广义预测控制
- 格式:docx
- 大小:21.22 KB
- 文档页数:2
GPC实验报告引言概述:GPC(Generalized Predictive Control)是一种广义预测控制方法,首次由Clarke等人于1985年提出。
它是一种基于模型的控制方法,通过使用系统模型和预测算法来实现控制目标。
本实验报告旨在详细介绍GPC的原理和应用,并通过实验结果验证其控制性能。
正文内容:1. GPC的基本原理1.1 GPC的背景和发展GPC起源于经典的预测控制方法,通过将系统的模型与预测算法结合,实现对系统的控制。
随着计算能力的提高,GPC得到了广泛的应用。
1.2 GPC的基本思想GPC的基本思想是通过预测模型对未来一段时间内的系统行为进行预测,并根据这些预测结果计算控制信号。
它的核心理念是将预测作为控制决策的基础,以实现对系统的优化控制。
1.3 GPC的算法流程GPC的算法流程可以分为四个主要步骤:建立系统模型、预测未来的系统响应、计算控制信号和实施控制。
这些步骤将在后续章节中详细介绍。
2. GPC的关键技术2.1 GPC的系统建模GPC需要准确的系统模型来进行预测和控制。
建立系统模型的方法有很多,包括物理建模、基于数据的建模和混合建模等。
实验中,我们将选择适合的建模方法来获得准确的系统模型。
2.2 GPC的预测算法预测是GPC的核心部分,影响着控制性能的优劣。
常用的预测算法包括ARX模型、ARMAX模型和基于神经网络的模型等。
我们将选择合适的预测算法,并优化其参数,以获得准确的预测结果。
2.3 GPC的控制器设计基于预测结果,GPC使用优化算法计算最优的控制信号。
控制器设计需要考虑多个因素,包括控制目标、系统约束和性能指标等。
我们将设计合适的控制器结构,并调节参数以满足控制要求。
2.4 GPC的实时实施GPC是一种实时控制方法,需要考虑计算能力和实时性要求。
实验中,我们将使用计算机软件来实时实施GPC控制,并对实时性能进行验证。
3. GPC的应用案例3.1 GPC在工业过程控制中的应用GPC在工业过程控制中具有广泛的应用,包括化工、电力、制造等领域。
广义预测控制(GPC)1.GPC 基本原理介绍广义预测控制 (GPC) 是牛津大学的Clarke 等于1987年提出的,基于参数模型,它是以(CARIMA )受控自回归积分滑动平均模型的基础,并结合辨识和自校正机制,表现出良好的鲁棒性。
特点:(1)基于CARIMA 模型;(2)目标函数中对控制增量加权的考虑; (3)利用输出的远程预报; (4)控制时域长度概念的引入; (5)丢番图方程的递推求解; 1.1 预测模型假设系统基于下面的CARIMA 模型,)1(/)()1()()()(11∆ξk k u z B k Y z A +-=--其中,),(),(k u k y 和)(k ξ是系统的输出、输入和干扰信号。
a a n n z a z a z A ---+++= 1111)(,b b n n z b z b b z B +++=-- 1101)(,11--=z ∆,(1-z 是向后移时间算子),模型即 ∆ξ/)()1()2()1()()1()(101k n k u b k u b k u b n k y a k y a k y b n a n b a +--++-+-=-++-+ ,,/)()1()2()1()()1()(101∆ξk n k u b k u b k u b n k y a k y a k y b n a n b a +--++-+-+-----=i i b a ,是系数,用数据辨识得到。
为得到)(k y 的j 步向前预测值)(j k y +,考虑下面的丢番图方程组:Nj z F z z A z E j j j ,,1)()()(1111 =+∆=---- (2)简写成:j jj F z A E -+=∆1,其中j E 和j F 为待求多项式,a j j n F j E =∂-=∂,1,)1(110---+++=j j j z e z e e E ,aan n j j j j z f z f f F --+++= 11,)()1()(j k E j k u B E j k y A E j j j ++-+=+ξ∆∆ (3)将(2)代入(3)得:)()1()()1(j k E j k u B E j k y F z j j j j ++-+=+--ξ∆)()()1()(j k E k y F j k u B E j k y j j j +++-+=+ξ∆ (4)得到未来输出)(j k y +的预测值:),,1()()1()|(ˆN j k y F j k u B E k j k yj j =+-+∆=+ (5)为将)1(-+j k u B E j ∆中已知信息和未知信息分离开来,在考虑另一组丢番图方程:Nj H z G B E jj j j ,,1 =+=- (6)其中j G 和j H 为待求多项式,1,1-=∂-=∂b j j n H j G ,)1(1110----+++=j j j z G z g g G ,)1(1110----+++=b bn n jj j j z h z h h H , 将(6)代入(5)得:)()1()()1()1()()1()()|(ˆ0j k y j k u G k y F k u H j k u G k y F j k u H z G k j k yj j j j j j j j ++-+∆=+-∆+-+∆=+-+∆+=+-(7)求解j j j j H G F E ,,,的递推算法:jj j j j j j j j j j j j H z G B E f e A e F z F z e E E A z F E z A z A -+-+--+==-=+=-===)11()10()(,)9()1(,1)8()()(0111111∆在利用MA TLAB 仿真时,可以自编函数简化之。
基于carima模型的广义预测控制器设计1. 什么是Carima模型?Carima模型是一种时间序列模型,全名为Combined AutoRegressive Integrated Moving Average (CARIMA) Model。
它可以用来描述时间序列之间的相关性和趋势,通常用于预测和建模。
CARIMA模型是由ARIMA和CAR模型组合而成的。
其中,ARIMA是自回归综合移动平均模型,CAR是条件自回归模型。
2. 什么是广义预测控制器?广义预测控制器是一种控制器设计方法,旨在通过模型预测和反馈调节来实现对系统的控制。
它可以将经验模型和对系统的先验知识结合起来,提高控制精度和可靠性。
广义预测控制器通过预测未来状态和输出,计算出控制器的优化控制信号。
预测过程是基于时间序列或动态模型进行的。
3. 基于Carima模型的广义预测控制器设计基于Carima模型的广义预测控制器设计主要包括以下步骤:3.1 建立Carima模型Carima模型可以通过时间序列数据进行建模,常用方法是最小二乘法。
建立Carima模型可以获得系统的动态特性和趋势,为后面的控制提供信息。
3.2 预测系统输出在Carima模型的基础上,可以预测系统的未来状态和输出。
预测方法可以采用ARIMA模型,也可以采用基于状态空间的预测方法。
3.3 计算控制信号根据预测结果,可以计算出控制器的优化控制信号。
计算方法可以采用模型预测控制,也可以采用基于反馈的控制方法。
3.4 调节控制器参数为了提高控制精度和可靠性,可以通过实验和仿真等方法调节控制器参数。
调节的目的是使控制信号更接近系统的期望输出。
3.5 实现控制最后,将设计好的控制器实现在系统中,实现对系统的控制。
控制器的实现可以通过硬件控制系统、软件系统或者混合系统来实现。
4. 总结基于Carima模型的广义预测控制器设计是一种有效的控制方法,可以结合经验模型和先验知识提高控制精度和可靠性。
基于神经网络的广义预测控制综述第18卷第3期2005年6月常州工学院JournalofChangzhouInstituteofTechnologyV o1.18NO.3Jun.2005基于神经网络的广义预测控制综述李东侠张忠禄(常州T学院电子信息与电气工程学院,江苏常州213002)摘要:概括叙述了广义预测控制的发展现状,对具有误差校正的预测控制方法进行了概括,介绍了与神经网络相结合的非线性系统的预测控制方法,并在此基础上讨论了神经网络非线性预测控制中存在的问题及进一步研究的方向.关键词:预测控制;误差校正;神经网络;非线性系统中图分类号:TPI83文献标识码:A文章编号:1671—0436(2005)03—0012—041广义预测控制的发展现状广义预测控制是随着自适应控制的研究而发展起来的一种预测控制方法.GPC基于参数模型,引入了不相等的预测水平和控制水平,系统设计灵活方便,具有预测模型,滚动优化和在线反馈校正等特征,呈现出优良的控制性能和鲁棒性.到现在为止,人们已经对该控制算法作了大量的研究,并且取得了许多研究成果.1.1广义预测控制的间接算法广义预测控制算法有两类主要算法,即问接算法和直接算法(也称为显式算法和隐式算法). 间接算法在被控对象参数未知时,必须首先辨识被控对象的参数,然后利用辨识出来的参数计算求解控制律所需要的中问参数,最后才计算控制量.问接算法中需要进行Diophanfine方程的求解,矩阵求逆,递推最小二乘法的求解,计算量较大.为了减少在线计算量,针对这一问题,提出了许多改进方法.文[1]给出了Diophantine方程递推求解的方法;文[2]利用参数辨识的结果直接求解控制器,不用求解Diophantine方程,减少了计算量;文[3]采用递推的方法建立预测模型,避免了求解Diophantine方程,而且不受多项式稳定的限制;文[4]利用待求逆矩阵中下三角矩阵元收稿日期:2005-03—30素的特点,给出了一种递推求解逆矩阵的方法;文[5]提出了并行结构分解的算法,提高了在线计算效率;文[6]分别针对状态空间模型和输入输出模型,采用递推的方法,将GPC化为解Riccafi 方程,基于脉冲阵列结构提出了参数辨识的并行方法.1.2广义预测控制的直接算法同问接方法相比较,直接算法不需要求解Di. ophantine方程和逆矩阵,直接估计控制器的参数.文[7]在假定被控对象的阶跃响应前Ⅳ项已知的情况下,给出了一种直接算法和全局收敛性分析;文[8]使用带死区的参数估计方法估计控制器参数;文[9]引入等价性能指标,采用两个辨识器,先辨识被控对象的参数,得到广义输出,然后再用改进的最小二乘法估计控制器的参数;文[10]通过求性能指标的等值曲面,分析了受幅度和变化率约束下的优化问题,给出了一种基于几何分析的约束直接广义预测控制算法;文[11]分析了被控对象的开环参数,闭环参数和控制器参数之问的关系,采用三个辨识器,通过辨识开环系统的参数来递推计算系统的预测输出和参考轨迹,通过辨识闭环系统得到系统的广义输出,在此基础上辨识控制器的参数.除了上述基于受控自回归积分滑动平均模型第3期李东侠,张忠禄:基于神经网络的广义预测控制综述13 (CARIMA)的间接算法和直接算法以外,还有许多其他的广义预测控制算法,如与PID相结合的广义预测控制算法¨,与模糊控制相结合的GPC算法¨,变结构的预测控制算法和有约束的广义预测控制算法儿"等,许多学者还提出了一些改进算法,如加权控制律的GPC算法161,增量型广义预测控制…等.2基于神经网络误差校正的广义预测控制2.1误差校正原理对预测控制来说,核心问题是怎样根据对象的已知信息做出较好的预测.由于对象的验前信息的不充分性,基于此类信息集合得到的预测模型,用于在线预测时,其预测值与实测值之间一定存在一个偏差,我们称其为预测误差.预测误差越大,控制效果越差.当前采用的各种预测控制方法,不管是间接算法,还是直接算法,一般其预测输出的预测模型都是建立在数学模型的基础上,都没有考虑建模误差的影响.虽然一般的广义预测控制算法对模型失配有一定的抑制作用, 但目前的算法对模型失配的抑制能力是有限的, 当建模误差较大时,随着预测长度的增加,预测误差必然也会急剧增加,从而有可能破坏预测控制系统的鲁棒性,只有根据实测信息不断进行反馈校正,才能保证预测趋于准确.为了克服这一缺点,考虑引入预测误差对预测输出进行校正,即: 利用预测误差的过去信息建立误差的预测模型, 通过对误差的预测修正系统的预测输出,进一步克服模型失配的影响,提高控制系统的鲁棒性. 引入预测误差以后,系统的预测输出可以表示为: Y(t+k/t)=Y(t+k/t)+Y(t+k/t)(1)其中,Y(t+k/t)表示在t时刻对t+时刻系统输出的预测,Y(t+k/t)表示系统基于数学模型的输出预测,Y,(t+k/t)是根据预测误差的历史数据对模型预测的修正.2.2建立误差预测模型的方法为了克服建模误差的影响,增强预测控制的鲁棒性,许多学者对误差的预测进行了研究.传统方法是用时刻已知的模型输出误差e(k)=Y(k)一Y(k)来修正,文[18]中提出了利用预测误差的历史数据建立误差预测模型,通过对误差的预测修正纯粹基于数学模型的预测,采用时序分析里的AR模型,利用参数辨识的最小二乘法递推估计误差模型参数,建立误差的预测模型.由于神经网络能够逼近任意复杂的非线性函数关系,采用并行分布式信息处理方法,可同时综合定量和定性信息,既可在线学习也可离线计算, 灵活性大,所以用神经网络建立误差预测模型的方法有很大的发展空间.文[19]采用与神经网络相结合的方式,基于BP结构神经网络,对系统的建模误差进行预测, 建立误差的预测模型,取得了较好的控制效果.网络的输入向量为X=[Y(t),Y(t一1),…Y(t一),H(t—1),…,"(t一七一1)],其中Y(?)为系统的输出值,U(?)为系统的控制量,网络的输出向量为Y=[Y(t),…,Y(t—k)],而Y(t一七)Ay(t一七)一Y(t—k/t—k—),k=1,2,…,P(2)其中,Y(t—k)是t—k时刻系统的输出值,Y (t—k/t—k—d)是在t—k—d时刻基于数学模型对Y(t—k)的预测值,d为系统时滞,P为训练样本数.文[2O]提出了一种改进的全局寻优自适应快速BP算法,并应用于广义预测控制算法中, 用该网络建立误差预测模型,解决了限制GPC实时控制的快速性问题.文[21]采用动态BP网络对模型预测误差进行在线补偿,提高了预测精度. 文[22]中提出了利用径向基函数神经网络(RBFNN)来补偿由系统的非线性和外界干扰引起的预测误差,也取得了较好的控制效果.3基于神经网络的非线性系统的广义预测控制实际中的控制对象都带有一定的非线性,大多数具有弱非线性的对象可用线性化模型近似, 并应用已有的线性控制理论的研究成果来获得较好的控制效果.而对具有强非线性的系统的控制则一直是控制界研究的热点和难点,模型线性化无法满足系统控制要求,在某些极端情况下,线性化的参考模型甚至会导致控制系统稳定性的丧失,将广义预测控制对线性系统的良好控制作用l4常州工学院2005正推广到非线性系统,也是预测控制研究的方向之一.就预测控制的基本原理而言,只要从被控对象能够抽取出满足要求的预测模型,它便可以应用于任何类型的系统,包括线性和非线性系统.但由于非线性系统的复杂多样性,在实现的技术上和理论分析上难度比线性系统要大得多.近年来人们对非线性系统的预测控制做了大量的研究,并提出了不少有意义的方法.与神经网络,多模型控制,微分集合理论和微分代数理论等算法相结合,是非线性系统的GPC研究的有效途径之一.由于神经网络理论在求解非线性方面的巨大优势,很快被应用于非线性预测控制中,并形成许多不同的算法.如神经网络的内模控制,神经网络的增量型模型算法控制等,近来一些学者对有约束神经网络的预测控制也作了相应的研究.基于神经网络的非线性GPC研究还处于起步阶段, 这方面的研究成果很少,其主要原因是利用神经网络进行多步预测还没有直接有效的方法.文[24]设计了多层前馈神经网络,使控制律离线求解.文[25]采用两个网络进行预测,但结构复杂,距实际应用还有一定的距离,文[26]利用递阶遗传算法,经训练得出离线神经网络模型,经多步预测得出对象的预测模型,给出了具有时延的非线性系统的优化预测控制.将神经网络用于GPC的研究成果有利用Tank—Hopfield网络处理GPC矩阵求逆的算法,基于神经网络误差修正的GPC算法,利用小脑模型进行提前计算的GPC算法,基于GPC的对角递归神经网络控制方法以及用神经网络处理约束情形的预测控制算法.非线性系统的GPC研究成果还有基于双线性模型的GPC算法等,但算法都具有一定的局限性.4基于神经网络的预测控制中存在的问题众所周知,评价一个神经网络的主要性能指标是学习收敛速度和泛化能力.前者表现在以一定的精度逼近学习样本所需的时间,而后者表现在对学习样本集外的样本的逼近程度.采用Sigmoid函数作为网络单元函数的多层前馈网络(BPN)是当今应用最广的一种网络.这类网络采用反向传播(BP)学习算法.虽然BP网络是应用最多的一种神经网络,但它仍存在一些缺陷:(1)学习速度慢,即使一个比较简单的问题,也需要几百次甚至几千次的学习才能收敛;(2)不能保证收敛到全局最小点; (3)网络隐含层的层数及隐含层的单元数的选取尚无理论上的指导,而是根据经验确定.因此,网络往往有很大的冗余性,无形中增加了网络学习的时间;(4)网络的学习,记忆具有不稳定性.所以以下问题有待进一步完善:(1)神经网络的收敛速度一直是限制其应用的主要问题,要进一步提高神经网络的收敛速度及泛化能力,提高神经网络的实用性.(2)利用神经网络进行多步预测还没有直接有效的方法.(3)对非线性系统的预测控制还没有很好的解决,由于广义预测控制算法本身的特殊性和非线性系统的复杂多样,这方面的研究成果也较少.目前在非线性预测控制中使用的神经网络大多为静态的网络,限制了神经网络的非线性表达能力,并且网络结构复杂计算量大,快速有效的预测控制方法有待进一步研究.[参考文献][1]ClarkeD.W.andMohtadi,C.andTufts,P.S,mGeneralized PredictiveContro1.PartI.TheBasicAlgorithmic.PartIIExtcn—sionsandInterpretations[J].Automatic,1987,23(2):137一l6O.[2]袁着祉,崔保民.新型随机广义预测自校正控制器[J].自动化,1992,18(3):282—289.[3]金元郁.预测控制算法研究[D].沈阳:东北工学院博士学位论文,1990.[4]郭庆鼎,金元郁,胡耀华.求解GPC中逆矩阵的递推算法[J].控制与决策,1996,11(4):510—513.[5]扬健,席裕庚,张钟俊.预测控制滚动优化的时间分解方法[J].自动化,1995,21(5):555—561.[6]慕德俊,戴冠中.基于状态空间模型广义预测控制的并行算法[J].控制理论与应用,1995,12(5):646—652.[7]王伟.广义预测控制自适应控制的直接算法和全局收敛性分析[J].自动化,1995,21(1):57—62.【8]Wangwei.ADirectAdaptiveGeneralizedPredictiveControlAb gorithmwithGuaranteedStabillity[J].Int.J.ofAdaptiveControl&SignalProcessing,1994,8(3):211—227.第3期李东侠,张忠禄:基于神经网络的广义预测控制综述[9]舒迪前,石中锁.隐式自适应广义预测控制器及全局收敛性分析[J].自动化,1995,21(5):545—554.[10]张峻,席裕庚.基于几何分析的约束预测控制直接算法[J].控制与决策,1997,12(2):184—187.[11]胡耀华,贾欣乐.广义预测控制的直接算法[J].控制与决策,2000,15(2):221—223.[12]陈增强,车海平,袁着祉.具有比例积分结构的广义预测自校正控制器[J].控制与决策,1994,9(2):105—110.[13]张化光,吕剑虹,陈来九.模糊广义预测控制及其应用[J].自动化,1993,19(1):9—17.[14]毛志忠,杨琳.一种解决预测控制输入信号受约束问题的方法[J].控制与决策,1994,9(3):230—233.[15]LimKW,HoWK,LeeTH,LingKV,XuW.Generalized PredictiveControllerwithPoleRestriction[J].IEEProc—D, 1998,145(2):219—225.[16]周德云,陈新海.采用加权控制律的自适应广义预测控制器[J].控制与决策,1991,6(1):7—13.[17]孙明玮,陈增强,袁着祉.增量型广义预测控制[J].控制理论与应用,2000,17(2):165—168.[18]古钟璧,王祯学,王苇.具有误差预测修正的预测控制算法[J].控制与决策,1992,7(6):432—436.[19]李少远,刘浩,袁着祉.基于神经网络误差修正的广义预测控制[J].控制理论与应用,1996,13(5):677—680.[20]王一晶,左志强.基于改进BP网络的广义预测控制快速算法[J].基础自动化,2002,9(2):l0一l2.[21]刘晓华,王秀红,杨振光.基于动态BP网络误差修正的广义预测控制[J].青岛大学,2002,15(1):34—39.[22]张彬,李平,陈红艳.基于径向基函数神经网络偏差补偿的预测函数控制[J].哈尔滨理工大学,2003,8(1):46—49.[23]席裕庚.预测控制[M].北京:国防丁业出版社.1993.[24]ParisiniT,SanguinetiandZoppoliR.Nonlinearstabilizationby receding—hodzonneuralregulator[J].Int.J.Control,1998,70(3):341—362.[25]SchenkerB.AgarwalM.LongRangePredictiveControlfor PoorlyKnownSystems[J].Int.J.Control,1990,62(1):227—238.[26]刘宝坤,王慧,曹明,李光良.基于神经网络模型直接优化预测控制[J].信息与控制,1998,27(5):386—390.[27]胡耀华,贾欣乐.广义预测控制综述[J].信息与控制,2000,29(3):248—256.[28]史国栋,王洪元,薛国新.基于径向基函数模型的非线性预测控制策略研究[J].模式识别与人工智能,2000,13(4):361—365.[29]PhilipDWasserman.NeuralComputingTheoryandPractice[M].NewY ork:VanNostrandReinhold.1989.124—129. SummarizationofGeneralizedPredictiveControlBasedonNeuralNetworkLIDong?-xiaZHANGZhong?-lu(SchoolofElectronicInformation&ElectricEngineering,ChangzhouInstituteofTech nology,Changzhou213002)Abstract:ThispapersummarizestheactualityofGeneralizedPredictiveControl(GPC).The predic.tivecontrolmethodwitherrorcorrectionissummedup.Thenitrecommendsthepredictiveme thodscom.binedwithneuralnetworkofnonlinearsystem.Basedonthisitpresentstheproblemsexistingi nthepredic. tivecontrolofnonlinearsystemandfurtherresearchtrendsarealsodiscussed. Keywords:predictivecontrol;errorcorrection;neuralnetwork;nonlinearsystem责任编辑:张秀兰。
一种克服模型参数失配的广义预测控制算法1 引言在控制领域中,预测控制(Predictive Control)是一种高级控制方法,该方法通过对未来系统行为的预测进行优化,能够实现较高的控制性能。
但是在实际应用中,由于模型不准确、参数变化等因素,往往会导致预测控制的失效。
为了克服这些问题,本文将介绍一种广义预测控制算法(Generalized Predictive Control,简称GPC),以其在模型参数失配情况下的优秀控制效果为例,探讨预测控制的改进之路。
2 预测控制的基本原理预测控制的基本思路是通过对系统行为的预测,通过最优化问题求解方式得到控制策略。
预测控制的过程包括两个关键步骤:预测(Prediction)和最优化(Optimization)。
在预测阶段,控制器使用系统的动态模型对未来的状态与输出进行预测,得到一组序列预测值。
在最优化阶段,使用一个性能指标(如MPC的代价函数)对控制器的控制策略进行评价,并找到最优策略,使得预测值与实际输出尽可能相近,同时优化目标最小化。
最终得到的解决方案应用于系统。
3 模型参数失配测量误差、模型不确定性、传感器误差等因素都可能导致参数的失配。
模型参数失配可以分为两类:常系数失配和时变失配。
常系数失配指的是模型中的某些参数在不确定的基础上保持不变。
在这种情况下,如果只使用标准的预测控制算法,将会导致控制效果变差且不稳定。
时变失配指的是模型的参数随时间变化。
模型参数的不确定性随着时间的推移而增加,因此预测控制算法的精度也会逐渐下降,导致控制响应变慢。
4 广义预测控制算法(GPC)广义预测控制(Generalized Predictive Control)是一种基于ARMA模型的改进方案,可以很好地解决模型参数失配问题。
ARMA(Auto-Regressive Moving Average)模型是常用的线性时不变系统模型,它通常用于描述具有随机噪声的信号序列。
gpc原理GPC原理。
GPC(Generalized Predictive Control)是一种广义预测控制方法,它是一种基于模型的控制策略,可以用于多变量、非线性、时变系统的控制。
GPC控制器通过对系统进行建模和预测,来实现对系统的控制。
本文将对GPC原理进行详细介绍,包括其基本原理、控制流程和应用特点。
首先,我们来介绍GPC的基本原理。
GPC控制器的设计基于对系统的数学模型,通过对系统的建模和预测,来实现对系统的控制。
在GPC中,首先需要建立系统的数学模型,通常采用ARX(自回归外推)模型或者ARMAX(自回归滑动平均外推)模型来描述系统的动态特性。
然后,利用这个模型进行预测,得到未来一段时间内系统的响应。
最后,根据预测的结果,通过优化算法计算出控制输入,从而实现对系统的控制。
接下来,我们来介绍GPC的控制流程。
首先,需要对系统进行建模,得到系统的数学模型。
然后,利用这个模型进行预测,得到未来一段时间内系统的响应。
接着,通过优化算法计算出控制输入,将其应用于系统中,实现对系统的控制。
在实际应用中,通常需要不断地对系统进行建模和预测,以及优化控制输入,来实现对系统的稳定控制。
最后,我们来介绍GPC的应用特点。
首先,GPC可以应用于多变量系统的控制,能够处理多个输入和输出之间的相互影响。
其次,GPC可以应用于非线性系统的控制,能够处理系统动态特性的非线性影响。
此外,GPC还可以应用于时变系统的控制,能够处理系统参数随时间变化的影响。
总的来说,GPC是一种灵活、高效的控制方法,适用于各种复杂的控制系统。
综上所述,GPC是一种基于模型的控制策略,通过对系统进行建模和预测,来实现对系统的控制。
它具有灵活、高效的特点,适用于多变量、非线性、时变系统的控制。
希望本文的介绍能够帮助大家更好地理解和应用GPC控制方法。
广义预测控制(G P C)GPC算法仿真被控对象模型动态矩阵控制算法的编程原理(1)设置GPC参数,例如采样周期,预测时域,控制时域,截断步长等。
(2)建立系统阶跃响应模型(3)设置初始时刻参数,例如系统的初始时刻值,柔化系数等。
(4)计算参考轨迹(5)计算控制作用增量(6)实施GPC控制(7)输出结果,绘制曲线GPC算法:1.初选控制参数:Q、R、P、M、 ysp 、?、?(z-1)2.采集输入、输出样本{?u(k),?y(k)}3.用RLS算法估计参数4.递推求解Diophantine方程,得到5.计算F(k)6.在线计算控制器参数d T7.得到控制增量?u(k)和控制输入u(k) =u(k-1) +?u(k)+1 ?k,进入下一周期预测计算和滚动优化GPC程序:%Clarke广义预测控制(C=1)(对象参数已知)%N1=d、N、Nu取不同的值clear all;close all;a=cell(1,2) ;b=cell(1,2) ;c=cell(1,1);d=cell(1,1);%对象参数syms k;k=length(k);if (0<=k<=150)a=[1 ]; b=[ ]; c=1; d=1;elseif (150<k<=300)a=[1 ]; b=[ ]; c=1; d=1;elseif (300<k<=450)a=[1 ]; b=[ ]; c=1; d=1;else (450<k<=600)a=[1 ]; b=[ ]; c=1; d=1;endna=length(a)-1;b=[zeros(1,d-1) b];nb =length(b)-1;%na、nb为多项式A、B阶次(因d!=1,对b添0)aa=conv(a,[1 -1]);naa=na+1;%aa的阶次N1=d;N=15;Nu=5;%最小输出长度、预测长度、控制长度gamma=1*eye(Nu);alpha=;%控制加权矩阵、输出柔化系数L=600;%控制步数uk=zeros(d+nb,1);%输入初值:uk(i)表示u(k-i)duk=zeros(d+nb,1);%控制增量初值yk=zeros(naa,1);%输出初值w=10*[ones(L/4,1);-ones(L/4,1);ones(L/4,1);-ones(L/4+d,1)]; %设定值xi=sqrt*randn(L,1);%白噪声序列%求解多步Diophantine方程并构建F1、F2、G[E,F,G]=multidiophantine(aa,b,c,N);G=G(N1: N, : );F1=zeros(N-N1+1,Nu); F2=zeros(N-N1+1,nb);for i=1:N-N1+1for j=1:min(i,Nu); F1(i,j)=F(i+N1-1,i+N1-1-j+1);endfor j=1:nb; F2(i,j)=F(i+N1-1,i+N1-1+j);endendfor k=1:Lif (1<=k<=150)time(k)=k;a=[1 ]; b=[ ]; c=1; d=1;y(k)=-aa(2:naa+1)*yk+b*duk(1:nb+1)+xi(k);%采集输出数据Yk=[y(k);yk(1:na)];%构建向量Y(k)dUk=duk(1:nb);%构建向量△U(k-j)elseif (150<k<=300)time(k)=k;a=[1 ]; b=[ ]; c=1; d=1;y(k)=-aa(2:naa+1)*yk+b*duk(1:nb+1)+xi(k);%采集输出数据Yk=[y(k);yk(1:na)];%构建向量Y(k)dUk=duk(1:nb);%构建向量△U(k-j)elseif (300<k<=450)time(k)=k;a=[1 ]; b=[ ]; c=1; d=1;y(k)=-aa(2:naa+1)*yk+b*duk(1:nb+1)+xi(k);%采集输出数据Yk=[y(k);yk(1:na)];%构建向量Y(k)dUk=duk(1:nb);%构建向量△U(k-j)else (450<k<=L)time(k)=k;a=[1 ]; b=[ ]; c=1; d=1;y(k)=-aa(2:naa+1)*yk+b*duk(1:nb+1)+xi(k);%采集输出数据Yk=[y(k);yk(1:na)];%构建向量Y(k)dUk=duk(1:nb);%构建向量△U(k-j)end%参考轨迹yr(k)=y(k);for i=1:Nyr(k+i)=alpha*yr(k+i-1)+(1-alpha)*w(k+d);endYr=[yr(k+N1:k+N)]';%构建向量Yk(k)%求控制量dU=inv(F1'*F1+gamma)*F1'*(Yr-F2*dUk-G*Yk); %ΔU du(k)=dU(1); u(k)=uk(1)+du(k);%更新数据for i=1+nb:-1:2uk(i)=uk(i-1);duk(i)=duk(i-1);enduk(1)=u(k);duk(1)=du(k);for i=naa:-1:2yk(i)=yk(i-1);endyk(1)=y(k);endsubplot(2,1,1);plot(time,w(1:L),'m:',time,y);xlabel('k');ylabel('w(k)、y(k)');legend('w(k)','y(k)');subplot(2,1,2);plot(time,u);xlabel('k');ylabel('u(k)');function[E,F,G]=multidiophantine(a,b,c,N)%********************************************************** *%功能:多步Diophanine方程的求解%调用格式:[E,F,G]=sindiophantine(a,b,c,N)(注:d=1)%输入参数:多项式A,B,C系数向量及预测步数(共4个)%输出参数:Diophanine方程的解E,F,G(共3个)%********************************************************** ***na=length(a)-1;nb =length(b)-1;nc=length(c)-1;%A、B、C的阶次%E、F、G的初值E=zeros(N);E(1,1)=1;F(1,:)=conv(b,E(1,:));if na>=ncG(1,:)=[c(2:nc+1) zeros(1,na-nc)]-a(2:na+1);%令c(nc+2)=c(nc+3)=...=0elseG(1,:)=c(2:nc+1) -[a(2:na+1)-zeros(1,nc-na)];%令a(nc+2)=a(nc+3)=...=0end%求E、F、Gfor j=1:N-1for i=1:jE(j+1,i)=E(j,i);endE(j+1,j+1)=G(j,1);for i=2:naG(j+1,i-1)=G(j,i)-G(j,1)*a(i);endG(j+1,na)=-G(j,1)*a(na+1);F(j+1,: )=conv(b,E(j+1,:));end仿真结果N=15 Nu=5 alpha=N=10 Nu=5 alpha=N=15 Nu=3 alpha=N=15 Nu=3 alpha=结论可以得出,当保持其他参数不变而改变一或几个变量时会有不同的情形。
广义预测控制(GPC)是一种鲁棒性强、能够有效地克服系统滞后、可应用于开环不稳定非最小相位系统的先进控制算法,但由于它需要Diophantine方程计算、矩阵求逆和最小二乘的递推求解,因此计算量很大,本文针对此缺陷提出四种不基于对象模型且实时性高的广义预测控制快速算法,为广义预测控制应用于实时性要求高的快速系统奠定了理论基础,具体研究工作如下。
(1)对参数未知单输入单输出线性系统提出一种参数自适应直接广义预测控制(DGPC)方法,该方法直接辨识广义预测控制器参数,即基于广义误差估计值对控制器参数和广义误差估计值中的未知向量进行自适应调整。
然后利用中值定理将参数未知单输入单输出非线性系统线性化变为时变线性系统,在自适应辨识中对时变参数采用三次样条函数进行逼近,以此将单输入单输出线性系统直接广义预测控制方法推广到单输入单输出非线性系统。
最后,将此方法推广到多输入多输出线性系统和非线性系统。
(2)对参数未知单输入单输出线性系统提出一种径向基函数(RBF)网络的直接广义预测控制方法,该方法利用RBF网络来逼近控制增量表达式,直接设计出广义预测控制器,并基于广义误差估计值对控制器参数即网络权值和广义误差估计值中的未知向量进行自适应调整。
然后将单输入单输出线性系统RBF网络广义预测控制方法推广到单输入单输出非线性系统。
最后,将此方法推广到多输入多输出线性系统和非线性系统。
(3)对参数未知单输入单输出线性系统提出一种模糊自适应的直接广义预测控制方法,该方法利用模糊逻辑来逼近控制增量表达式,直接设计出广义预测控制器,并基于广义误差估计值对控制器参数权值和广义误差估计值中的未知向量进行自适应调整。
然后将单输入单输出线性系统模糊自适应广义预测控制方法推广到单输入单输出非线性系统。
最后,将此方法推广到多输入多输出线性系统和非线性系统。
(4)提出一种基于灰色模型的多变量广义预测控制算法,该算法所需估计的参数少,而且多步情况下无需求解Diophantine方程,从而使计算量明显减少,极大的提高了实时性。
xx预测控制
(GPC)是一种鲁棒性强、能够有效地克服系统滞后、可应用于开环不稳定非最小相位系统的先进控制算法,但由于它需要Diophantine方程计算、矩阵求逆和最小二乘的递推求解,因此计算量很大,本文针对此缺陷提出四种不基于对象模型且实时性高的广义预测控制快速算法,为广义预测控制应用于实时性要求高的快速系统奠定了理论基础,具体研究工作如下。
(1)对参数未知单输入单输出线性系统提出一种参数自适应直接广义预测控制(DGPC)方法,该方法直接辨识广义预测控制器参数,即基于广义误差估计值对控制器参数和广义误差估计值中的未知向量进行自适应调整。
然后利用中值定理将参数未知单输入单输出非线性系统线性化变为时变线性系统,在自适应辨识中对时变参数采用三次样条函数进行逼近,以此将单输入单输出线性系统直接广义预测控制方法推广到单输入单输出非线性系统。
最后,将此方法推广到多输入多输出线性系统和非线性系统。
(2)对参数未知单输入单输出线性系统提出一种径向基函数(RBF)网络的直接广义预测控制方法,该方法利用RBF网络来逼近控制增量表达式,直接设计出广义预测控制器,并基于广义误差估计值对控制器参数即网络权值和广义误差估计值中的未知向量进行自适应调整。
然后将单输入单输出线性系统RBF网络广义预测控制方法推广到单输入单输出非线性系统。
最后,将此方法推广到多输入多输出线性系统和非线性系统。
(3)对参数未知单输入单输出线性系统提出一种模糊自适应的直接广义预测控制方法,该方法利用模糊逻辑来逼近控制增量表达式,直接设计出广义预测控制器,并基于广义误差估计值对控制器参数权值和广义误差估计值中的未知向量进行自适应调整。
然后将单输入单输出线性系统模糊自适应广义预测控制方法推广到单输入单输出非线性系统。
最后,将此方法推广到多输入多输出线性系统和非线性系统。
(4)提出一种基于灰色模型的多变量广义预测控制算法,该算法所需估计的参数少,而且多步情况下无需求解Diophantine方程,从而使计算量明显减少,极大的提高了实时性。
上述四种方法都不需要被控对象数学模型,因此为更好
地解决含参数不确定性对象的广义预测控制问题提供了一种新思路,同时避免了Diophantine方程的在线求解及矩阵求逆。
xx预测控制需要实现四个功能:
1、参数估计,可以用递推最小二乘法实现;
2、使用丢番图方程对模型分解,分解为当前状态和历史输入对模型未来输出值的作用公式,未来输入对模型未来输出值的作用公式;推导过程过于繁琐,可以直接套用公式计算。
3、参考轨迹生成,可以使用下面公式递推得到:
r(n)=(1-k)*y(n-1)+k*(s-y(n-1)),其中k为时间常量,决定系统的调节速度,s为设定值。
4、最优值计算,可以直接套用公式。
实现过程:
首先辨识系统模型,然后使用丢番图方程对辨识得到的模型进行分解,计算参考轨迹,最后把参考估计和分解后的系统模型带入公式得到最优输出值(其实是次优解),如此反复即可实现预测控制。
经典PID计算:
可以使用增量式的公式:
y(n)=y(n-1)+Kp*[e(n)-e(n-1)]+Ki*e(n)+Kd*[e(n)+e(n-2)-2*e(n-1)]
需要说明广义预测控制和PID控制输出都需要设置输出值限幅。
工业实现:
可以用c语言编写程序作为控制软件的控制代码,硬件平台可以是一台工控机或者PLC,另外也有这方面的软件包,不过很贵。