—外室高度,25 mm。
5 分析步骤5.1 试样的制备5.1.1 粉末状固体、颗粒状固体及糊状样品取有代表性样品至少200 g,混匀,置于密闭的玻璃容器内。
5.1.2 块状样品取可食部分的代表性样品至少200 g。
在室温18 ℃~25 ℃,湿度50% ~ 80%的条件下,迅速切成约小于3 mm× 3 mm× 3 mm的小块,不得使用组织捣碎机,混匀后置于密闭的玻璃容器内。
5.1.3 瓶装固体、液体混合样品可取液体部分5.1.4 质量多样混合样品取有代表性的混合均匀样品5.1.5 液体或流动酱汁样品可直接采取均匀样品进行称重5.2 试样预测定 5.2.1 预处理将盛有试样的密闭容器、康卫氏皿(4.1)及称量皿(4.2)置于恒温培养箱(4.4)内,于25 ℃ ±1 ℃条件下,恒温30 min 。
食品安全国家标准食品中水分的测定食品生产与加工过程中,水分是一个至关重要的因素。
水分含量的准确测定对于食品的质量控制和食品安全具有重要意义。
本文将介绍食品安全国家标准中食品中水分的测定方法。
概述食品中水分的测定是通过测量食品中的水分含量来判断食品的干燥程度和稳定性。
水分含量直接影响着食品的口感、保存期限和微生物生长。
因此,各国都对食品中水分的测定制定了相应的标准。
常用的测定方法烘干法烘干法是一种传统的食品水分测定方法。
其原理是将食品样品加热至特定温度,使水分蒸发,然后称重得到样品的干重和湿重,通过比较计算水分含量。
Karl Fischer滴定法Karl Fischer滴定法是一种比较准确和精密的水分测定方法。
它利用化学方法将水分与Karl Fischer试剂中的碘发生反应,从而确定水分含量。
红外干燥法红外干燥法是一种快速、无损伤的水分测定方法。
通过测量样品在红外光谱下的吸收峰,可以准确测定食品中的水分含量。
食品中水分测定的步骤1.样品准备:将食品样品制备成符合标准要求的样品。
2.称重:称取一定数量的样品,记录湿重。
3.干燥:根据不同的测定方法,对样品进行干燥处理。
4.称重:记录干燥后的样品的干重。
5.计算:根据公式计算出样品中的水分含量。
食品中水分测定的影响因素1.温度:测定温度会影响水分的蒸发速度和失重率。
2.时间:烘干时间越长,水分的蒸发会更充分。
3.样品粒度:样品颗粒大小影响水分蒸发的速度。
4.环境湿度:周围环境湿度对水分测定结果也会产生影响。
结论食品中水分的测定对于食品加工的质量控制和食品安全具有重要意义。
选择合适的水分测定方法、严谨的操作步骤和正确的测定条件是确保食品质量的关键。
不同的食品类型和用途也需要根据相关国家标准进行水分含量的测定,以保证食品的安全性和稳定性。
以上是关于食品安全国家标准中食品中水分的测定方法的介绍,希望对您有所帮助。
1.目的熟练掌握常压干燥法的原理、操作,使用范围及注意事项。
观察掌握蒸馏法测水分的过程及减压干燥法的仪器。
2.原理食品中的水分一般是指在100摄氏度左右直接干燥的情况下,所失去物质的总量。
将样品置于常压恒温干燥箱内,在95~105℃下干燥至恒量。
失去的重量为样品中水分的量。
3.试剂3.1盐酸(1+1)量取100ml盐酸,加水稀释至200ml.3.2氢氧化钠溶液浓度为240g/L(24g氢氧化钠,加水溶解并稀释至100ml)4.仪器常压恒温干燥箱、干燥器、分析天平、称量瓶5.样品奶粉6.操作取洁净铝制或玻璃制的扁形称量瓶两个,置于95~105℃干燥箱中,瓶盖斜盖于瓶口,加热0.5~1.0h,取出盖好,置于干燥其内冷却0.5小时,称量,并重复干燥至恒量。
称取2.00~10.0g切细或磨细的两份样品,放入这两个称量瓶中(以下以“瓶1”、“瓶2”标号),样品厚度约5mm.加盖,精密称量后,至95~105℃干燥箱中,瓶盖斜盖于瓶口,干燥2~4h后,盖好取出,放入干燥器内冷却0.5h后称量。
然后再放入95~105℃干燥箱中干燥1h左右,取出,放干燥器内冷却0.5h后再称量。
至前后两次称量差不超过2mg,即为恒量。
7.数据记录7.1原始数据7.2可疑值弃留实验测量值合理,无可疑值。
7.3整理数据瓶重M瓶(g)加样后M总(g)干燥后M总’(g)瓶1 瓶2 瓶1 瓶2 瓶1 瓶2 30.8392 30.8409 32.8609 32.8633 32.6092 32.56378.计算X=[(M总-M总’)/(M总-m瓶)] ×100%式中:X ——样品中水分的含量(%)M瓶——称量瓶的质量(g)M总——称量瓶和样品的总质量(g)M总’ ——称量瓶和样品干燥后的总质量(g)瓶1: X1=[(32.8609 - 32.6092)/(32.8609 - 30.8392)] ×100%=12.45%瓶2: X2=[(32.8633 - 32.8637)/(32.8633 - 30.8409)] ×100%=14.81% 9.结果瓶1:X1=12.45%瓶2:X2=14.81%平均值:X=13.63%10.结论瓶1样品水分含量X1=12.45%,瓶2样品水分含量X2=14.81%。
实验一食品中水分及干物质含量的测定1、目的通过本实验,学习并掌握食品水分及干物质测定的原理和操作方法。
2、原理食品中水分及干物质的测定方法很多,本实验主要介绍重量法中的烘干法。
食品水分系指在大气压100℃左右加热或在减压,于一定温度下加热后所失去的物质,即在一定温度和压力条件下,将样品加热干燥,其失去的重量即为水分的重量,剩余的重量即为干物质的量。
烘干法有常压干燥法,真空干燥法和红外线干燥法。
3、实验材料与仪器3.1材料苹果、土豆、辣椒、菠菜、海带、氯化钙。
3.2仪器扭力天平、培养皿、小刀、干燥器、常压干燥箱、真空干燥箱、红外线干燥箱。
4、操作步骤4.1常压干燥法(1)取称量瓶(培养皿)放入烘箱中以100--150℃烘干至恒重,放入干燥器中冷却,然后称重,记为W1(精确到小数点后两位数)(2)样品切碎混匀,取样品10.00-15.00g,放在培养皿中,称重,记为W2,将培养皿放入100--105℃烘箱中烘2-3小时,取出,放入干燥器中,冷却后称重,记为W3,再继续干燥0.5-1小时,冷却后称重直到两次重量之差小于2mg为止,最后重量记为Wn。
(3)计算样品含水量(%)=(W2-Wn)*100/(W2-W1)样品干物质含量(%)=(Wn-W1)*100/(W2-W1)4.2真空干燥法将样品置于真空干燥箱中,温度调至60-70℃,真空调到600mmHg柱,其它操作和计算同常压干燥法。
4.3红外线干燥法将样品置于红外线干燥箱中,其他操作和计算同常压干燥法。
实验二食品中总灰分及含铁量的测定1、目的通过本实验,掌握总灰分的测定方法及灰分测定后,测定微量元素的原理和方法,了解水溶性灰分与2、原理总灰分是指食品样品中矿物质和无机盐或其它混杂物质。
在一定的温度下把样品中的有机物质灼烧氧化后,将残余的白色物质称重,即得总灰分重量。
在酸性溶液中,灰分中的铁离子与硫氰酸钠作用,生成血红色的硫氰酸铁,溶液颜色的深浅与铁离子的浓度成正比,可以比色测定。
食品中水分的测定范围本标准规定了食品中水分的测定方法。
本标准中直接干燥法适用于谷物及其制品、水产品、豆制品、乳制品、肉制品及卤菜制品等食品中水分的测定。
第一法直接千燥法1、原理食品中的水分一般是指在100℃左右直接干燥的情况下,所失去物质的总量。
直接干燥法适用于在95℃-105℃下,不含或含其他挥发性物质甚微的食品。
2、试剂2.16mol/L盐酸:量取100mL盐酸,加水稀释至200mL2.2 6mol/L氢氧化钠溶液:称取24g氢氧化钠,加水溶解并稀释至100mL2.3 海砂:.取用水洗去泥土的海砂或河砂,先用6mol/L盐酸煮沸0.5h,用水洗至中性,再用6mol/L氢氧化钠溶液煮沸0.5h用水洗至中性,经105℃干燥备用。
3 仪器3.1 扁形铝制或玻璃制称量瓶:内径60mm-70mm,高35mm以下。
3.2电热恒温干燥箱。
.4分析步骤4.1固体试样:取洁净铝制或玻璃制的扁形称量瓶,置于95℃-105℃干燥箱中,瓶盖斜支于瓶边,加热0.5h-1.0h,取出盖好,置干燥器内冷却0.5h,称量,并重复干燥至恒量。
称取2.00g-10.00g切碎或磨细的试样,放入此称量瓶中,试样厚度约为5mm。
加盖,精密称量后,置95℃-105℃干燥箱中,瓶盖斜支于瓶边,干燥2h-4h,后,盖好取出,放人干燥器内冷却0.5h后称量。
然后再放入95℃-105℃干燥箱中干燥1h 左右,取出,放干燥器内冷却0.5h后再称量。
至前后两次质量差不超过2mg即为恒量。
4.2半固体或液体试样:.取洁净的蒸发皿,内加10.0g海砂及一根小玻棒,置于95℃-105℃干燥箱中,干燥0.5h-1.0h后取出,放入干燥器内冷却0.5h后称量,并重复干燥至恒量。
然后精密称取5g-10g试样,置于蒸发皿中,用小玻棒搅匀放在沸水浴上蒸干,并随时搅拌,擦去皿底的水滴,置95℃-105℃干燥箱中干燥4h后盖好取出,放入干燥器内冷却0.5h后称量。
水分和水分活度的测定水分测定的意义1.水分含量在食品保藏中是一个关键的质量因素,水分含量低,可抑制微生物生长,延长保质期2.水分含量是产品的一个质量因素,水果硬糖水分含量一般控制在3%以下,过低会出现返砂甚至返潮。
3.水分含量的减少有利于产品的包装和运输4.有些产品的水分含量通常有国家标准对其作了专门的规定5.食品营养价值的计量值要求列出水分含量6.水分含量数据可用于表示样品在同一计量基础上的其他分析的测定结果水分在食品中存在的形式自由水(水-水氢键为主):具有水本身的物理性质;易结冰、作为溶剂、使食品变质反应和微生物活动在其中进行结合水:存在于溶质或其他非水组分附近的那部分水。
不易结冰;不能作为溶剂;微生物不能利用化合水:与非水组分结合最强的水。
不易结冰;不能作为溶剂;微生物不能利用邻近水:与非水组分特定亲水位点通过水-离子和水-偶极作用发生强烈相互作用的那部分水。
在-40℃下不结冰;无溶解溶质的能力;不能被微生物利用多层水:占有非水组分的亲水基团第一层中剩下位置的水以及在邻近水的外层形成的几层水。
相互作用是水-水氢键和水-溶质氢键为主。
大多数多层水在-40℃下不结冰,其余可结冰,但冰点大大降低;有一定溶解溶质的能力;不能被微生物利用水分测定方法直接法(准确度高):干燥法蒸馏法卡尔-费休法间接法:相对密度/折射率 /电导/旋光率函数关系确定水分含量一.干燥法干燥法的前提条件1.水分是唯一的挥发的物质2.可以较彻底地去除水分3.食品中其他组分在加热过程中发生化学反应引起的重量变化非常小,可忽略不计4.对热稳定的食品操作条件的选择(1)称量瓶的选择(玻璃、铝制)玻璃:耐酸碱,不受限制常压干燥铝制:不适合酸性食品轻、导热性强减压干燥称量瓶需烘至恒重前后两次质量差≤2mg,放至干燥器。
称量皿放入烘箱内,盖子应该打开,斜放在旁边,取出时先盖好盖子,用纸条取,放入干燥器内,冷却后称重。
⑵称样量:水分含量低:2~10g(奶粉)水分含量高:5~10g(果汁)⑶干燥设备:普通或真空⑷干燥条件:温度:95~105 ℃含糖高的食品:(50~60℃)0.5h 105℃对热稳定的谷物:120~130 ℃时间:恒重——最后两次重量之差≤ 2 mg 基本保证水分蒸发完全。
食品安全国家标准食品中水分的测定National food safety standardDetermination of moisture in foods中华人民共和国国家标准GB 5009.3—2010前言本标准代替GB/T 5009.3-2003《食品中水分的测定》和GB/T 14769-1993《食品中水分的测定方法》。
本标准与GB/T 5009.3-2003相比主要修改如下:——增加了卡尔费休法作为“第四法”;——对直接干燥法中的温度范围进行了修改;——明确了第一法和第二法公式中的单位;——对减压干燥法的适用范围进行了修改。
本标准所代替标准的历次版本发布情况为:——GB/T 5009.3-1985、GB/T 5009.3-2003;——GB/T 14769-1993。
食品安全国家标准食品中水分的测定1 范围本标准规定了食品中水分的测定方法。
本标准中直接干燥法适用于在101 ℃~105 ℃下,不含或含其他挥发性物质甚微的谷物及其制品、水产品、豆制品、乳制品、肉制品及卤菜制品等食品中水分的测定,不适用于水分含量小于0.5 g/100 g 的样品。
减压干燥法适用于糖、味精等易分解的食品中水分的测定,不适用于添加了其它原料的糖果,如奶糖、软糖等试样测定,同时该法不适用于水分含量小于0.5 g/100 g 的样品。
蒸馏法适用于含较多挥发性物质的食品如油脂、香辛料等水分的测定,不适用于水分含量小于1g/100 g 的样品。
-3卡尔*费休法适用于食品中水分的测定,卡尔*费休容量法适用于水分含量大于1.0×10 g/100 g 的样-5品,卡尔*费休库伦法适用于水分含量大于 1.0×10 g/100 g 的样品。
第一法直接干燥法2 原理利用食品中水分的物理性质,在101.3 kPa(一个大气压),温度101 ℃~105 ℃下采用挥发方法测定样品中干燥减失的重量,包括吸湿水、部分结晶水和该条件下能挥发的物质,再通过干燥前后的称量数值计算出水分的含量。
实验二食品水分含量和水分活度的测定实验二食品水分含量和水分活度的测定1. 实验目的熟知扩散法测水分活度的原理;掌握直接枯燥法测定食品水分含量的操作技术和考前须知;掌握扩散法测定水分活度的方法。
2. 实验原理用一般食品水分测定方法定量地测定的水分即含水量,不能说明这些水是否都能被微生物利用,对食品的生产和保藏均缺乏科学的指导作用;而水分活度那么反映食品与水的亲和能力大小,表示食品中所含的水分作为生物化学反响和微生物生长的可利用价值,水分活度近似地表示为在某一温度下溶液中水蒸汽分压与纯水蒸汽压之比值。
扩散法即用坐标内插法来测定食品的水分活度,这种方法并不需要特殊的仪器装置,可将一系列水分活度的标准溶液与食品试样一起放入密闭的容器中,在恒温下放置一段时间,测定食品试样重量的增减,根据增减值绘出曲线图,从图上查出食品重量不变值,即为该食品试样的水分活度Aw。
3.实验依据3.1水分含量的测定在一定的温度〔95~105℃〕和压力〔常压〕下,将样品在烘箱中加热枯燥,除去水分,枯燥前后样品的质量之差为样品的水分含量。
3.2水分活动的测定样品在康威氏微量扩散皿的密封和恒温条件下,分别在aw 较高和较低的标准饱和溶液中扩散平衡后,根据样品质量的增加〔在aw较高的标准溶液中扩散平衡〕和减少〔在aw较低的标准溶液中平衡〕,以质量的增减为纵坐标,各个标准试剂的水分活度为横坐标,计算样品的水分活度值。
该法适用中等及高水分活度〔aw>0.5〕的样品。
4.仪器及材料 4.1仪器电热恒温枯燥箱;扁形铝制或玻璃制称量瓶;枯燥器;分析天平;康威氏微量扩散皿〔如图〕 4.2试剂标准水分活度试剂:用标准试剂配成饱和盐溶液,其在25摄氏度时Aw值如表。
4.3材料前次试验保存的青菜试样材料,面包,饼干。
4.4考前须知〔1〕取样时应该迅速,各份样品称量应在同一条件下进行。
1〔2〕康威氏皿密封性应良好。
〔3〕试样的大小、形状对测定结果影响不大,取试样的固体局部或液体局部都可以,样品平衡后其测定结果没有差异。
⾷品⽔分活度的测定-标准⽂本(⾷品安全国家标准)⾷品安全国家标准⾷品⽔分活度的测定1 范围本标准规定了康卫⽒⽫扩散法和⽔分活度仪扩散法测定⾷品中的⽔分活度。
本标准适⽤于预包装⾕物制品类、⾁制品类、⽔产制品类、蜂产品类、薯类制品类、⽔果制品类、蔬菜制品类、乳粉、固体饮料的⾷品⽔分活度的测定。
本标准不适⽤于冷冻和含挥发性成分的⾷品。
本标准的康卫⽒⽫扩散法适⽤⾷品⽔分活度的范围为0.00~0.98;⽔分活度仪扩散法为0.60~0.90。
第⼀法康卫⽒⽫扩散法2 原理在密封、恒温的康卫⽒⽫中,试样中的⾃由⽔与⽔分活度(A w)较⾼和较低的标准饱和溶液相互扩散,达到平衡后,根据试样质量的变化量,求得样品的⽔分活度。
3 试剂和材料3.1 试剂所有试剂均使⽤分析纯试剂;分析⽤⽔应符合GB/T 6682规定的三级⽔规格。
3.2 试剂配制按表1配制各种⽆机盐的饱和溶液。
表1 饱和盐溶液的配制(续)4 仪器和设备4.1 康卫⽒⽫(带磨砂玻璃盖):见图1。
4.2 称量⽫:直径35 mm,⾼10 mm。
4.3 天平:感量0.0001 g和0.1 g。
4.4 恒温培养箱:0℃~40℃,精度± 1℃。
4.5 电热恒温⿎风⼲燥箱。
l1—外室外直径,100 mm;l2—外室内直径,92 mm;l3—内室外直径,53 mm;l4—内室内直径,45 mm;h1—内室⾼度,10 mm;h2—外室⾼度,25 mm。
5 分析步骤5.1 试样的制备5.1.1 粉末状固体、颗粒状固体及糊状样品取有代表性样品⾄少200 g,混匀,置于密闭的玻璃容器内。
5.1.2 块状样品取可⾷部分的代表性样品⾄少200 g。
在室温18 ℃~25 ℃,湿度50% ~ 80%的条件下,迅速切成约⼩于3 mm× 3 mm× 3 mm 的⼩块,不得使⽤组织捣碎机,混匀后置于密闭的玻璃容器内。
5.1.3 瓶装固体、液体混合样品可取液体部分5.1.4 质量多样混合样品取有代表性的混合均匀样品5.1.5 液体或流动酱汁样品可直接采取均匀样品进⾏称重5.2 试样预测定 5.2.1 预处理将盛有试样的密闭容器、康卫⽒⽫(4.1)及称量⽫(4.2)置于恒温培养箱(4.4)内,于25 ℃ ±1 ℃条件下,恒温30 min 。