台达电子凸轮设计资料共39页
- 格式:ppt
- 大小:4.25 MB
- 文档页数:39
台达电子凸轮设计资料凸轮是一种机械元件,常用于驱动连杆机构的运动。
台达电子作为一家知名的电子产品生产商,其凸轮设计资料包括凸轮的基本原理和设计要点,以及使用凸轮的应用领域和优势等方面。
一、凸轮的基本原理和设计要点凸轮是一种具有特定形状的轴,常用于驱动其他部件(如活塞、阀门等)的运动。
它的基本原理是通过凸轮曲面的几何形状,在旋转运动时实现对其他部件的间歇或连续运动。
设计凸轮需要考虑以下要点:1.凸轮的曲面形状:凸轮曲面的设计根据具体的要求而定,可以是直线、曲线、椭圆等不同形状。
曲线的选择要考虑到所需运动的速度、间隙和稳定性等因素。
2.凸轮的工作环境:凸轮在工作过程中会受到各种力的作用,因此需要考虑材料的强度、硬度和耐磨性等因素。
同时还要注意凸轮与其他部件的配合工作,如轴承和润滑等问题。
3.凸轮的驱动方式:凸轮可以通过直接驱动或间接驱动来实现运动,具体的驱动方式要根据实际需要选择。
二、凸轮的应用领域和优势凸轮广泛应用于各种机械装置中,包括发动机、汽车、电动工具、纺织设备、包装机械等领域。
凸轮的具体应用优势如下:1.凸轮能够实现不同的运动形式,如往复运动、循环运动、摆动运动等,使得其在各种机械装置中的应用非常灵活多样。
2.凸轮的设计精度高,可以实现精确的定位和控制。
通过合理设计凸轮曲线形状,还可以实现不同速度和加速度的运动,从而满足不同的工艺要求。
3.凸轮具有高效率和可靠性。
由于凸轮的工作部位相对简单,且不容易出现故障,因此具有较好的机械性能和运动稳定性。
总之,凸轮作为一种常用的机械元件,具有广泛的应用前景。
通过合理的设计和选择,可以实现不同形式和功能的运动,满足各种工艺要求。
台达电子作为电子产品制造商,凸轮设计资料将为其产品的研发和制造提供有力的支持。
基于台达运动控制PLC电子凸轮的高速绕线机2008-12-15 10:40:00 来源:摘要:介绍台达DVP-20PM00D运动控制器电子凸轮<CAM)功能,阐述高速绕线机工作原理、工艺要求及相关控制程序概要。
关键词:运动控制电子凸轮主轴从轴 CAM Table1 引言本文介绍的全自动无骨架系列空心电磁线圈高速绕线机,可以绕制传动线圈,扬声器线圈,天线线圈以及各种无骨架通用线圈。
设备具有性能可靠,高速高效率,自动化程度高,适合于线圈制造业的批量生产,如图1所示。
图1 空心电磁线圈一般普通绕线机采用内置脉冲功能的小型PLC,通过绕线轴编码器速度输出到PLC内置高速输入点,将绕线轴与排线轴的速比进行简单速度同步,这种方法受PLC运算影响,同步精度差,计算量大,CPU处理时间较长,因此会出现绕线不均匀,堆积,塌陷等问题,严重影响绕线成品的质量,举例来说,PLC对绕线轴编码器作高速计数,当到达计数值时利用中断方式控制排线轴电机反向绕制,但受CPU运算处理时间的影响会出现滞后产生误差,在低速的情况下尚可基本达到绕制要求,但是对于高速绕制多层线圈时就会出现线圈端面不齐整,成品品质下降。
台达DVP-20PM00D是一款专用运动控制型PLC,采用高速双CPU结构形式,利用独立CPU处理运动控制算法,可以很好地实现各种运动轨迹控制、逻辑动作控制,直线/圆弧插补控制等,在高速绕线机中利用了20PM运动控制器的电子凸轮功能很好的解决了绕线换向出现的绕制不均匀、堆积、不平整等问题,如图2所示。
图2 运动控制器DVP-20PM00D2 高速绕线机2.1 设备结构简介高速绕线机共包含九部分机构,如图3所示。
图3 高速绕线机<1)机架。
机架由角钢框架及不锈钢台面组成,并设置脚轮便于移动,当设备到位后可将支脚调低作为稳定支撑。
<2)张力机构。
安装于进线部分,作为绕线张力调节,保证线圈绕制时维持张力恒定,张力调节器具有调节旋钮可针对不同需求进行张力调节设定,调整完毕后,张力调节器自动控制绕线张力。
凸轮设计资料在机电一体化技术高度发达的今天,分度凸轮机构仍占重要地位的原因很多,其中一个重要的因素是此类机构在动态响应速度、抗振性与稳定性等方面所表现出的优势。
在高档数控加工中心机床上,为实现机床的快速转位依然采用凸轮机构(ATC);同样在自动化机械中的高速间歇分度运动控制中,也仍广泛地采用凸轮式分度机械,这些均是具有说服力的例证。
由此可见包络蜗杆分度凸轮机构[1]的动态性能如何,将决定此类机构动力学系统的品质,关系着此类机构未来的发展,为此须做深入的分析与研究。
从宏观上讲,包络蜗杆分度凸轮机构的动力学系统,是一个大系统,其中包括多个组成环节,如原动机械、变速机械、分度凸轮装置、工作机械。
十分明显,在这四个环节中,分度凸轮装置对大系统的动力学特性起着决定性作用,成为大系统振动、动载、噪声的主要发源地。
因此有必要把研究的中心聚焦在这个环节上,下文所说的动力学系统,即专指分度凸轮装置这一环节。
进一步说,一个动力学系统一般包含四个要素:惯性、弹性、激励、阻尼。
落实到本论文所研究的包络蜗杆分度凸轮机构,其具体含义是:(1) 系统的惯性 主要是指凸轮轴系与分度盘轴系的转动惯性和平动惯性,它们可以用转动惯量及质量来表示。
(2) 系统的弹性 分度凸轮轮齿与分度盘轮齿在啮合状态下的弹性弯曲和弹性接触,可以综合用“啮合刚度”来表示;凸轮轴系、分度盘轴系的弹性弯曲和弹性扭转,可以分别用弯曲刚度和扭转刚度来表示;此外,尚还有轴承的弹性变形等。
(3) 系统的激励 分度凸轮装置系统的激励可分为两大类:一是因分度盘的不均匀回转引起脉动的惯性力激扰,称为惯性激励;二是因各种制造、安装误差、啮合刚度随转角的变化等因素,转化为弹性力的变化,称为弹性激励。
(4) 系统的阻尼 凸轮廓面与分度盘廓面间的摩擦力、轴承的摩擦损失产生的摩擦阻尼;啮合廓面间动压油膜产生的缓冲,以及转动件搅动冷却润滑油产生的流体阻尼等。
上述四个方面成为包络蜗杆分度凸轮装置动力学系统的主要内容,并为其动力学模型的建立提供依据。
台达电子凸轮设计一、背景介绍台达电子(Delta Electronics)是一家全球领先的电源管理解决方案供应商,以及电能和环境可再生解决方案供应商。
台达电子拥有丰富的研发能力,致力于开发创新的产品来满足不断变化的市场需求。
凸轮设计是台达电子产品中的一个重要组成部分,对于产品的性能和效率起着关键作用。
二、凸轮设计的重要性凸轮是一种开口或圆弧形的机械构件,广泛应用于机械和电子产品中。
凸轮设计的质量直接影响产品的性能和效率。
优秀的凸轮设计可以提高产品的精度、稳定性和寿命,降低产品的能耗和噪音。
而不良的凸轮设计可能导致产品运行不平稳、易损坏或者效率低下。
三、凸轮设计原则1.定义目标:在凸轮设计之前,需要明确凸轮的应用场景、所需功能和性能指标。
根据产品需求来设定凸轮设计的目标,包括输出功率、转速、精度等。
2.分析运动学:了解凸轮设计的运动学原理,包括凸轮的旋转角度、凸轮与从动件之间的接触状况等。
分析凸轮的运动学可以帮助设计师确定凸轮的轮廓和参数。
3.设计凸轮轮廓:根据凸轮的运动学分析结果和目标性能,设计凸轮的轮廓。
合理的凸轮轮廓应能实现所需的从动件运动,并且具备良好的容差、强度和耐磨性。
4.优化凸轮参数:通过对凸轮的参数进行优化,可以提高产品的性能和效率。
例如,凸轮的轮廓曲线、半径、宽度等参数可以进行优化,以达到最佳的工作效果。
5.检验与测试:设计完成后,需要对凸轮进行检验和测试,确保其满足设计要求和产品需求。
检验和测试可以包括凸轮与从动件的接触状况、运动精度、噪音等方面的测试。
四、凸轮设计实例以台达电子的产品为例,介绍凸轮设计的实施步骤和流程。
1.定义目标:明确产品需求,例如输出功率为10千瓦,转速为1000转/分钟,精度要求为0.1毫米。
2.运动学分析:分析凸轮与从动件的运动学特性,确定凸轮的旋转角度、从动件运动轨迹等。
3.设计凸轮轮廓:根据分析结果,设计凸轮的轮廓。
在此例中,采用闭合轮廓的凸轮设计,以实现稳定的运动和高精度。
【技术资料】台达可编程逻辑控制器plc 电子凸轮基于台达运动控制型PLC电子凸轮功能高速绕线机摘要,介绍台达DVP-20PM00D运动控制器电子凸轮,CAM,功能,阐述高速绕线机工作原理、工艺要求及相关控制程序概要。
关键词,运动控制电子凸轮主轴从轴 CAM Table1 引言本文介绍的全自动无骨架系列空心电磁线圈高速绕线机,可以绕制传动线圈,扬声器线圈,天线线圈以及各种无骨架通用线圈。
设备具有性能可靠,高速高效率,自动化程度高,适合于线圈制造业的批量生产,如图1所示。
图1 空心电磁线圈一般普通绕线机采用内置脉冲功能的小型PLC,通过绕线轴编码器速度输出到PLC内置高速输入点,将绕线轴与排线轴的速比进行简单速度同步,这种方法受 PLC 运算影响,同步精度差,计算量大,CPU处理时间较长,因此会出现绕线不均匀,堆积,塌陷等问题,严重影响绕线成品的质量,举例来说,PLC对绕线轴编码器作高速计数,当到达计数值时利用中断方式控制排线轴电机反向绕制,但受CPU运算处理时间的影响会出现滞后产生误差,在低速的情冴下尚可基本达到绕制要求,但是对于高速绕制多层线圈时就会出现线圈端面不齐整,成品品质下降。
台达DVP-20PM00D是一款专用运动控制型PLC,采用高速双CPU结构形式,利用独立CPU处理运动控制算法,可以很好地实现各种运动轨迹控制、逻辑动作控制,直线/圆弧揑补控制等,在高速绕线机中利用了20PM运动控制器的电子凸轮功能很好的解决了绕线换向出现的绕制不均匀、堆积、不平整等问题,如图2所示。
图2 运动控制器DVP-20PM00D2 高速绕线机2.1 设备结构简介高速绕线机共包含九部分机构,如图3所示。
图3 高速绕线机,1,机架。
机架由角钢框架及不锈钢台面组成,并设置脚轮便于移动,当设备到位后可将支脚调低作为稳定支撑。
,2,张力机构。
安装于进线部分,作为绕线张力调节,保证线圈绕制时维持张力恒定,张力调节器具有调节旋钮可针对不同需求进行张力调节设定,调整完毕后,张力调节器自动控制绕线张力。