2021年高三下学期第二次双周考试数学(文)试题 含答案
- 格式:doc
- 大小:182.00 KB
- 文档页数:9
2021年高三下学期第二次质量检测数学文试题 含答案一、填空题(本大题满分56分)本大题共有14题,每题4分.1. 方程的解是 .2. 已知函数,则 .3. 若实数满足,则的最小值为 .4. 设(i 为虚数单位),则 .5. 的值为 .6. 123101011111111111392733C C C C -+-+--+ 除以5的余数是 .7. 若一个直六棱柱的三视图如图所示,则这个直六棱柱的体积为 . 8. 等差数列的前项和为,9. 则 . 10.某公司推出了下表所示的QQ 在线等级制度,设等级为级需要的天数为,则等级为级需要的天数_________. 11. 若关于的方程在区间上有两个不同的实数解,则的取值范围为 . 12.某高中有甲乙等5名同学被一所大学自主招生录取后,大学提供了4个学院给这5名学生选择.假设选择每个学院是等可能的,则这5人中甲乙进同一学院,且每所学院都有学生选择的概率是 . 13.给定平面上四点满足4,3,2,3OA OB OC OB OC ===⋅=,则面积的最大值为 . 14.若集合{}220,x M x x x x Nλ*=+-≥∈,若集合中的元素个数为,则实数的取值范围为 .14.对于非空实数集,定义{},A z x A z x *=∈≥对任意。
设非空实数集。
现给出以下命题: (1)对于任意给定符合题设条件的集合必有 (2)对于任意给定符合题设条件的集合必有; (3)对于任意给定符合题设条件的集合必有;(4)对于任意给定符合题设条件的集合必存在常数,使得对任意的,恒有. 以上命题正确的是 .二、选择题(本大题满分20分)本大题共有4题,每题5分. 15.集合{}20,()()01x A xB x x a x b x ⎧-⎫=<=--<⎨⎬+⎩⎭,若“”是“”的充分条件,则的取值范围是( )(A ) (B ) (C ) (D ) 16.函数1211111(),(),,(),,()()n n f x f x f x x x f x x f x +===++则函数是( )(A )奇函数但不是偶函数 (B )偶函数但不是奇函数 (C )既是奇函数又是偶函数 (D )既不是奇函数又不是偶函数 17.若,且.则下列结论正确的是( ) (A ) (B ) (C ) (D )18.若是以为焦点的双曲线上任意一点,过焦点作的平分线的垂线,垂足的轨迹是曲线的一部分,则曲线是( )(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 三、解答题(本大题共5小题,满分74分) 19.(本题满分12分)设倒圆锥形容器的轴截面为一个等边三角形,在此容器内注入水,并浸入半径为的一个实心球,使球与水面恰好相切,试求取出球后水面高为多少?20.(本题满分14分,第一小题满分5分,第二小题满分9分) 对于函数,若在定义域存在实数,满足,则称为“局部奇函数”.(1)已知二次函数2()24(,)f x ax bx a a b R =+-∈,试判断是否为“局部奇函数”?并说明理由;(2)设是定义在上的“局部奇函数”,求实数的取值范围.21.(本题满分14分,第一小题满分5分,第二小题满分9分)已知、、为正实数,.(1)当、、为的三边长,且、、所对的角分别为、、.若,且.求的长; (2)若.试证明长为、、的线段能构成三角形,而且边的对角为.22.(本题满分16分,第一小题满分4分,第二小题满分5分,第三小题满分7分) 已知抛物线.(1)若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线相切,求所有的圆都经过的定点坐标;(2)抛物线的焦点为,若过点的直线与抛物线相交于两点,若,求直线的斜率; (3)若过点且相互垂直的两条直线,抛物线与交于点与交于点. 证明:无论如何取直线,都有为一常数.23.(本题满分18分,第一小题满分4分,第二小题①满分5分,第二小题②满分9分)在数列中,且对任意的成等比数列,其公比为,(1)若135212(),k k q k N a a a a *-=∈++++求;(2)若对任意的成等差数列,其公差为. ①求证:成等差数列,并指出其公差; ②若,试求数列的前项和.数学试卷答案(文科)考试时间:120分钟 满分:150分一、填空题(本大题满分56分)本大题共有14题,每题4分. 1. 方程的解是 . 2. 已知函数,则 .3. 若实数满足,则的最小值为 4 .4. 设(i 为虚数单位),则 .5. 的值为 0 .6. 123101011111111111392733C C C C -+-+--+ 除以5的余数是 3 .(文)若一个直六棱柱的三视图如图所示,则这个直六棱柱的体积 为 4 .7. 等差数列的前项和为,则 2 .8. 某公司推出了下表所示的QQ 在线等级制度,设等级为级需要的天数为,则等级为级需要的天数____2700______。
2021届高中毕业班第二次质量检测数学〔文科〕参考答案一、选择题〔本大题一一共12小题,每一小题 5分〕二、填空题〔此题一共4小题,每一小题5分〕 13. 12+ 14.54 15.2- 16. 2,93a ππ⎡⎤∈⎢⎥⎣⎦三、解答题〔本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤〕17.【解析】:〔1〕由散点图知,y d =更适宜作为幼苗高度y 关于时间是x 的回归方程。
………………………………………………………………3分 〔2〕令d ct y i x t i i +===则),7,,2,1( (4)分4728==t ,8756==y ,2837171i ==∑∑==i i i i i y x y t ,14071712==∑∑==i i i i x t7172221728374859ˆ 2.114074287i ii i i t y t yct t==--⨯⨯===≈-⨯-∑∑ ………………………………6分 ˆˆ8 2.140.4dy ct =-=-⨯=- (7)分所以ˆ 2.10.4yt =- (8)分故幼苗高度y 关于时间是x的回归方程ˆ0.4y= …………………………9分由ˆ 2.10.429196yx ==⇒=〔天〕 由此可预测苗圃基地需要培育这株幼苗196天才可以移植荒山。
(12)分18.【解析】:〔1〕由11=S 知等差数列}{n a 首项为1,所以d n n n S 2)1(n -+= …………………………………………………………………………………1分由234,-1,S S S 成等比数列可得2324-1S S S =() 所以2232)(46d d d +=++()()解得2d =或者23d =- (3)分由递增的等差数列{}n a 知0d >,所以2d =………………………………4分所以12(1)21n a n n =+-=- ……………………………………………………6分〔2〕因为12(1)(44)1(44)11(1)()(21)(23)2123n nn n n n n n b a a n n n n ++-+-+===-+++++() (8)分所以nn n b b b b b b T 21243212++++++=-=111111111111)()35577991141414143n n n n -+++-++++-+++-+++()()()()(=1143433(43)n n n -+=-++ (12)分19.【解析】:(1)因为AD =CD =1,∠ADC =120° 所以3=AC由AB=BC,AD=CD 知BD 是线段AC 的垂直平分线 所以点M 为线段AC 的中点由3===AC BC AB , M 为线段AC 的中点可得23=BM 由AD =CD =1,∠ADC =120°,M 为线段AC 的中点可得21=DM 所以41==BD BM BP BN 所以MN ∥PD ................................................4分 因为PDC MN PDC PD 平面,平面⊄⊆ 所以MN ∥平面PDC ; (6)分(2)当点Q 为BC 中点时,平面MNQ ⊥平面PAD ,证明如下: ………………7分 连接QM 延长交AD 于点E因为正ABC ∆,M 为线段AC 的中点, 所以30,60MBC MCB ∠=︒∠=︒ 因为直角BMC ∆,Q 为BC 中点,所以BQ=MQ=QC,所以30BMQ DME ∠=∠=︒ 因为AD =CD =1,∠ADC =120°,M 为线段AC 的中点 所以60MDE ∠=︒ 所以MQ ⊥AD 因为PA ⊥平面ABCD所以A AD PA MQ PA =⋂⊥,又所以PAD MQ 平面⊥ (11)分因为MNQ MQ 平面⊆ 所以平面MNQ ⊥平面PAD (12)分20.【解析】、解:〔1〕因为短轴的一个端点到右焦点的间隔 为2,所以2a =, ……2分又离心率为12,所以1c =,所以b = …………………………………………3分所以椭圆M 的方程为22143x y +=. (4)分〔2〕由对称性知,椭圆M 长轴和短轴四个端点连接而成的四边形为菱形73222=+=b a ab r ……………………………………………………5分要证2||||r AC AB = 只需证OC OB ⊥当直线BC 的斜率存在时,设),(),,(,:2211y x C y x B m kx y BC += 那么7321||2=+k m 所以)1(12722k m += ① ……………………………………7分由⎪⎩⎪⎨⎧+==+m kx y y x 13422得01248)43222=-+++m kmx x k ( 当222122143124,438,0km x x k km x x +-=+-=+>∆))((21212121m kx m kx x x y y x x OC OB +++=+=⋅=2212121)()k x x km x x m ++++( =22222222221)(412)8712(1)343434k m k m m k m k k k+---+++=+++( 由①得0=⋅OC OB 所以OC OB ⊥ ……………………………………………10分当直线BC 的斜率不存在时,B,C 两点的坐标为)732,732732732±-±)或(,(那么0=⋅OC OB ,所以OC OB ⊥ …………………………………………………11分又BC OA ⊥,由直角三角形的射影定理可得2||||r AC AB = (12)分21. 【解析】(1)依题意,()0,x ∈+∞,11()(0)mx f x m x x x+'=+=>. ①假设0≥m ,那么()f x '>0,故()f x 在()0,∞+上单调递增………………………………1分②假设0<m ,令()0f x '=,解得mx 1-=. 那么当),(m x 10-∈时,()f x '>0,()f x 单调递增,当),(∞+-∈mx 1时,()f x '<0,()f x 单调递减; (3)分综上所述,当0≥m 时,()f x 在()0,∞+上单调递增;当0m <时,()f x 在),(∞+-m 1上单调递减,在),(m10-上单调递增. …………4分(2)令mx x x m +=ln 22,那么由题意可知22ln 0m x x mx --=有两个大于e1的实数根, 令()22ln F x m x x mx =--,那么()22ln F x m x x mx =--有两个大于e1的零点 (5)()()()221112(0)mx mx F x m x m x x x+-'=--=>. (7)分因为0m >,那么当10,x m ⎛⎫∈ ⎪⎝⎭时,()0F x '<,()F x 单调递减;当1,x m ⎛⎫∈+∞⎪⎝⎭时,()0F x '>,,()F x 单调递增; 又当x →+∞时,()F x →+∞ (9)分所以,要使函数()F x 在),1(+∞e有两个零点,当且仅当:⎪⎪⎪⎩⎪⎪⎪⎨⎧><=>-+=e m m m F e m e m F 110ln )1(01)e 122( ………………………………10分 解得10<<m ;综上所述,实数m 的取值范围是)1,0( ………………………………12分 22.【解析】〔1〕x y 34-=- ,∴直线l 的普通方程为:043=-+y x∴直线l 的极坐标方程为:04sin cos 3=-+θρθρ曲线1C 的普通方程为:y y x 222=+∴曲线1C 的极坐标方程为:θρsin 2= ……5分〔2〕令直线l 的极坐标方程中的αθ=得:04sin cos 3=-+αραρ那么ρ=3OA =;又2sin OB α== OA OB =43 ……10分23.【解析】〔1〕5|)42()12||42||12|)(=--+≥-++=x x x x x f ( (3)当且仅当121)(24)022x x x +-≤-≤≤(即时取等号 …………………………4分所以)(x f 的最小值为5 …………………………………………………………5分〔2〕由14321()|21||24|522432x x f x x x x x x ⎧-+≤-⎪⎪⎪=++-=-<<⎨⎪-≥⎪⎪⎩ (6)分当0k ≤时,不等式()1f x k x ≥-在R 上恒成立 (7)分当0>k 时,作出()|1|y f x y k x ==-和的图象 知3100≤<k 时,满足()1f x k x ≥-在R 上恒成立.分所以实数k 的取值范围.10]3-∞(, 分。
1 1 正(主)视侧(左)视2021年高三下学期第二次联考数学(文)试题 含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分。
考试时间120分钟。
一、选择题:本大题共l2小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,集合,则 ( )A. B. C. D.2.已知复数为虚数单位,则的共轭复数是A. B. C. D.3.已知各项均为正数的等比数列中,成等差数列,则=( )A.27B.3C.-1或3D.1或274.已知平面向量,,,则的值为( )A. B. C.2 D.15.已知的取值如下表:若y 与x 线性相关,且,则=( )x0 1 3 4 y 2.2 3.3 4.8 5.7A.2.2B.2.6C.2.8D.3.06.已知命题使;命题,下列是真命题的是 ( )A. B.C. D.7.如果执行如图的程序框图,那么输出的值是( )A. xxB. 2C. D.8.如图, 一个四棱锥的底面为正方形,其三视图如图所示,则这个 四棱锥的体积为( )A 1B 2C 3D 49.已知函数的最小正周期为, 若将其图像向右平移个单位后得到的图像关于原点对称,则函数的图像( )A.关于直线对称B.关于直线对称C.关于点对称D.关于点对称10.已知变量满足以下条件,,若的最大值为3,则实数的值为( )A.2或5B.-4或2C.2D.511.定义在R 上的函数24)(,42)1(,2)()()(+>+=>'+xe xf e ef x f x f x f 则不等式满足 (其中e 为自然对数的底数)的解集为( )A. B. C. D.12.已知椭圆C:的左右焦点为,若椭圆C 上恰好有6个不B 同的点,使得为等腰三角形,则椭圆C 的离心率的取值范围是( )A . B. C. D.第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题.每小题5分,共20分.把答案填在题中横线上.13.点,则的概率___________. 14.设数列满足,点对任意的,都有向量,则数列的前项和 .15.在半径为的球面上有三点,如果,,则球心到平面的距离为___________.16.已知函数有两个极值点,若,则关于的方程 的不同实根个数为三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤。
2021年高三下学期周考(2.4)数学(文)试题含答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知复数,则复数的共轭复数在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.设是全集的子集,,则满足的的个数是()A.5 B.4 C.3 D.23.抛物线的焦点坐标是()A. B. C. D.4.设向量,若向量与平行,则()A. B. C. D.5.圆与直线有公共点的充分不必要条件是()A.或 B. C. D.或6.设等比数列的前项和为,若,且,则等于()A.3 B.303 C. D.7.阅读下列程序框图,运行相应程序,则输出的值为()A. B. C. D.8.函数的图象可能是()A.(1)(3) B.(1)(2)(4) C.(2)(3)(4) D.(1)(2)(3)(4)9.在四棱锥中,底面是正方形,底面,,,,分别是棱,,的中点,则过,,的平面截四棱锥所得截面面积为()A. B. C. D.10.设,是椭圆的两个焦点,为椭圆上的点,以为直径的圆经过,若,则椭圆的离心率为()A. B. C. D.11.四棱锥的三视图如下图所示,四棱锥的五个顶点都在一个球面上,、分别是棱、的中点,直线被球面所截得的线段长为,则该球表面积为()A. B. C. D.12.已知抛物线的焦点为,定点,若射线与抛物线交于点,与抛物线的准线交于点,则的值是()A. B. C. D.第Ⅱ卷(非选择题共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知直线,,若直线,则.14.在中,角、、所对的边分别为,且,,则的面积是.15.若不等式组表示的平面区域是一个四边形,则实数的取值是.16.已知函数在区间上单调递增,则实数的取值范围是.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题10分)已知数列是公比不为的等比数列,,且成等差数列.(Ⅰ)求数列的通项;(Ⅱ)若数列的前项和为,试求的最大值.18.(本小题12分)已知函数的部分图象如图所示.(Ⅰ)求函数的解析式,并写出 的单调减区间;(Ⅱ)已知的内角分别是A ,B ,C ,角A 为锐角,且的值.19.(本小题12分)设的内角的对边分别为,满足C b c B c b A a sin )32(sin )32(sin 2-+-=.(Ⅰ)求角的大小;(Ⅱ)若,,求的面积.20.(本小题12分)如图,在梯形ABCD 中,AB//CD ,AD=DC=CB=a ,,四边形ACFE 是矩形,且平面平面ABCD ,点M 在线段EF 上.(I )求证:平面ACFE ;(II )当EM 为何值时,AM//平面BDF ?证明你的结论.21.(本小题12分)已知F 1、F 2分别为椭圆C :(a>b>0)的左、右焦点, 且离心率为,点椭圆C 上。
2021年高三第二次联考数学(文)试题 Word版含答案一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、命题,;命题,,则下列命题中为真命题的是()A. B. C. D.2、设复数(为虚数单位),的共轭复数为,则等于()A. B. C. D.3、甲、乙、丙、丁四位同学各自对、两变量的线性相关试验,并用回归分析方法分别求得相关系数如下表:则这四位同学的试验结果能体现出、两变量有更强的线性相关性的是()A.甲B.乙C.丙D.丁4、下列函数中,图象的一部分如图1所示的是()A.B.C.D.5、已知等差数列满足,(),,则的值为()A.B.C.D.6、在三棱锥中,侧棱、、两两垂直,并且、、的面积分别为、、,则该三棱锥外接球的表面积为()A.B.C.D.7、如图2所示是用模拟方法估计圆周率值的程序框图,表示估计的结果,则图中空白框内应填入()A.B.C.D.8、已知双曲线(,)与抛物线()有一个共同的焦点,点是双曲线与抛物线的一个交点,若,则此双曲线的离心率等于()A.B.C.D.9、下列不等式对任意的恒成立的是()A.B.C.D.10、已知函数,若、、互不相等,且,则的取值范围是()A.B.C.D.二、填空题(本大题共5小题,每小题5分,共25分.)11、若集合,,则集合的子集有个.12、已知曲线的极坐标方程为(,),曲线在点处的切线为,若以极点为坐标原点,以极轴为轴的正半轴建立直角坐标系,则的直角坐标方程为.13、已知中,点、、的坐标依次是、、,边上的高为,则的坐标是.14、若,满足,则的最大值为.15、若对任意的,均有成立,则称函数为函数到函数在区间上的“折中函数”.已知函数,,,且是到在区间上的“折中函数”,则实数的值构成的集合是.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16、(本小题满分12分)如图,某污水处理厂要在一正方形污水处理池内修建一个三角形隔离区以投放净化物质,其形状为三角形,其中位于边上,位于边上.已知米,,设,记,当越大,则污水净化效果越好.求关于的函数解析式,并求定义域;求的最大值,并指出等号成立条件?17、(本小题满分12分)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽数之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到资料如下表:从3月1日至3月5日中任选2天,记发芽的种子数分别为,,求事件“,均不小于25”的概率;请根据3月2日至3月4日的数据,求出关于的线性回归方程;现选取3月1日与3月5日的两组数据作为检验数据,若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问中所得的线性回归方程是否可靠?(参考公式:回归直线的方程是,其中,)18、(本小题满分12分)一个四棱锥的三视图和直观图如图4所示,其中俯视图中.为侧棱的中点.求证:平面;若为侧棱上的一点,且,则为何值时,平面?并求此时几何体的体积.19、(本小题满分13分)如图5,曲线是以原点为中心,,为焦点的椭圆的一部分.曲线是以为顶点,为焦点的抛物线的一部分,是曲线和的交点,且为钝角,若,.求曲线和的方程;设点是上一点,若,求的面积.20、(本小题满分13分)已知数列中,,,其前项和满足(,).求证:数列为等差数列,并求的通项公式;设,求数列的前项和;设(为非零整数,),是否存在确定的值,使得对任意,有恒成立?若存在,求出的值;若不存在,说明理由.21、(本小题满分13分)已知函数是定义在上的奇函数,当时,(其中是自然对数的底,).求的解析式;设,求证:当时,且,恒成立;是否存在实数,使得当时,的最小值是?如果存在,求出实数的值;如果不存在,请说明理由.(参考公式:())湖南衡阳市xx届高三第二次联考数学(文科)参考答案6.B.【解析】设AB=a,AC=b,AD=c,由侧棱,,两两垂直,,,的面积分别为,,得ab=,bc=,ac=求得a=,b=1,c=又三棱锥与以a,b,c所作的长方体有公共的外接球,故长方体对角线长=2R,即2R= 解得R= ,∴7.C.【解析】由程序框图可知,表示落入圆内点的个数,因为P为的估计值,所以,整理得P=.故选C.8.A.【解析】∵抛物线的焦点F(,0),∴由题意知双曲线的一个焦点为F(c,0),>a,(1)即p>2a.∴双曲线方程为,∵点M是双曲线与抛物线的一个交点, 若,∴M点横坐标x= ,代入抛物线y2=8x得M,把M代入双曲线,得,解得或因为p>2a.所以舍去,故(2)联立(1)(2)两式得c=2a,即e=2.故选A.9.C.【解析】对于A,可转化为x+sinx>1,取x=0,结合函数x+sinx的连续性可知A错误,对于B取x=2,可知B错误,对于D取x=1,可知D错误,对于C,令f(x)=x-ln(1+x),则,∴f(x)在上单调递增,∴f(x)>f(0)=0,即x>ln(1+x)成立.10.C.【解析】作出函数的图象如图,直线y=m交函数图象于如图,不妨设a<b<c,由正弦曲线的对称性,可得(a,m)与(b,m)关于直线x=对称,因此a+b=1,当直线y=m=1时,由log xx x=1,解得x=xx,即x=xx,∴若满足f(a)=f(b)=f(c),(a、b、c互不相等),由a<b<c 可得1<c<xx,因此可得2<a+b+c<xx,即a+b+c∈(2,xx).故选:C.11.4【解析】略12.【解析】根据极坐标与直角坐标的转化公式可以得到曲线点,因为点在圆上,故圆在点处的切线方程为,故填.13.(-1,2)【解析】设D(x,y),因=(-6,-3),ADBC,又(x-2,y+1),∴-6(x-2)-3( y+1)=0.还有与共线,∴(x-3)-2(y-2)=0.求得x=1,y=1所以=(-1,2)14.-2.【解析】作出不等式所表示的平面区域:,由此可知x+y在点P(2,2)处取得最小值为4,又因为函数在(0,)上是减函数,所以C MAX=,故应填入-2.15.{2}.【解析】法一:依题意可知当x∈[1,2e]时,恒有0≤(k-1)x-1≤(x+1)ln x成立.当x∈[1,2e]时,由(k-1)x-1≥0恒成立,可知k≥1+恒成立,又x∈[1,2e]时, max=2,此时x=1,从而k≥2.当x∈[1,2e]时,由(k-1)x-1≤(x+1)ln x恒成立,可知k≤+1恒成立,记m(x)==ln x+,其中x∈[1,2e].从而m′(x)=ln x+-=,易知当x∈[1,2e]时,x>ln x(可以建立函数再次利用导数证明,)所以当x∈[1,2e]时,m′(x)>0,所以m(x)在x∈[1,2e]上是单调递增函数,所以k≤m(x)min+1=m(1)+1=2.综上所述可知k=2,所以实数k的取值范围为{2}.法二:由于本题的特殊性,可看出g(1)=0,h(1)=0,由题知g(1)≤f(1)≤h(1),显然f(1)=0,即k=2.h′(x)=1++ln x.在[1,2e]上,h′(x)>1=f′(x),故k=2.16.【解析】(1)因为, ………………………2分………………………4分)3cos(cos1006sin21θπθπAQAPSAPQΔ-⋅=⋅=…………………………5分)3cos(cos4)3cos(cos100400)(θπθθπθθf-⋅=-⋅=,……………………6分(2)1)62sin(212sin32coscossin32cos2)(2++=++=+=πθθθθθθθf--9分当时,即时 …………………11分答 :当时,的最大值为3. ……………………12分17.【解析】(1)的所有取值情况有:(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16),即基本事件总数为10. ……………2分 设“m ,n 均不小于25”为事件A ,则事件A 包含的基本事件为(25,30),(25,26),(30,26). ……………………4分 所以,故事件A 的概率为. ………………5分(2)由数据,求得,,.31112513301226977i ii X Y ==⨯+⨯+⨯=∑,,. 由公式,求得, ……………………8分. ………………………9分所以y 关于x 的线性回归方程为. ……………………10分(3)当x =10时,,|22-23|<2;同样,当x =8时,,|17-16|<2.所以,该研究所得到的线性回归方程是可靠的. ………………………12分18.(1)由三视图可知该四棱锥的底面ABCD 是菱形,且有一角为,边长为2,锥体高度为1。
度下学期高三数学(文科)试卷本试卷满分150分,考试时间120分钟.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}212=12A x x B x x A B ⎧⎫=-<<≤⋃=⎨⎬⎩⎭,,则 A. {}12x x -≤<B. 112x x ⎧⎫-<≤⎨⎬⎩⎭C. {}2x x <D. {}12x x ≤<2.已知()12i i a bi +=+(i 是虚数单位,,a b R ∈),则a b += A. 3-B.3C.1D. 1-3.已知,l m 是两条不同的直线,α是一个平面,则下列命题中正确的是 A.若//,,//l m l m αα⊂则 B. 若//,//,//l m l m αα则 C.若,,l m m l αα⊥⊂⊥则D. 若,//,l l m m αα⊥⊥则4.在下列双曲线方程中,表示焦点在y 轴上且渐近线方程为3y x =±的是A. 2219y x -= B. 2219x y -= C. 2219y x -= D. 2219x y -= 5.某科研机构为了研究中年人秃头是否与患有心脏病有关,随机调查了一些中年人的情况,具体数据如下表所示:根据表中数据得()22277520450530015.96810.82825750320455K K ⨯⨯-⨯=≈≥⨯⨯⨯,由,断定秃发与患有心脏病有关,那么这种判断出错的可能性为A.0.1B.0.05C.0.01D.0.001 6.执行如图所示的程序框图,则输出的S 的值是A. 1-B.23C.32D.47.已知函数()()sin ,336f x A x f x f x f x πππωϕ⎛⎫⎛⎫⎛⎫=++=--+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且 6f x π⎛⎫- ⎪⎝⎭,则实数ω的值可能是 A.2 B.3 C.4 D.58.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是A.9B.272C.18D.27A.227B.4715C.5116D.531710.已知函数()()20,0f x ax bx a b =+>>的图像在点()()1,1f 处的切线的斜率为2,则8a bab+的最小值是 A.10B.9C.8D. 3211.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为12,F F ,且两条曲线在第一象限的交点为P ,12PF F ∆是以1PF 为底边的等腰三角形.若110PF =,椭圆与双曲线的离心率分别为1212,1e e e e +,则的取值范围是 A. ()1,+∞B. 4,3⎛⎫+∞⎪⎝⎭C. 6,5⎛⎫+∞⎪⎝⎭D. 10,9⎛⎫+∞⎪⎝⎭12.已知定义在R 上的函数()()()1112f x f f x '=>满足,且恒成立,则不等式()22122x f x <+的解集为A. (),1-∞-B. ()1,+∞C. ()(),11,-∞-⋃+∞D. ()1,1-二、填空题:本题共4小题,每小题5分,共20分.13.已知向量,a b 满足()2,0,1,3a b a b ==+=,则向量,a b 所成的角为__________.14.已知实数,x y 满足约束条件4,2,311,x y x y z x y x +=⎧⎪≤=-+⎨⎪≥⎩若,则实数z 的最大值是_________.15.已知P 是抛物线24y x =上的动点,点Q 在圆()()22:331C x y ++-=上,点R 是点P 在y 轴上的射影,则PQ PR +的最小值是___________. 16.在ABC ∆中,角A,B,C 所对的边分别为21,,sinsin sin ,24B C a b c B C -+=,且 2b c +=,则实数a 的取值范围是____________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)(1)求证:{}n a 为等比数列. (2)若441112log log n n nb a a λ+==,且,求数列{}n b 的前n 项和n T .炼钢是一个氧化降碳的过程,由于钢水含碳量的多少直接影响冶炼时间的长短,因此必须掌握钢水含碳量和冶炼时间的关系.现已测得炉料熔化完毕时钢水的含碳量x 与冶炼时间y (从炉料熔化完毕到出钢的时间)的一组数据,如下表所示:(1)据统计表明,y x 与之间具有线性相关关系,请用相关系数r 加以说明(r 若0.75≥,则认为y 与x 有较强的线性相关关系,否则认为没有较强的线性相关关系,r 精确到0.001); (2)建立y 关于x 的回归方程(回归系数的结果精确到0.01);(3)根据(2)中的结论,预测钢水含碳量为160个0.01%的冶炼时间.参考公式:回归方程=y bx a +中斜率和截距的最小二乘估计分别为1221ni ii nii x ynx yb xnx==-=-∑∑,a y bx =-,相关系数1222211ni ii nni i i i x ynx yr x nx y n y ===-=⎛⎫-- ⎪⎝⎭∑∑∑参考数据:10101022111159.8,172,265448,312350,287640ii i i i i i x y xy x y ========∑∑∑,1010222211101012905i i i i x x x y ==⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭∑∑.19.(12分)如图,四边形ABCD 为梯形,AB//CD ,PD ⊥平面ABCD ,90,BAD ADC DC ∠=∠== 22,3,AB a DA a E ==为BC 的中点.(1)求证:平面PBC ⊥平面PDE.(2)在线段PC 上是否存在一点F ,使得PA//平面BDF ?若存在,指出点F 的位置,并证明;若不存在,请说明理由.20.(12分)在平面直角坐标系中,点(),A x y 到点()()121,010F F -与点,的距离之和为4. (1)试求点A 的M 的方程. (2)若斜率为12的直线l 与轨迹M 交于C,D 两点,312P ⎛⎫⎪⎝⎭,为轨迹M 上不同于C ,D 的一点,记直线PC 的斜率为1k ,直线PD 的斜率为2k ,试问12k k +是否为定值.若是,求出该定值;若不同,请说出理由.21.(12分)已知函数()()2ln 2a f x x x x a R =-∈. (1)当1a =时,判断函数()f x 的单调性;(2)若函数()()()11g x f x a x x =+-=在处取得极大值,求实数a 的取值范围.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在极坐标系中,圆C 的极坐标方程为()24cos sin 3ρρθθ=+-,若以极点O 为原点,极轴为x 轴的正半轴建立平面直角坐标系. (1)求圆C 的一个参数方程;(2)在平面直角坐标系中,(),P x y 是圆C 上的动点,试求2x y +的最大值,并求出此时点P 的直角坐标.23. [选修4-5:不等式选讲](10分)(1)求a 的值;(2)若正实数,m n 满足45m n a +=,求14233y m n m n=+++的最小值.。
绝密★启用前河北衡水中学2021届全国高三第二次联合考试文科数学本试卷4页.总分150分.考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5,6,7,8}U =,集合{1,3,5,7},{2,3,4,5}A B ==,则()UA B ⋂=( )A .{3,5}B .{2,4}C .{3,7}D .{2,5} 2,已知复数21(2)z i =-,则在复平面内z 的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.为了弘扬“扶贫济困,人心向善”的传统美德,某校发动师生开展了为山区贫困学生捐款献爱的活动.已知第一天募捐到1000元,第二天募捐到1500元,第三天募捐到2000元,……照此规律下去,该学校要完成募捐20000元的日标至少需要的天数为( ) A .6 B .7 C .8 D .94.已知向量(1,2),||2,||13a b a b ==-=,则a 与b 的夹角为( ) A .6π B .3πC .23πD .56π5.甲、乙、丙、丁4人在某次考核中的成绩只有一个人是优秀,他们的对话如下,甲:我不优秀;乙:我认为丁优秀;丙:乙平时成绩较好,乙背定优秀;丁:乙的说法是错误的若四人的说法中只有一个是真的,则考核成绩优秀者为( )A .甲B .乙C .丙D .丁6.卡西尼卵形线是1675年卡西尼在研究土星及其卫星的运行规律时发现的.在数学史上,同一平面内到两个定点(叫做焦点)的距离之积为常数的点的轨迹称为卡西尼卵形线.已知卡西尼卵形线是中心对称图形且有唯一的对称中心.若某卡西尼卵形线C 两焦点间的距离为2,且C 上的点到两焦点的距离之积为1,则C 上的点到其对称中心距离的最大值为( )A .1BCD .27.MOD 函数是一个求余函数,格式为MOD(,)M N ,其结果为两个数M ,N 作除法运算MN后的余数,例:MOD(36,10)6=,如图,该程序框图给出了一个求余的实例.若输入的6,1n v ==,则输出的u 的值为( )A .1B .2C .3D .48.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,若过点2F 作渐近线的垂线,垂足为P ,且12F PF 的面积为2b ,则该双曲线的离心率为( )A .1+B .1+C D9.已知函数()sin()(0,||)g x x ωϕωϕπ=+><的部分图象如图所示,函数()sin 2f x x ππ⎛⎫=-⎪⎝⎭,则( )A .1()22g x f x ⎛⎫=-⎪⎝⎭ B .1()22x g x f ⎛⎫=- ⎪⎝⎭C .1()22x g x f ⎛⎫=+⎪⎝⎭ D .()(21)g x f x =- 10.中医药在抗击新冠肺炎疫情中发挥了重要作用,但由于中药材长期的过度开采,本来蕴藏丰富的中药材量在不断减少.研究发现,t 期中药材资源的再生量()1t t t x f x rx N⎛⎫=-⎪⎝⎭,其中t x 为t 期中药材资源的存量,r ,N 为正常数,而t 期中药资源的利用量与存量的比为采挖强度.当t 期的再生量达到最大,且利用量等于最大再生量时,中药材资源的采挖强度为( ) A .2r B .3r C .4r D .5r 11.已知圆22:1C x y +=,直线:2l x =,P 为直线l 上的动点,过点P 作圆C 的切线,切点分别为A ,B ,则直线AB 过定点( )A .1,02⎛⎫ ⎪⎝⎭B .(0,2)C .(2,1)D .1,12⎛⎫⎪⎝⎭12.已知函数)()ln3sin 2f x x x x =+-+,则不等式2(1)41f f x ⎛⎫+-< ⎪+⎝⎭的解集是( ) A .{|11}x x x <->或 B .{|1}x x > B .{|1}x x <- D .{|11}x x -<<二、填空题:本题共4小题,每小题5分,共20分.13.已知角α的终边上有一点(2,3)P ,则cos2α的值为___________.14.若x ,y 满足约束条件1,36,24,x y x y x y -⎧⎪+⎨⎪--⎩则4z x y =+的最小值为__________.15.已知直线:l y x b =+为曲线()xf x e =的切线,若直线l 与曲线217()22g x x mx =-+-也相切,则实数m 的值为__________.16.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c,若sin sin B C =c =,则ABC 外接圆半径的最小值为______________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)已知在公比为2的等比数列{}n a 中,234,,4a a a -成等差数列. (1)求数列{}n a 的通项公式;(2)设()2125log 1,,,?,n n n a n b a n +⎧⎪=⎨⎪⎩为奇数为偶数求数列{}n b 的前2n 项和2n S . 18.(12分)某数学兴趣小组为了探究参与某项老年运动是否与性别有关的问题,对城区60岁以上老人进行了随机走访调查.得到的数据如下:从统计数据中分析得参与该项老年运动的被调查者中,女性的概率是13. (1)求22⨯列联表中p ,q ,x ,y 的值;(2)是否有90%的把握认为参与该项老年运动与性别有关?(3)若将参与该项老年运动的老人称为“健康达人”,现从参与调查的“健康达人”中按性别采用分层抽样的方法抽取6人,再从这6人中随机抽取2人进行健康状况跟踪调查,那么被跟踪调查的2人中都是男性的概率是多少?参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.19.(12分)如图,在四棱锥P ABCD -中,四边形ABCD 为菱形,2PA AB ==,PB =,60ABC ∠=︒,且平面PAC ⊥平面ABCD .(1)证明:PA ⊥平面ABCD ;(2)若M 是PC 上一点,且BM PC ⊥,求三棱锥M BCD -的体积. 20.(12分)已知椭圆2222:1(0)x y E a b a b+=>>的左、右顶点分别为A ,B ,M 是椭圆E 上一点,M 关于x 轴的对称点为N ,且14MA NB k k ⋅=. (1)求椭圆E 的离心率;(2)若椭圆E的一个焦点与抛物线2y =的焦点重合,斜率为1的直线l 与E 相交于P ,Q 两点,在y 轴上存在点R ,使得以线段PQ 为直径的圆经过点R ,且()0RQ RP PQ +⋅=,求直线l 的方程. 21.(12分) 已知函数()(0)xa xf x a xe-=>. (1)求函数()y f x =的单调区间;(2)在区间,2a ⎡⎫+∞⎪⎢⎣⎭上,()f x 是否存在最大值与最小值?若存在,求出最大值与最小值;若不存在,请说明理由.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.【选修4-4:坐标系与参数方程】(10分)在直角坐标系xOy 中,圆C的参数方程为2,x y αα⎧=+⎪⎨=⎪⎩(α为参数)以坐标原点O 为极点,x轴的正半轴为极轴建立极坐标系,点A 的极坐标为4π⎛⎫⎪⎝⎭. (1)求圆C 的普通方程及极坐标方程;(2)过点A 的直线l 与圆C 交于M ,N 两点,当MCN 面积最大时,求直线l 的直角坐标方程. 23.【选修4-5:不等式选讲】(10分) 设函数()1|21|f x x x =---. (1)求不等式()1f x -的解集;(2)若不等式()1f x ax <-恒成立,求实数a 的取值范围.河北衡水中学2021届全国高三第二次联合考试·文科数学一、选择题1.B 【解析】由题意得{2,4,6,8}UA =,所以(){2,4}U AB ⋂=.2.D 【解析】复数21134(2)342525z i i i ===+--,则342525z i =-,所以在复平面内z 对应的点位于第四象限.3.C 【解析】设第n 天募捐到n a 元,则数列{}n a 是以1000为首项,500为公差的等差数列,所以其前n 项和250(3)n S n n =+.因为7817500,22000S S ==,所以至少需要8天可完成募捐目标.4.D 【解析】因为||13a b -=,所以2()13a b -=,即22213a a b b -⋅+=.设a 与b 的夹角为θ,则32cos 413θ-⨯+=,解得cos 2θ=-,所以a 与b 的夹角为56π. 5.A 【解析】假设甲优秀,则甲、乙、丙说法错误,丁说法正确,满足题设要求;假设乙优秀,则乙说法错误,甲、丙、丁说法正确,不满足题设要求;假设丙优秀,则乙、丙说法错误,甲、丁说法正确,不满足题设要求;假设丁优秀,则丙、丁说法错误,甲、乙说法正确,不满足题设要求综上,优秀者为甲. 6.B 【解析】设左、右焦点分别为12,F F ,以线段12F F 的中点为坐标原点,12,F F 所在的直线为x 轴建立平面直角坐标系,则12(1,0),(1,0)F F -.设曲线上任意一点(,)P x y ,1=,化简得该卡西尼卵形线的方程为()()222222x yx y +=-,显然其对称中心为(0,0).由()()222222xy x y +=-得()()222222240x y x y y +-+=-,所以()()222222x y x y ++,所以2202x y +2.当且仅当0,y x ==时等号成立,所以该卡西尼卵形线上的点.7.A 【解析】当1i =时,1v =;当2i =时,2v =;当3i =时,4v =…当7i =时,64v =,所以MOD(64,7)1u ==.8.D 【解析】双曲线22221(0,0)x y a b a b -=>>的渐近线方程为by x a=±,在2OPF 中,122222,,||,2F PF OPF PF b OF c OP a SS ab b ======,所以a b =,离心率c e a === 9.C 【解析】由题图可得()sin2g x x π=,所以由()sin 2f x x ππ⎛⎫=- ⎪⎝⎭的图象得()g x 的图象,只需将()f x 图象上的所有点向左平移12个单位长度得到12y f x ⎛⎫=+ ⎪⎝⎭的图象,再将图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,得1()sin 222x g x f x π⎛⎫=+=⎪⎝⎭.10.A 【解析】由题意得()22124t t t t t t x rx r N rN f x rx rx x N N N ⎛⎫⎛⎫=-=-+=--+⎪ ⎪⎝⎭⎝⎭,所以当2t N x =时,()t f x 有最大值4rN,所以当利用量与最大再生量相同时,采挖强度为422rNr N =. 11.A 【解析】因为P 为直线l 上的动点,所以可设(2,)P t ,由题意可得圆心C 的坐标为(0,0),以线段PC 为直径的圆N 的方程为2220x y x ty +--=.两圆方程作差,即得两圆公共弦AB 的方程为210x ty +-=,所以直线AB 过定点1,02⎛⎫⎪⎝⎭.12.D【解析】构造函数)()()2ln 3sin g x f x x x x =-=-+-.因为()()0g x g x -+=,所以()gx 是奇函数,因为)ln3lnx -=,(sin )cos 10x x x '-=-,所以()g x 在区间(0,)+∞上是减函数.因为()g x 是奇函数且(0)0g =,所以()g x 在R 上是减函数.不等式2(1)41f f x ⎛⎫+-< ⎪+⎝⎭等价于22(1)201f f x ⎛⎫-+--< ⎪+⎝⎭,即2(1)(1)1g g g x ⎛⎫<--= ⎪+⎝⎭,所以211x >+,解得11x -<<. 二、填空题13.513- 【解析】由题意得sin α==,则225cos212sin 121313αα⎛=-=-⨯=- ⎝⎭. 14.325【解析】作出约束条件表示的可行域如图中阴影部分所示,所以当目标函数过直线36,24x y x y +=-=-的交点224,55⎛⎫⎪⎝⎭时,z 取最小值,所以min 224324555z =⨯+=.15.4或2- 【解析】设直线:l y x b =+与曲线()xf x e =相切于点()00,xx e ,由()001xf x e '==,得00x =,所以切点坐标为(0,1),所以直线l 的方程为1y x =+.又由直线l 与曲线()g x 相切,得217122x mx x -+-=+,化简得222(1)90,4(1)360x m x m --+=∆=--=,解得4m =或2m =-.16.1 【解析】由sinsin B C =,得sin cos 2sin sin cos B B C C C B +=-,即sin 2sin A B C =,所以由正弦定理得2a c=.所以22262cos 2a b c C ab +--==,所以62sin C +,设ABC 外接圆半径为R ,因此22(31)sin cR C=-,所以31R -1.三、解答题17.解:(1)因为数列{}n a 的公比q 为2, 所以2131412,4,484a a a a a a ==-=-.因为234,,4a a a -成等差数列, 所以1118284a a a =+-,解得12a =,所以2nn a =. (6分)(2)由(1)可得51,?,.?n nn n b n +⎧⎪=⎨⎪⎩为奇数,为偶数 (8分)所以奇数项是以6为首项,10为公差的等差数列,偶数项是以2为首项,2为公比的等比数列, 所以()()21321242n n n S b b b b b b -=+++++++()(616104)242n n =+++-++++()212(6104)212nn n -+-=+- 21522n n n +=++-12252n n n +=++-. (12分)18.解:(1)由题意得1163p p =+,解得8p =,所以40832q =-=, (2分) 所以16824,443276x y =+==+=. (4分)(2)由列联表中的数据可得2K 的观测值2100(1632844)0.585 2.70660402476k ⨯⨯-⨯=≈<⨯⨯⨯. (5分) 所以没有90%的把握认为参与该项老年运动与性别有关. (7分) (3)由(1)得“健康达人”共有24人,其中男性16人,女性8人,所以抽样比61244k ==. (7分) 因此按性别分层抽样抽取的6人中有男性11644⨯=人,记为1234,,,A A A A ,女性1824⨯=人,记为12,B B , (9分) 从这6人中抽取2人的所有方式为()12,A A ,()13,A A ,()14,A A ,()11,A B ,()12,A B ,()23,A A ,()24,A A ,()21,A B ,()22,A B ,()34,A A ,()31,A B ,()32,A B ,()41,A B ,()42,A B ,()12,B B ,共15种情况,其中符合题目要求的是6种情况,所以抽取的全是男性的概率为62155P ==. (12分)19.(1)证明:因为四边形ABCD 为菱形, 所以BD AC ⊥.因为平面PAC ⊥平面ABCD ,平面PAC ⋂平面,ABCD AC BD =⊂平面ABCD , 所以BD ⊥平面PAC . (2分)因为PA ⊂平面PAC ,所以PA BD ⊥. (3分)又因为2,PA AB PB === 所以222PA AB PB +=,所以PA AB ⊥. (5分) 又因为,AB BD ⊂平面,ABCD AB BD B ⋂=, 所以PA ⊥平面ABCD . (6分) (2)解:由(1)得PA ⊥平面ABCD , 因为AC ⊂平面ABCD ,所以PA AC ⊥, (8分)所以PC ==,所以PBC 为等腰三角形.在PBC 中,由余弦定理得2223cos 24PB PC BC BPC PB PC +-∠==⋅. 因为BM PC ⊥,所以34PM PB =,所以34PM PC =. 易得14CM PC =, (10分)又1sin1202BCDSBC CD =⋅︒=,所以111112443436BCDM BCD P BCDV V S PA--==⨯⨯=⨯=三棱锥三棱锥.(12分)20.解:(1)由椭圆E的方程可得(,0),(,0)A aB a-.设()00,M x y,则()00,N x y-,所以200022000.MA NBy y yk kx a x a x a-⋅=⋅=-+--.又点()00,M x y在椭圆E上,所以2200221x ya b+=,所以22220002221y x a xb a a-=-=,所以2222214MA NBy bk kx a a⋅=-==-,所以椭圆E的离心率e====.(4分)(2)由题意知椭圆E的一个焦点为,所以椭圆E的标准方程为2214xy+=.(5分)设直线l的方程为()()1122,(0,),,,,y x m R t P x y Q x y=+,线段PQ的中点为(),S SS x y,联立221,4,xyy x m⎧+=⎪⎨⎪=+⎩消去y,得2258440x mx m++-=,则()()2226420441650m m m∆=--=->,解得25m<,所以21212844,55m mx x x x-+=-=,(7分)所以124,255S S Sx x m mx y x m+==-=+=,所以4,55m mS⎛⎫- ⎪⎝⎭.(8分)由()0RQ RP PQ +⋅=,得RS PQ ⊥, (9分)所以511405m t m -⨯=-⎛⎫-- ⎪⎝⎭, 解得35mt =-. (10分) 又因为以线段PQ 为直径的圆过点R , 所以PR QR ⊥,所以12121y t y tx x --⋅=-. 又1122,y x m y x m =+=+,代入上式整理得()212122()()0x x m t x x m t +-++-=,即()222244880555m m m -⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,解得1m =±.所以直线l 的方程为1y x =±. (12分)21.解:(1)由题意得函数()f x 的定义域为(,0)(0,)-∞⋃+∞, (1分)则22()xx ax af x x e --'=. (3分)令()0f x '=,得12x x ==.因为0a >,所以120,0x x <>.当x 在定义域上变化时,()f x '的变化情况如下表:所以函数()y f x =的单调递增区间为,,22a a ⎛⎛⎫-+-∞+∞⎪ ⎪ ⎪⎝⎭⎝⎭,单调递减区间为,0,22a a ⎛⎫⎛⎫-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. (6分)(2)令()0xa xf x xe -==,得x a =, 则a 是函数()f x 的唯一零点. (7分)因为20a x a -=-=<, 所以20a x <<,所以202aa x <<<. 当0x a <<时,()0f x >;当x a >时,()0f x <. (9分)由(1)可知函数()f x 在区间2,2ax ⎡⎫⎪⎢⎣⎭上单调递减,在区间()2,x +∞上单调递增, (10分)所以()f x 在区间,2a ⎡⎫+∞⎪⎢⎣⎭上的最大值为22a a f e -⎛⎫= ⎪⎝⎭,最小值为()2222x a x f x x e -=,其中2x = (12分)22.解:(1)圆C 的直角坐标方程为22(2)8x y -+=, (2分) 极坐标方程为24cos 4ρρθ-=. (4分)(2)4A π⎛⎫⎪⎝⎭的直角坐标为(4,4)A . (5分) 111||||sin ||||84222MCNSCM CN MCN CM CN =∠=⨯=, 当90MCN ∠=︒时,面积最大,此时,圆心C 到直线l 的距离22d =⨯=. (6分) 当直线l 的斜率不存在时,直线l 的方程为4x =,满足题意; (7分) 当直线l 的斜率存在时,设直线l 的方程为4(4)y k x -=-,即440kx y k -+-=,圆心C 到直线l的距离2d ==,解得34k =,即3440x y -+=. (9分) 综上,直线l 的方程为4x =或3440x y -+=. (10分)23.解:(1)由题意得1,,2()132,,2x x f x x x ⎧-⎪⎪=⎨⎪-<⎪⎩ (2分)当12x时,令1x --,解得112x ; 当12x <时,令321x --,解得1132x <. (4分) 综上所述,()1f x -的解集为1,13⎡⎤⎢⎥⎣⎦. (5分)(2)由(1)得1,,2()132,,2x x f x x x ⎧-⎪⎪=⎨⎪-<⎪⎩当12x,-1x ax -<-,即(1)10a x +->, (6分) 此时,应有10,1(1)10,2a a +>⎧⎪⎨+->⎪⎩解得1a >; (7分)当12x <时,321x ax -<-,即(3)10a x -+>, (8分) 此时,应有30,1(3)10,2a a -⎧⎪⎨-+⎪⎩解得13a . (9分)综上所述,实数a 的取值范围是(1,3]. (10分)。
2021年高三下学期第二次教学质量检测(二模)数学(文)试题含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上相应区域,写在本试卷上或超出相应答题区域的答案无效.4.保持卷面清洁,字迹工整,笔记清晰,不折叠.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合,,则( )....2. 若复数是纯虚数,则的值为( )....3.已知,则下列不等式一定成立的是 ( ). . . .4. 是成立的().必要不充分条件.充分不必要条件.充要条件.既不充分也不必要条件5. 已知两点,向量,若,则实数( ). . . .正(主)视图6. 如图,一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积为().1 .2 .3 .47. 若圆与圆的公共弦长为,则().1 .1.5 .2 .2.58.矩形中,,为的中点,在矩形内随机取一点,则取到的点到的距离大于1的概率为( ). . . .9. 已知为等比数列,,且成等差数列,则等于(). . . .10. 函数在上的图像大致是 ( )11.给出下列五个结论:①回归直线一定过样本中心点;②命题均有的否定是:使得;③将函数的图像向右平移后,所得到的图像关于y轴对称;④是幂函数,且在上递增;⑤函数恰好有三个零点;其中正确的结论为().①②④.①②⑤.④⑤.②③⑤12.已知,则满足不等式的实数的集合是(). . . .第Ⅱ卷(非选择题共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个题目考生都必须作答.第22题~第24题为选做题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分. 请把答案写在答题卷上..........)13.已知函数若,则 __________.14. 设双曲线的渐近线方程为,则该双曲线的离心率为15. 已知实数满足约束条件,若的最大值为,则的最小值为.16.在平面直角坐标系中,若曲线(为常数)过点,该曲线在P处的切线与直线平行,则的值是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)若向量(3sin,sin),(cos,sin)a x xb x xωωωω==,其中,记函数,若函数的图像相邻两条对称轴之间的距离是.(Ⅰ)求的表达式;(Ⅱ)设三内角的对应边分别为,若,,,求的面积。
2021-2022年高三下学期第二次周练数学(文)试题含答案考生注意:1、 本试卷共150分,考试时间120分钟。
2、 请将各题答案填在试卷后面的答题卷上。
3、 本试卷注意考试内容:高考全部内容。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、设全集{|33,},{1,2},{2,1}I x x x Z A B =-<<∈==--,则等于( ) A . B . C . D .2、复数的虚部是( )A .1B .-1C .D .3、已知,并且是第三象限角,那么的值等于( ) A . B . C . D .4、已知函数()1()42(1)4xx f x f x x ⎧≥⎪=⎨⎪+<⎩,则的值为( )A .B .C .D .5、数列的前n 项和为,且,则数列的首项为( ) A .1或 B . C . D .-1或6、已知点在抛物线上,则点P 到抛物线焦点F 的距离为( )A.1 B.2 C.3 D.47、已知向量(4,1),(,5),,(0,)=-=+∈+∞,且,则取最小值时的值为()a xb y x x yA.3 B.1 C.2 D.8、某多面体的三视图如图所示,则此多面体的体积为()A.6 B.9 C.12 D.189、将函数的图象向左平移个单位,平移后的图象如图所示,则平移后的图象所对应的函数的解析式是()A. B.C. D.10、在如图所示的撑血框图中,如果输入的,那么输出的等于()A.3B.4C.5D.611、如图,在半径为1的圆内有四段以1为半径的相等弧,现向园内投掷一颗豆子(假设豆子不落在线上),则恰好落在阴影部分的概率为()A. B.C. D.12、已知分别是双曲线的左右焦点,A 为双曲线的左顶点,以为直径的圆交双曲线某条渐近线与两点,且满足,则该双曲线的离心率( ) A . B . C . D .第Ⅱ卷本卷包括必考题和选考题两部分,第(13题)-第(21)题为表题,每个题目考生必须作答,第(22)题-第(24)题为选考题,考生根据要求作答二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
2021年高三下学期第二次双周考试数学(文)试题含答案
一、选择题(本大题共12小题,每小题5分,共60分.在小题给出的四个选项中,只有一项是符合题目要求的.)
1、已知U=R,集合,则=()
A. B. C. D.
2、复数z=
1-3i
1+2i
,则()
A. |z|=2
B. z的实部为1
C. z的虚部为-i
D. z的共轭复数为-1+i
3、下列判断错误的是()
A.“”是“a < b”的充分不必要条件
B.命题“”的否定是“”
C.“若a=1,则直线和直线互相垂直”的逆否命题
D.若为假命题,则p,q均为假命题
4、已知f(x)=2sin(ωx+)的部分图像如图所示,则f(x)的表达式为()
A.f(x)=2sin(3
2x+)
B.f(x)=2sin(3
2x+)
C.f(x)=2sin(4
3x+)
D.f(x)=2sin(4
3x+
25
18)
5、若x、y满足不等式,则z=3x+y的最大值为()
A. 11
B.
C. 13
D.
6、过点可作圆的两条切线,则实数的取值范围为()A.或B.
C.或D.或
俯视图
正视图
7、在△ABC 中,若AB →2=AB →·AC →+BA →·BC →+CA →·CB →
,则△ABC 是( ) A .等边三角形 B .锐角三角形 C .钝角三角形 D .直角三角形 8、已知函数是定义在上的奇函数,且满足,当时,则函数的零点是( ) A . B . C . D .
9、某几何体的三视图如图所示,则该几何体的
体积为( )
A 、1136
B 、 3
C 、533
D 、433
10.已知条件:;条件:,若是的充分不必要条件,则的取值范围是( ) A . B . C . D .
11.若直线与曲线相交于两点,则直线的倾斜角的取值范围是( ) A .
B .
C .
D .
12、函数的值域是 ( )
A .
B .
C .
D .
二、填空题。
(本大题共4小题,每小题5分,共20分.请把正确答案填写在横线上)
13.如果实数满足关系,则的最小值是 . 14.设,若,则的最小值为 .
15、若log a (a 2+1)<log a 2a <0,则实数a 的取值范围是 . 16.已知表示两条不同直线,表示三个不同平面,给出下列命题: ①若则;
②若,垂直于内的任意一条直线,则; ③若则;
④若不垂直于平面,则不可能垂直于平面内的无数条直线; ⑤若∥,则∥.
上述五个命题中,正确命题是_____________。
三、解答题(解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分12分)已知的三个角的对边分别为,且成等差数列,且.数列是等比数列,且首项,公比为.
(Ⅰ)求数列的通项公式; (Ⅱ)若,求数列的前项和.
18.(本小题满分12分)2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288
间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元。
距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成,,,,五组,并作出如下频率分布直方图(图1):
(Ⅰ)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如下表,在图2表格空白处填写正确数字,并说明是否有95℅以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
经济损失不超过4000元经济损失超
过4000元
合
计
捐款超过500元30
捐款不超过500元 6
合计
(图2)
(图1)
P (K 2≥k )
0.15 0.10 0.05 0.025 0.010 0.005 0.001 k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
附:临界值表参考公式:,.
19.(本小题满分12分)如图所示,△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,AB =2 3.
(Ⅰ)求证:AB ∥平面MCD ; (Ⅱ)求三棱锥A-BCD 的体积.
20.(本小题满分12分)已知抛物线的焦点为,过点F 作直线l 交抛物线C 于A ,B 两点.椭圆E 的中心在原点,焦点在x 轴上,点F 是它的一个顶点,且其离心率.
(Ⅰ)分别求抛物线C 和椭圆E 的方程;
(Ⅱ)经过A ,B 两点分别作抛物线C 的切线,切线与相交于点M .证明 21.(本小题满分12分)已知函数f (x )=ax +ln x (a ∈R ). (1)若a =2,求曲线y =f (x )在x =1处切线的斜率; (2)求f (x )的单调区间;
(3)设g (x )=x 2-2x +2,若对任意x 1∈(0,+∞),均存在x 2∈[0,1],使得 f (x 1)<g (x 2),求a 的取值范围.
请考生在第22、23、24题中任选一道作答,多答、不答按本选考题的首题进行评分.(本小题满分10分)
22.选修:几何证明选讲
如图,圆内接四边形的边与的延长线交于点,点在的延长线上. (Ⅰ)若,求的值; (Ⅱ)若,证明:.
23.选修;坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数),若以原点为极点,轴正半轴为极轴建立极坐标系,已知圆的极坐标方程为,设是圆上任一点,连结并延长到,使.
(Ⅰ)求点轨迹的直角坐标方程;
(Ⅱ)若直线与点轨迹相交于两点,点的直角坐标为,求的值. 24.选修:不等式选讲 已知函数,且恒成立. (Ⅰ)求实数的最大值;
(Ⅱ)当取最大值时,求不等式的解集.
F
E D
C
B
A
一.选择题
二.填空题
13. 2 14. 15. 1
2<a <1 16. ②⑤
17.解:(Ⅰ)成等差数列,
(Ⅱ)
; 213222)1(2221+⨯+⨯-++⨯+⨯=n n n n n S
2111(12)2222222n n n n n S n n +++-=++
+-=--
18.解:(Ⅰ)记每户居民的平均损失为元,则:
(10000.0001530000.000250000.00009
70000.0000390000.00003)20003360
x =⨯+⨯+⨯+⨯+⨯⨯=
(Ⅱ)如图:
,所以有
95℅以上的把握认为捐款数额是否
多于或少于500元和自身经济损失是否4000元 有关. 20.解:
(Ⅰ)由已知抛物线的焦点为可得抛物线的方程为.设椭圆的方程为,半焦距为.由已知可得:
222132b c a a b c =⎧⎪
⎪=⎨
⎪=+⎪⎩,解得 .所以椭圆的方程为:.
(Ⅱ)显然直线的斜率存在,否则直线与抛物线只有一个交点,不合题意, 故可设直线的方程为 ,
由, 消去并整理得 ∴ .
∵抛物线的方程为,求导得,∴过抛物线上两点的切线方程分别是,,即,,解得两条切线的交点的坐标为,即,
12
2121(
,2)(,)2x x FM AB x x y y +⋅=-⋅--=
∴.
21.
经济损失不超过4000元
经济损失超过4000元
合计
捐款超过500元 30 9 39 捐款不超过500元
5 6 11 合计
35
15
50
22.(Ⅰ) 四点共圆,, 又,∽,, ,. (Ⅱ),
又四点共圆,,, 又,∽, 23.(Ⅰ)圆的直角坐标方程为,设,则, ∴,
∴这就是所求的直角坐标方程. (Ⅱ)把代入,即代入 得,即
令对应参数分别为,则,
所以3242121+=+=+=+t t t t PB PA . 24.(Ⅰ)()22
2222
14114()sin cos 9sin 9cos 9sin cos f x x x x x x x ⎛⎫=
+=++ ⎪⎝⎭
=222214sin cos 1
(5)(519cos sin 9
x x x x +
+≥+=, 当且仅当时等号成立,所以的最大值为1. (Ⅱ)由题, 则由得,,
不等式的解集为
€u <T30318 766E 癮
x!d?21026 5222 刢.39972 9C24 鰤K。