假设检验的基本概念与基本思想
- 格式:ppt
- 大小:934.50 KB
- 文档页数:20
第四节假设检验的基本原理与方法4.4.1假设检验的基本思想[理解]假设检验是除参数估计之外的另一类重要的统计推断问题。
它的基本思想可以用小概率原理来解释。
所谓小概率原理,就是认为小概率事件在一次试验中是几乎不可能发生的。
也就是说,对总体的某个假设是真实的,那么不利于或不能支持这一假设的事件A在一次试验中是几乎不可能发一的;要是在一次试验中事件A竟然发生了,我们就有理由怀疑这一假设的真实性,拒绝这一假设。
例7:某公司想从国外引进一种自动加工装置。
这种装置的工作温度X 服从正态分布(μ,52),厂方说它的平均工作温度是80度。
从该装置试运转中随机测试16次,得到的平均工作温度是83度。
该公司考虑,样本结果与厂方所说的是否有显著差异?厂方的说法是否可以接受?类似这种根据样本观测值来判断一个有关总体的假设是否成立的问题,就是假设检验的问题。
我们把任一关于单体分布的假设,统称为统计假设,简称假设。
上例中,可以提出两个假设:一个称为原假设或零假设,记为H:μ=80(度);另一个称为备择假设或对立假设,记为H1:μ≠80(度)这样,上述假设检验问题可以表示为:H0:μ=80 H1:μ≠80原假设与备择假设相互对立,两者有且只有一个正确,备择假设的含义是,一旦否定原假设H0,备择假设H1备你选择。
所谓假设检验问题就是要判断原假设H是否正确,决定接受还是拒绝原假设,若拒绝原假设,就接受备择假设。
应该如何作出判断呢?如果样本测定的结果是100度甚至更高(或很低),我们从直观上能感到原假设可疑而否定它,因为原假设是真实时,在一次试验中出现了与80度相距甚远的小概率事件几乎是不可能的,而现在竟然出现了,当然要拒绝原假设H。
现在的问题是样本平均工作温度为83度,结果虽然与厂方说的80度有差异,但样本具有随机性,80度与83度之间的差异很可能是样本的随机性造成的。
在这种情况下,要对原假设作出接受还是拒绝的抉择,就必须根据研究的问题和决策条件,对样本值与原假设的差异进行分析。
第四节假设检验的基本原理与方法一、假设检验的基本思想[理解] 小概率的反证法假设检验是除参数估计之外的另一类重要的统计推断问题。
它的基本思想可以用小概率原理来解释。
所谓小概率原理,就是认为小概率事件在一次试验中是几乎不可能发生的。
也就是说,对总体的某个假设是真实的,那么不利于或不能支持这一假设的事件A在一次试验中是几乎不可能发一的;要是在一次试验中事件A竟然发生了,我们就有理由怀疑这一假设的真实性,拒绝这一假设。
例1:某公司想从国外引进一种自动加工装置。
这种装置的工作温度X服从正态分布(μ,52),厂方说它的平均工作温度是80度。
从该装置试运转中随机测试16次,得到的平均工作温度是83度。
该公司考虑,样本结果与厂方所说的是否有显著差异?厂方的说法是否可以接受?类似这种根据样本观测值来判断一个有关总体的假设是否成立的问题,就是假设检验的问题。
我们把任一关于单体分布的假设,统称为统计假设,简称假设。
上例中,可以提出两个假设:一个称为原假设或零假设,记为H0:μ=80(度);另一个称为备择假设或对立假设,记为H1:μ≠80(度)这样,上述假设检验问题可以表示为:H0:μ=80 H1:μ≠80原假设与备择假设相互对立,两者有且只有一个正确,备择假设的含义是,一旦否定原假设H0,备择假设H1备你选择。
所谓假设检验问题就是要判断原假设H0是否正确,决定接受还是拒绝原假设,若拒绝原假设,就接受备择假设。
应该如何作出判断呢?如果样本测定的结果是100度甚至更高(或很低),我们从直观上能感到原假设可疑而否定它,因为原假设是真实时,在一次试验中出现了与80度相距甚远的小概率事件几乎是不可能的,而现在竟然出现了,当然要拒绝原假设H0。
现在的问题是样本平均工作温度为83度,结果虽然与厂方说的80度有差异,但样本具有随机性,80度与83度之间的差异很可能是样本的随机性造成的。
在这种情况下,要对原假设作出接受还是拒绝的抉择,就必须根据研究的问题和决策条件,对样本值与原假设的差异进行分析。
假设检验的基本思想和一般步骤
检验(hypothesis testing)是统计学中常用的一种方法,用于得出对某一性
质具有一定证据基础的结论。
它以假设检验为基础,将统计学原理用于科学研究,以检验一些假设或猜测是否可以被科学地接受。
检验的基本思想是找出统计数据中与原假设不相符合的内容,即在实践结果中
发现与假设不符的结果,证明我们的假设正确或错误。
然而,有时实践中的结果并不能完全证明或排除假设,这时候就要利用统计学方法来做检验,以定量分析参数的趋势,从而给出统计学上的结论。
一般的检验步骤主要分为以下几步:
1、确定必要的基础信息:需要采集一定样本数据,研究对象,所测参数及其
标准。
2、建立假设:根据大致了解的思路,建立正态分布假设,或者拟合度等参数,观察收敛性。
3、求事实统计量:计算有关参数,以显示差别程度。
4、计算置信水平:利用某个置信度,例如95%,用数值检验假设对比,验证
是否可能出现异常结果。
5、做出结论:根据检验的结果,得出假设的可行性。
从而,通过假设检验来检验假设,可以更加客观地得出结论,增强科学研究的
权威性,提高研究水平。
应用统计学第九章假设检验朱佳俊博士Applied Statistics 第一节假设检验的基本问题一、假设检验的基本概念对总体的概率分布或分布参数作出某种“假设”,根据抽样得到的样本观测值,运用数理统计的分析方法,检验这种“假设”是否正确,从而决定接受或拒绝“假设”,这就是本章要讨论的假设检验问题。
1、假设定义为一个调研者或管理者对被调查总体的某些特征所做的一种假定或猜想。
是对总体参数的一种假设。
常见的是对总体均值或比例和方差的检验;在分析之前,被检验的参数将被假定取一确定值。
2、假设检验(hypothesis test)(1)概念–事先对总体参数或分布形式作出某种假设–然后利用样本信息来判断原假设是否成立(2)类型–参数假设检验–非参数假设检验(3)特点–采用逻辑上的反证法–依据统计上的小概率原理... 因此我们拒绝假设 =20... 如果这是总体的真实均值样本均值μ= 50抽样分布H0这个值不像我们应该得到的样本均值...203、假设检验的基本思想小概率原理是假设检验的基本依据,即认为小概率事件在一次试验中几乎是不可能发生的。
当进行假设检验时,先假设H 0正确,在此假设下,若小概率事件A出现的概率很小,例如P (A )=0.01,经过取样试验后,A 出现了,则违反了上述原理,我们认为这是一个不合理的结果。
4、小概率原理5、原假设和备择假设(1)原假设(null hypothesis)研究者想收集证据予以支持的假设也称“研究假设”总是有符号≠, <或>表示为H 1–H 1 :μ<某一数值,或μ>某一数值–例如, H 1 :μ< 10cm ,或μ>10cm(2)备择假设(alternative hypothesis)研究者想收集证据予以支持的假设也称“研究假设”总是有符号≠, <或>表示为H1–H1 :μ<某一数值,或μ>某一数值–例如, H1 :μ< 10cm,或μ>10cm6、双侧检验与单侧检验(1)备择假设没有特定的方向性,并含有符号“≠”的假设检验,称为双侧检验或双尾检验(two-tailed test)(2)备择假设具有特定的方向性,并含有符号“>”或“<”的假设检验,称为单侧检验或单尾检验(one-tailed test)–备择假设的方向为“<”,称为左侧检验–备择假设的方向为“>”,称为右侧检验双侧检验与单侧检验(假设的形式)单侧检验H1: μ> μ0H1:μ< μ0H1: μ≠μ0备择假设H: μ≤μ0H: μ≥μ0H: μ= μ0原假设右侧检验左侧检验双侧检验假设二、假设检验中的两类错误与显示性水平1、假设检验中的两类错误(1)第Ⅰ类错误(弃真错误)–原假设为真时拒绝原假设–第Ⅰ类错误的概率记为α•被称为显著性水平(2)第Ⅱ类错误(取伪错误)–原假设为假时未拒绝原假设–第Ⅱ类错误的概率记为β(Beta)2、显著性水平(significant level)(1)是一个概率值(2)原假设为真时,拒绝原假设的概率–被称为抽样分布的拒绝域(3)表示为α(alpha)–常用的α值有0.01, 0.05, 0.10(4)由研究者事先确定三、检验统计量与拒绝域(一)检验统计量(test statistic)1、根据样本观测结果计算得到的,并据以对原假设和备择假设作出决策的某个样本统计量2、对样本估计量的标准化结果–原假设H为真–点估计量的抽样分布点估计量的抽样标准差假设值—点估计量标准化检验统计量=3.标准化的检验统计量显著性水平和拒绝域(双侧检验)抽样分布临界值临界值α/2α/2 样本统计量拒绝H 0拒绝H 01 -α1 -置信水平显著性水平和拒绝域(单侧检验)0临界值α样本统计量拒绝H 0抽样分布1 -α置信水平(二)决策规则1、给定显著性水平α,查表得出相应的临界值z α或z α/2,t α或t α/22、将检验统计量的值与α水平的临界值进行比较3、作出决策–双侧检验:I 统计量I > 临界值,拒绝H 0–左侧检验:统计量< -临界值,拒绝H 0–右侧检验:统计量> 临界值,拒绝H 0四、利用P 值进行决策(一)什么是P 值(P -value)1、在原假设为真的条件下,检验统计量的观察值大于或等于其计算值的概率–双侧检验为分布中两侧面积的总和2、反映实际观测到的数据与原假设H 0之间不一致的程度3、被称为观察到的(或实测的)显著性水平4、决策规则:若p 值<α, 拒绝H 0双侧检验的P 值α/ 2α/ 2Z拒绝H 0拒绝H 0临界值计算出的样本统计量计算出的样本统计量临界值1/2 P 值1/2 P 值临界值α样本统计量拒绝H 0抽样分布1 -1 -α置信水平计算出的样本统计量P 值左侧检验的P 值临界值α拒绝H 0抽样分布 1 -1 -α置信水平计算出的样本统计量P 值右侧检验的P 值五、假设检验步骤1、陈述原假设和备择假设2、从所研究的总体中抽出一个随机样本3、确定一个适当的检验统计量,并利用样本数据算出其具体数值4、确定一个适当的显著性水平,并计算出其临界值,指定拒绝域5、将统计量的值与临界值进行比较,作出决策–统计量的值落在拒绝域,拒绝H 0,否则不拒绝H 0–也可以直接利用P 值作出决策第二节一个总体参数的检验z 检验(单尾和双尾)z 检验(单尾和双尾)t 检验(单尾和双尾)t 检验(单尾和双尾)z 检验(单尾和双尾)z 检验(单尾和双尾)χ2 检验(单尾和双尾)χ2 检验(单尾和双尾)均值均值一个总体一个总体比率比率方差方差是z 检验x z nμσ−=否z 检验ns x z 0μ−=一、总体均值的检验σ是否已知小样本容量n大σ是否已知否t 检验ns x t 0μ−=是z 检验nx z σμ0−=(一)总体均值的检验(大样本)•1.假定条件–正态总体或非正态总体大样本(n ≥30)2.使用z 检验统计量σ2已知:σ2未知:)1,0(~0N nx z σμ−=)1,0(~0N nsx z μ−=1、总体均值的检验(σ2已知)【例】一种罐装饮料采用自动生产线生产,每罐的容量是255ml ,标准差为5ml 。