异分母分式的加减(2)
- 格式:ppt
- 大小:659.00 KB
- 文档页数:19
《分式的加减法》例题精讲与同步练习【基础知识精讲】1. 分式的通分(1) 把几个异分母的分式分别化为与原来分式相等的同分母的分式叫做通分.(2) 通分的依据是分式的基本性质, 通分的关键是确定最简公分母 . 最简公分母由下面的方法确定:①最简公分母的系数,取各分母系数的最小公倍数;②最简公分母的字母,取各分母所有字母的最高次幂的积; (3) 如果分母是多项式,则首先对多项式进行因式分解 .2. 分式的加减法 (1) 同分母的分式加减法同分母的分式相加减,分母不变,把分子相加减. 即:a b a bc cc(2) 异分母的分式加减法异分母的分式相加减,先通分,变为同分母的分式,然后再加减. 即:acadbcadbcbdbdbdbd3. 分式的混合运算分式的加、减、乘、除、乘方混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号内的,若是同级混合运算按从左到右的顺序进行 .【重点难点解析】1.重点难点分析重点 :是掌握通分的方法和分式的加减运算;难点 :是异分母的分式的加减法运算和分式的四则混合运算2. 典型例题解析.例 1通分x 1 5 xx 7 2,x2,22x 3x3x 2x 6 x解∵x 2+3x+2=(x+1)(x+2)x 2-x-6=(x-3)(x+2) 2x -2x-3=(x-3)(x+1) ∴它们的最简公分母为 (x+1)(x+2)(x-3)∴x 1 ( x 1) ( x 3) 23x 2( x 1)( x 2) (x 3)x=x 2 4x3( x 1)( x 2)( x 3)5 x (5 x) ( x1)x 2 x 6( x 3)( x 2) ( x 1)=x 26x 5( x 1)( x2) ( x3)x 7(x7) (x2)x 2 2x 3 ( x 3)( x 1) ( x 2)=x 2 5x 14(x 1)( x 2)( x 3)例 2计算 3a 2 5a 2a 2 5a 1 2a 2 2a 2 1a 2 1 1 a 2解原式 3a 2 5a2a 2 5a1 2a 22=1a 2 1a 21a 2=(3a 25a)(2a 25a1) (2a 22)a21=3a 2 5a2a 2 5a 1 2a 22a21=3a 23=3a 2 1点评 在做减法时,分避免出错,最好添上一个括号,去括号时注意变号 .例 3计算x 2x2x 2x 25x6x解原式 =x 2x1)( x2) ( x 2)( x3)(x=(x2)( x 3) x( x1)( x1)( x 2)( x 3)=x 2 x 6 x 2 x(x1)( x 2)( x 3)=2x 6(x1)( x 2)( x 3)=-2x6( x1)( x 2)( x3)例 4计算1221x 2 x 1 x 1 x 2分析此 若将 4 个分式同 通分,分子将是很复 的, 算比 麻 . 分 察其特点,把一、四和二、三两个分式分 先相加,由于分子的一次 相加后和 零,使 算 .解原式 =(x2) (x 2) 2( x 1) 2( x 1)( x 2)(x2)(x 1)( x 1)=44(x 2)( x2) ( x 1)( x 1)=4( x 1)( x1) 4(x 2)( x2)( x 2)( x2)( x 1)( x 1)=12(x2)( x 1)( x1)( x 1)例 5算x1 3( x 1)2 .x 4 x 2分析 此 如果直接通分, 运算 必十分复 , 当各分子的次数大于或等于分母的次数,可利用多 式除法,将其分离 整式部分与分式部分的和再加减会使运算 便.解原式 =(x4) 3 3( x 2) 32x 4x 2 =1+x 3(3x 3 ) +24 2=3 3x 4x2=3( x 2) 3( x 4)( x 2)( x 4)=6(x 2)( x 4)【 巧解点 】例 6算1 21 +⋯⋯ +11 2 3n(n 1)分析若先通分,再相加,可以 无从下手,但若注意到1=11 ,先分后合,将使 算容易 行.解11+⋯⋯+n(n 1) nn 111 2 2 3n(n 1)1 1 1 1 1 1 )=( )+(2 )+ ⋯⋯ +(n12 3n1=1-1n 1n=1n【 本 解答】P87A 5(5) B 3(2)算 1.(x-y+4xy)(x+y- 4xy)xyx y2.xy 2x 4 yx 2x y x y x 4y 4x2y2(x y) 24xy ( x y) 2 4 xy解 1. 原式=[ x yx ][x yx ]y y=( x y) 2 (x y)222xy x=(x+y)(x-y)=x-yy2.原式 = xy 2x 4 yx 2y 2x2y 2( x 2 y 2 )(x 2 y 2 ) x 2=xy 2x 2 y xy 2x 2 y xy( y x) x 2y2x2y2x2y2(x y)( xy)=- xyxy注: (1) 中将 x-y ,x+y 看作一个整体通分,比逐一通分 便,注意 一技巧, 算最后果不写成乘 式而是多 式(或 式)(2) 中注意运算 序(先乘除、后加减)最后 果能 分要 分,化 最 分式.【典型 点考 】例 7 算 1-(x-1 2x 2x 1 (武 中考 )x) ÷2x11 x 2解 原式 =1-(x 2x 1 ) 2· (x 1) 2x1x 2 x1=1-(x2-x+1)=-x 2+x例 8当 x=-11,求(1+25x 133 2 x 2 4x 5 2的( 天津中考 )) (1-) ÷ (x 2 3x2) x2解原式(x 1) 3 (x 5)2 (x 2)2 (x 1)2 =1)3 (x 2) 2( x 1)2 (x 5)2(x=x 1x16165当 x=-1 1时,原式 =556 1 6 55=111例 9 设 x+1=5,求 (x-1)2的值.(xx解∵x+ 1=51x11222∴ (x- x )=x +x2-2=(x+ x )-4=25-4=21例 10已知x=m (m ≠0), 求x 2xx x 22 1x 4解∵ x 2 x 11xm即 x+ 1 = 1-1= 1m从而得x mm21 1 m2m 2 2m 1x +x2=( m) -2=m 2∴x 2 = 1=14x 2 1122m 1 x x 2 1mx 2m 2=11 2m点评利用 x和 1互为倒数关系,总能建立起x求值问题简单化 .大连中考题 )的值 . ( 上海中考题 )11(x n+ 1 ) 和(x+ 1) 之间的联系,使某些x nx【同步达纲练习】一、填空题 (6 分× 7=42 分 )1. 化简 1+ 1 +1等于.x 2 x 3x2. 使代数式11 1等于 0 的 x 的值是.x21 x 1x 13. 计算 x28 2 x 7 x2x x 6的值为.x 33 x34.1x的最简公分母是.x 2 ,4 2x45.(x 2-1)(1 1 1 -1)= .x x 16.122 2 =.m 2 93 mm37. ab bc c a.ab bc ac二、计算题 (12 × 4=48 分)8. 计算bc a( a b)(b c) (b c)(c a) (c a)( ab)a ba 2b 29. 计算 1-2ba 2 4ab 4b 2 a10. 计算1 12 4 1 x1 x1 x21 x411. 已知 x=4,y=-3 ,求2xx y的值 .2y 2y 2x 2(x y)( x y)x【素质优化训练】12. 如果 abc=1 ,求证1 111(10 分)ab a 1bc b 1ac c 1【生活实际运用】某人在一环形公路上跑步,共跑两圈,第一圈的速率是 x 米 / 分钟,第二圈的速度是 y 米 / 分钟,(x > y ),则他平均一分钟跑的路程是多少?参考答案:【同步达纲练习】一、 1.112.-1 3.-3 4.2(x+2)(x-2) 5.3-x 26.07.06x2二、 8.09.-b 10.8 1a b11.71 x 8【素质优化训练】12. 左边 =11abc aabab a 1 =右边,即证。
《异分母分数加减法》教学设计《异分母分数加减法》教学设计(通用10篇)作为一名无私奉献的老师,很有必要精心设计一份教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
写教学设计需要注意哪些格式呢?下面是小编精心整理的《异分母分数加减法》教学设计,仅供参考,大家一起来看看吧。
《异分母分数加减法》教学设计篇1教学内容:人教版小学数学五年级下册第110页、111页例1。
教学目标:1、理解异分母分数加减法必须先通分的道理,掌握异分母分数加减法的计算方法,能正确地进行计算。
2、渗透转化的数学思想,进一步培养学生自觉验算的良好习惯。
3、让学生在交流的过程中体验成功的喜悦,增强学生自主学习、合作交流的意识。
教学重点:异分母分数加减法的计算方法。
教学难点:理解异分母分数加减法为什么先通分的道理。
教学准备:课件、口算卡片教学过程:一、复习铺垫。
1、出示卡片口算4/5-2/5= 3/4-1/4= 2/7+3/7= 8/9+2/9= 16/18-15/18=2、说一说同分母分数加、减法的计算法则。
(板书同分母分数加、减法的计算法则)3、为什么计算同分母分数加减法可以分母不变,只把分子相加减?(因为分母相同,也就是分数单位相同,单位相同的数可以直接相加减。
)二、创设情境,导入新知。
1、根据情境提问题并列式。
向学生介绍什么是生活垃圾,以及生活垃圾对环境的污染情况。
渗透不乱扔垃圾,自觉把垃圾分类处理的环保教育。
用课件出示例1的垃圾分类图,请学生仔细观察,说一说,从图中了解到了哪些信息?根据情境中的数据,提出问题:(1)废金属和纸张垃圾是垃圾回收的主要对象,它们在生活垃圾中共占几分之几?(2)危险垃圾多还是食物残渣多?多多少?引导并指名学生列式: 1/4+3/10 3/10-3/20 (板书算式)2、比较不同,导入新课教师:黑板上这两道题,同学们能直接算出结果吗?(不能)刚才那些题你们算得特别快,为什么这两道不行呢?它们有什么区别吗?(指名回答)教师:是的,像黑板上这样,由不同分母分数组成的加减法,叫异分母加减法。
5.3 分式的加减法第2课时 异分母分式的加减一、判断正误并改正: (每题4分,共16分) 1. ab a b a a b a a b a --+=--+=0〔 〕2.11)1(1)1(1)1()1(1)1(22222-=--=---=-+-x x x x x x x x x 〔 〕3.)(2121212222y x y x +=+〔 〕4.222b a c b a c b a c +=-++〔 〕二、认真选一选:(每题4分,共8分)1. 如果x >y >0,那么xy x y -++11的值是〔 〕 A.零B.正数C.负数2. 甲、乙两人分别从相距8千米的两地同时出发,假设同向而行,那么t 1小时后,快者追上慢者;假设相向而行,那么t 2小时后,两人相遇,那么快者速度是慢者速度的〔 〕 A.211t t t + B.121t t t + C.2121t t t t +- D.2121t t t t -+三、填一填:1. 异分母分式相加减,先________变为________分式,然后再加减.2. 分式xy 2,y x +3,y x -4的最简公分母是________.3. 计算:222321xyz z xy yz x +-=_____________.4. 计算:)11(1xx x x -+-=_____________. 5. 22y x M -=2222y x y xy --+yx y x +-,那么M=____________. 6. 假设〔3-a 〕2与|b -1|互为相反数,那么ba -2的值为____________. 7. 如果x <y <0,那么xx ||+xy xy ||化简结果为____________. 8. 假设0≠-=y x xy ,那么分式=-x y 11____________. 9. 计算22+-x x -22-+x x =____________.第1课时 三角形的全等和等腰三角形的性质一.选择题〔共8小题〕1.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,那么添加的条件不能为〔 〕A. BD=CE B. AD=AE C. DA=DE D. BE=CD2.等腰三角形的一个角是80°,那么它顶角的度数是〔 〕A. 80° B. 80°或20° C . 80°或50° D. 20°3.实数x,y满足,那么以x,y的值为两边长的等腰三角形的周长是〔 〕A. 20或16 B. 20 C. 16 D. 以上答案均不对4.如图,在△ABC中,AB=AC,∠A=40°,BD为∠ABC的平分线,那么∠BDC的度数是〔 〕A. 60° B. 70° C. 75° D. 80°5.等腰三角形的两边长分别是3和5,那么该三角形的周长是〔 〕A. 8 B. 9 C. 10或12 D. 11或136.如图,给出以下四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有〔 〕A .1组B .2组C .3组D .4组7.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个局部, 那么这个等腰三角形的底边长为〔 〕A. 7 B. 11 C. 7或11 D. 7或108.等腰三角形一腰上的高与另一腰的夹角为30°,那么顶角的度数为〔 〕A. 60° B. 120° C. 60°或150° D. 60°或120°二.填空题〔共10小题〕9.等腰三角形的一个内角为80°,那么另两个角的度数是 _________ . 10.如图,AB∥CD,AB=AC,∠ABC=68°,那么∠ACD= _________ .第10题 第11题 第12题 第13题11.如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,那么∠B= _________ °.12.如图,AB∥CD,AE=AF,CE交AB于点F,∠C=110°,那么∠A=________°.13.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,那么BD=_________ .14.如图,在△ABC中,AB=AD=DC,∠BAD=32°,那么∠BAC=_________ °.第14题 第15题 第16题 第17题 第18题15.如图,AB与CD交于点O,OA=OC,OD=OB ,∠A=50°,∠B=30°,那么∠D的度数为_____.16.如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,那么∠BDC的度数为_________.17.如图,在△ABC中,AB=AC,点D为BC边的中点,∠BAD=20°,那么∠C=_________ .18.如图,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC边上一点,且BE=BP ,CP=CF,那么∠EPF= _________ 度.三.解答题〔共5小题〕19.:如图,在等腰△ABC中,AB=AC,O是底边BC上的中点,OD⊥AB于D,OE⊥AC于E.求证:AD=AE.20.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:〔1〕△ABD≌△ACD;〔2〕BE=CE.21.如下图,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB 的位置关系,并给出证明.22.如图,在△ABC中,D、E分别是AC和AB上的点,BD与CE相交于点O,给出以下四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.〔1〕上述四个条件中,由哪两个条件可以判定AB=AC?〔用序号写出所有的情形〕〔2〕选择〔1〕小题中的一种情形,说明AB=AC.23.〔1〕如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、A C于点D、E.判断DE=DB+EC是否成立?为什么?〔2〕如图,假设点F是∠ABC的平分线和外角∠ACG的平分线的交点,其他条件不变,请猜测线段DE、DB、EC之间有何数量关系?证明你的猜测.参考答案一、CBBCDCCD二、9、50°,50°或80°,20°;10、44;11、65;12、40;13、3;14、69;15、30°;16、72;17、70;18、50三、19、证明:∵AB=AC,∴∠B=∠C.∵OD⊥AB,OE⊥AC,∴∠ODB=∠OEC=90°.∵O是底边BC上的中点,∴OB=OC,在△OBD与△OCE中,∴△OBD≌△OCE〔AAS〕.∴BD=CE.∵AB=AC,∴AB﹣BD=AC﹣CE.即AD=AE.20、证明:〔1〕∵D是BC的中点,∴BD=CD,在△A BD和△ACD中,,∴△ABD≌△ACD〔SSS〕;…〔4分〕〔2〕由〔1〕知△ABD≌△ACD,∴∠BAD=∠CAD,即∠BAE=∠CAE,在△ABE和△ACE中,∴△ABE≌△ACE 〔SAS〕,∴BE=CE〔全等三角形的对应边相等〕.〔其他正确证法同样给分〕…〔4分〕21、解:OE⊥AB.证明:在△B A C和△ABD中,,∴△BAC≌△ABD〔SAS〕.∴∠OBA=∠OAB,∴OA=OB.又∵AE=BE,∴OE⊥AB.答:OE⊥AB.22、〔1〕答:有①③、①④、②③、②④共4种情形.〔2〕解:选择①④,证明如下:∵OB=OC,∴∠OBC=∠OCB,又∵∠EBO=∠DCO,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AC=AB.②④理由是:在△BEO和△CDO中∵,∴△BEO≌△CDO,∴∠EBO=∠DCO,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC,23、解:〔1〕成立;∵△ABC中BF、CF平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠4.∵DE∥BC,∴∠2=∠3,∠4=∠6.∴∠1=∠3,∠6=∠5.根据在同一个三角形中,等角对等边的性质,可知:BD=DF,EF=CE.∴DE=DF+EF=BD+CE.故成立.〔2〕∵BF分∠ABC,∴∠DBF=∠FBC.∵DF∥BC,∴∠DFB=∠FBC.∴∠ABF=∠DFB,∴BD=DF.∵CF平分∠AC G,∴∠ACF=∠FCG.∵DF∥BC,∴∠DFC=∠FCG.∴∠ACF=∠DFC,∴CE=EF.∵EF+DE=DF,即DE+EC=BD.。
北师大版数学八年级下册《异分母分式的加减法》教案2一. 教材分析《异分母分式的加减法》是北师大版数学八年级下册的教学内容。
本节内容是在学生已经掌握了同分母分式的加减法、分数的基本性质和异分母分数的比较的基础上进行学习的。
异分母分式的加减法是分数运算中的一个重要部分,它涉及到了分数的通分、约分等基本操作,对于培养学生的运算能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本节内容时,已经具备了一定的分数运算基础,对于同分母分式的加减法已经有所了解。
但是,对于异分母分式的加减法,学生可能还存在一定的困难,因为异分母分式的加减法涉及到了分数的通分和约分,这些操作对于学生来说可能还不够熟练。
因此,在教学过程中,需要引导学生理解通分和约分的重要性,并通过大量的练习来提高学生的运算能力。
三. 教学目标1.让学生理解异分母分式的加减法的运算规律。
2.培养学生熟练的通分、约分能力。
3.提高学生的运算能力和逻辑思维能力。
四. 教学重难点1.异分母分式的加减法的运算规律。
2.分数的通分和约分操作的熟练运用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。
通过设置问题,引导学生思考和探索异分母分式的加减法的运算规律;通过案例分析,让学生理解和掌握通分和约分的方法;通过小组合作,培养学生的团队合作精神和沟通能力。
六. 教学准备1.PPT课件。
2.练习题。
3.小组合作学习表格。
七. 教学过程1.导入(5分钟)通过一个具体的异分母分式的加减法问题,引导学生思考和探索异分母分式的加减法的运算规律。
2.呈现(10分钟)通过PPT课件,呈现异分母分式的加减法的运算规律,并解释通分和约分在异分母分式的加减法中的作用。
3.操练(10分钟)让学生独立完成一些异分母分式的加减法的练习题,通过练习来巩固学生对异分母分式的加减法的理解和掌握。
4.巩固(10分钟)让学生进行小组合作,共同完成一些异分母分式的加减法的练习题,通过合作来提高学生的运算能力和逻辑思维能力。
专题5.3 分式的加减法运算(知识解读)【学习目标】1. 类比分数的加减法运算法则,探究分式的加减法运算法则.2. 能进行简单的分式加、减运算.3. 掌握分式的加、减、乘、除混合运算.4. 掌握分式的化简求值.【知识点梳理】考点1:同分母分式的加减同分母分式相加减,分母不变,把分子相加减; 上述法则可用式子表为:. 注意:(1)“把分子相加减”是把各分式的分子的整体相加减,即各个分子都应用括号,当分子是单项式时,括号可以省略;当分子是多项式时,特别是分子相减时,括号不能省,不然,容易导致符号上的错误.(2)分式的加减法运算的结果必须化成最简分式或整式.考点2:异分母分式的加减异分母分式相加减,先通分,变为同分母的分式,再加减. 上述法则可用式子表为:. 注意:(1)异分母的分式相加减,先通分是关键.通分后,异分母的分式加减法变成同分母分式的加减法.(2)异分母分式加减法的一般步骤:①通分,②进行同分母分式的加减运算,③把结果化成最简分式.a b a b c c c ±±=a c ad bc ad bc b d bd bd bd ±±=±=【典例分析】【考点1 同分母分式的加减】【典例1】(2017•湖北)化简:﹣.【解答】解:﹣===【变式11】(2015•义乌市)化简的结果是()A.x+1B.C.x﹣1D.【答案】A【解答】解:原式=﹣===x+1.故选:A.【变式12】(2020•淄博)化简+的结果是()A.a+b B.a﹣b C.D.【答案】B【解答】解:原式====a﹣b.故选:B.【变式13】(攀枝花)化简+的结果是()A.m+n B.n﹣m C.m﹣n D.﹣m﹣n 【答案】A【解答】解:+=﹣==m+n.故选:A.【考点2 异分母分式的加减】【典例2】(2016•南京)计算﹣.【解答】解:﹣=﹣==.【变式21】(2015•百色)化简﹣的结果为()A.B.C.D.【答案】C【解答】解:原式=﹣====.故选:C.【变式22】(2019•济南)化简+的结果是()A.x﹣2B.C.D.【答案】B【解答】解:原式=+==,故选:B.【变式23】(2016•甘孜州)化简:+.【解答】解法一:+=+==.解法二:+=+=+=.【典例3】(2015春•扬州校级月考)计算(1)﹣(2)﹣(3)﹣x﹣1.【解答】解:(1)﹣===﹣;(2)﹣=﹣===;(3)﹣x﹣1=﹣==.【变式31】(2019秋•石景山区期末)计算:﹣.【解答】解:原式=+==【变式32】(秋•南充期末)计算:﹣.【解答】解:原式=﹣,=,=,=,=.【变式33】(2020•鼓楼区一模)计算.【解答】解:原式====【考点分式化简】【典例4】(2016•聊城)计算:(﹣).【解答】解:原式=•=•=﹣.【变式41】(2021•碑林区校级一模)化简:(﹣)÷.【解答】解:原式=[﹣]÷=÷=•=.【变式42】(2020秋•潍城区期中)计算:(1);(2);(3).【解答】解:(1)原式=•==;(2)原式=﹣==;(3)原式=•+=+==.【变式43】(2021•金州区校级模拟)计算:÷﹣1.【解答】解:原式=•﹣1=﹣=.【变式44】(2020秋•华龙区校级期中)计算(1);你(2).【解答】解:(1)原式=﹣•=﹣==;(2)原式=÷=•=.【典例5】(2021秋•北碚区校级期中)先化简再求值:÷(x﹣1+),其中x=2.【解答】解:原式=÷=÷=•=,当x=2时,原式=1【变式5】(2021秋•雨花区校级月考)先化简,再求值:,其中a=2022.【答案】﹣.【解答】解:原式=()÷=()×==﹣.当a=2022时,原式=﹣=﹣.【典例6】(2021•射阳县二模)先化简,再求值:()÷,其中x从1,2,3中取一个你认为合适的数代入求值.【答案】1【解答】解:原式=[]===,∵x(x+1)(x﹣1)≠0,∴x≠0且x≠±1,∴x可以取2或3,当x=2时,原式=,当x=3时,原式==1.【变式6】(2022•牟平区校级开学)化简求值:,再从﹣1≤x <2中选一个整数值,对式子进行代入求值.【解答】解:原式=÷=•=﹣,∵﹣1≤x<2且x为整数,∴x=﹣1,0,1,2,当x=1时,原式没有意义,舍去;当x=﹣1时,原式=;当x=0时,原式=1;当x=2时,原式=﹣.【典例7】(2021•潍城区二模)先化简,再求值:(﹣)÷(x+2﹣),其中x是不等式组的整数解.【解答】解:原式=[+]÷[﹣]=(+)÷(﹣)=÷=•=,由,解得:﹣1<x≤2,∵x是整数,∴x=0,1,2,由分式有意义的条件可知:x不能取0,1,故x=2,∴原式==2.【变式7】(2021•苍溪县模拟)先化简:,再从不等式组的解集中取一个合适的整数值代入求值.【解答】解:原式===2(x+1)﹣(x﹣1)=2x+2﹣x+1=x+3.解不等式组,得﹣3<x≤1.由分式有意义的条件可知:x不能取﹣1,0,1,且x是整数,∴x=﹣2.当x=﹣2时,原式=1.【典例8】(2021秋•兴宁区校级月考)先化简,再求值:,其中a满足a2+2a﹣3=0.【解答】解:原式=•=•=•=2a(a+2)=2(a2+2a),∵a满足a2+2a﹣3=0,∴a2+2a=3,当a2+2a=3时,原式=2×3=6.【变式8】(2021秋•沭阳县校级月考)先化简,再求值:(﹣)÷,其中x2﹣x﹣6=0.【解答】解:原式=[﹣]÷=•=•=•=,∵x2﹣x﹣6=0,∴x=3或x=﹣2,由分式有意义的条件可知:x不能取﹣2,故x=3,∴原式==﹣.。
分式的加减法(二)——异分母分式加减教学目标:1.理解掌握异分母分式加减法法则.2.能正确熟练地进行异分母分式的加减运算.3.在课堂活动中培养学生乐于探究、合作学习的习惯;渗透类比、化归数学思想方法,提高运算能力.重点难点:重点:异分母分式的加减法法则及其运用.难点:正确确定最简公分母和灵活运用法则.教学过程一、情境引入:从甲地到乙地有两条路,每条路都是3km ,其中第一条是平路,第二条有1km 的上坡路,2km 的下坡路,小丽在上坡路上的骑车速度为vkm/h ,在平路上的骑车速度为2vkm/h ,在下坡路上的骑车速度为3vkm/h ,那么 当走第二条路时,她从甲地到乙地需要多长时间?12()3h v v+她走哪条路花费时间少?少用多长时间?123()32h v v v +-二、解读探究1、想一想,异分母分数如何加减?(学生举例) 你认为异分母的分式应该如何加减?比如314a a+应该怎样计算? 议一议,小明认为,只要把异分母的分式化成同分母的分式,异分母分式的加减问题就变成了同分母分式的加减问题.小亮同意小明的这种看法,但他俩的具体做法不同. 小明:22231341213134444444a a a a a a a a a a a a a a a+=+=+== 小亮:3134112113444444a a a a a a a ⨯+=+=+= 你对这两种做法有何评论?与同伴交流.小结:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.与异分母分数的加减法类似,异分母分式相加减,需要先通分,变为同分母的分式,然后再加减.为了计算方便,异分母分式通分时,通常取最简单的公分母(简称最简公分母)作为它们的共同分母.2、异分母分式的加减法法则:异分母分式相加减,先通分,变为同分母分式,然后再加减.用式子表示为:b a ±d c =bdbc ad ±. 3、分式通分时,要注意几点:(1)最简公分母的系数,取各分母系数的最小公倍数;(2)最简公分母的字母,取各分母所有字母的最高次幂的积;(3)分母的系数若是负数时,应利用符号法则,把负号提取到分式前面;(4)分母是多项式时一般需先因式分解.三、应用举例【例1】计算:(1)23+x +x -21+422-x x ;(2)122-x x -x -1. 分析:(1)把分母的各多项式按x 的降幂排列,能先分解因式的将其分解因式,找最简公分母,转化为同分母的分式加减法.(2)一个整式与一个分式相加减,应把这个整式看作一个分母是1的式子来进行通分,注意-x -1=11+-x ,要注意符号问题. 解:(1)原式=23+x -21-x +)2)(2(2-+x x x =)2)(2()2(3-+-x x x -)2)(2(2-++x x x +)2)(2(2-+x x x =)2)(2(2)2()2(3-+++--x x x x x =)2)(2(2263-++---x x x x x =)2)(2(84-+-x x x =24+x ; (2)原式=122-x x 11+-x =122-x x 1)1)(1(--+-x x x =1)1)(1(22--+-x x x x =1)1(222---x x x =11222-+-x x x =112-+x x . 【例2】计算:x -11+x +11+212x ++414x+. 分析:此题若将4个分式同时通分,分子将是很复杂的,计算也是比较复杂的.各式的分母适用于平方差公式,所以采取分步通分的方法进行加减.解:原式=)1)(1()1()1(x x x x -+-+++212x ++414x + =212x -+212x ++414x +=)1)(1()1(2)1(22222x x x x -+-+++414x + =414x -+414x +=)1)(1()1(4)1(44444x x x x -+-++=818x -. 【练习】1、计算:(1)3155a a a -+;(2)2111x x x-+-- 2、计算:(1)231x +x 43;(2)1624432---x x . 3、计算 2a ab a b --- 解:原式=()()b a b b a b a b a b a a b a b a a -=--+--=---2221.四、知识小结异分母分式的加减法步骤:1. 正确地找出各分式的最简公分母;2. 用公分母通分后,进行同分母分式的加减运算.3. 公分母保持积的形式,将各分子展开.4. 将得到的结果化成最简分式.五、基础知识检测1.填空题:(1)异分母分式相加减 , 的分式,然后再加减.(2)计算:232++-x x -11+x 的结果是 . *(3)计算:13-a a -a 2-a -1= . (4)计算:)4)(2(42+-+x x x x -422-+x x = . *(5)已知x 1+y 1=m 1,则m= . 2.选择题:(1)使代数式54++x x ÷32--x x 有意义的值是 ( ) A .x ≠-4且x ≠2 B .x ≠5且x ≠3C .x ≠-5且x ≠3D .x ≠-5且x ≠3且x ≠2*(2)计算:x+1-123+-x x x 的结果是 ( ) A .113+x B .113-x C .112+-x x D .112++x x (3)若x -y=xy ≠0,那么x 1-y1等于 ( ) A .xy 1 B .yx -1 C .0 D .-1 (4)已知x 1-y 1=3,则yxy x y xy x ---+55的值是 ( ) A .-27 B .27 C .0 D .2 (5)化简ab b a 22--22a ab b ab --得 ( ) A .b a B .abb a 222+ C .a 2 D .a -2b3.计算:(1)2312+-x x +6512+-x x +3412+-x x ; (2)x +11-x +22113x x x -+-; (3)2242y x x -+x y -22+1. 4.先化简,再求值:y x y -+y x x y 2232-·222y xy x y +-,其中x=32,y=-3.六、创新能力运用计算:(1)21-x +12+x -12-x -21+x ; (2)41--x x -2)1(3--x x +2参考答案【基础知识检测】1.(1)先通分,化为同分母 ;(2)21--x ;(3)11-a ;(4)21--x x ;(5)yx xy +. 2.(1)D ;(2)C ;(3)D ;(4)B ;(5)A.3.(1))3)(1(3--x x ;(2)13223-+-x x x x ;(3)2222444y x y y x ---. 4.xy ,-29. 【创新能力运用】(1))1)(1)(2)(2(12-+-+x x x x ; (2))4)(2(6--x x .七、布置作业。
第五章分式与分式方程3.分式的加减法(二)一、学生起点分析学生知识技能基础:学生在上节课已经学习过同分母的分式相加减及分母互为相反式分式的加减运算。
在第四章又学习了因式分解,在本章的前面几节课中,回忆了分数的基本性质,学习了分式的基本性质、分式的约分及分式的乘除等。
对这节课异分母分式相加减内容的学习都有了充分的铺垫。
学生活动经验基础:从学习字母表示数开始,学生就经历过许多从实际问题建模的思想,用代数式去解决实际问题的经验。
同时在以前的学习中,学生也经历了很多合作交流的学习过程,具有了一定的活动的经验和合作与交流的能力。
二、教学任务分析分式的加减法是代数变形的基础之一,在学习完同分母分式的加减法法则后必将谈到异分母分式的加减法,教科书安排了三节课的教学,就是不让难度突然加大,而是循序渐进的去接受,允许学生经过一定时间的学习达到《标准》要求的目标,应把教学重点放在落实和理解上。
本节内容不多,教学时对异分母分式加减法法则的探索过程上,要使学生充分活动起来,在观察、类比、猜想、尝试等一系列思维活动中,发现法则、理解法则、应用法则。
本节课的教学目标为:1、会找最简公分母,能进行分式的通分;2、理解并掌握异分母分式加减法的法则;3、经历异分母分式的加减运算和通分的探讨过程,训练学生的分式运算能力。
4、培养学生在学习中转化未知问题为已知问题的能力和意识;进一步通过实例发展学生的符号感和用数学的意识。
三、教学过程设计本节课设计了6个教学环节:问题引入——学习新知——运用新知和小试牛刀——分式加减应用——课堂小结——拓展提高。
第一环节问题引入活动内容问题1:同分母分式是怎样进行加减运算的?问题2:异分母分数又是如何进行加减?问题3:那么?你是怎么做的?=+aa 413活动目的:通过回忆同分母分式的加减法法则、异分母分数的加减法运算,来引出本节课的内容,同时又对问题3点明了类比的思想方法,使进入新知识的学习顺理成章。
异分母分数加减法教案(优秀10篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!异分母分数加减法教案(优秀10篇)作为一名优秀的教师,我们要有很强的课堂教学能力,对教学中的新发现可以写在教学反思中,来参考自己需要的教学反思吧!这次本店铺为您带来了异分母分数加减法教案(优秀10篇)您的肯定与分享是对本店铺最大的鼓励。
异分母分式加减法
《异分母分式加减法,你真的懂吗?》
嘿,同学们!你们知道吗?数学的世界里有一种神奇又有点让人头疼的运算,叫做异分母分式加减法。
这玩意儿就像是一个藏着秘密的小怪兽,得把它的秘密揭开,才能战胜它!
就说上次数学考试吧,老师出了一道异分母分式加减法的题目,我一看,哎呀,这可咋整?脑袋一下子就懵了!我就像一只在迷宫里乱转的小老鼠,找不到出路。
我看看同桌,他眉头紧皱,嘴里还嘟囔着:“这什么破题啊,怎么这么难!”我心里想:“可不是嘛,这也太难了!”
这时候,我后面的学霸小李发话了:“这题不难呀,先通分不就好了嘛!”我赶紧转过头问:“怎么通分呀?”小李一脸无奈地说:“你连通分都不知道?就是找分母的最小公倍数呀!”我还是一脸迷茫,问道:“那最小公倍数又怎么找啊?”小李白了我一眼,说:“你怎么连这个都没搞懂!就比如2 和3,最小公倍数不就是6 嘛!”
我似懂非懂地点点头,开始自己琢磨。
我就想啊,这异分母分式加减法不就跟我们分糖果一样嘛。
比如说,有一堆不同大小的糖果盒子,要把里面的糖果合在一起,是不是得先把盒子变成一样大小的呀?这通分不就是把盒子变成一样大小嘛!
我按照这个思路,开始试着做题。
哎呀,好像有点眉目了!我一步一步地算着,终于算出了答案。
等老师讲题的时候,我发现自己居然做对了,心里那个高兴劲儿啊,就像大热天吃了一根冰棒,爽极了!
经过这次,我算是明白了,异分母分式加减法其实也没那么可怕。
只要我们掌握了方法,找到了窍门,就一定能把它拿下!所以呀,同学们,遇到难题别害怕,多想想,多试试,总会找到解决办法的!你们说是不是?。