机械振动3强迫振动5-7
- 格式:ppt
- 大小:777.00 KB
- 文档页数:19
强迫振动,振动系统在周期性的外力作用下,其所发生的振动称为受迫振动,这个周期性的外力称为驱动力。
受迫振动也称强迫振动.在外来周期性力的持续作用下,振动系统发生的振动称为受迫振动.这个“外来的周期性力”叫驱动力(或强迫力)。
中文名
强迫振动
要求
周期性的外力
含义
外力下振动系统发生的振动
发生对象
振动系统
分为两大类:单自由度强迫振动多自由度强迫振动
1,单自由度系统强迫振动
1)旋转时恒英气的强迫振动:在旋转机械中,旋转失衡是使系统振动的外界激励的主要来源,如:发动机的曲轴,飞轮,车轮,车辆传动系统的齿轮,机床的主轴,洗衣机,空调和冰箱的压缩机,风扇等等。
旋转失衡的主要原因是高速旋转机械中转动部分的质量中心和转轴中心不重合造成的。
2)支撑运动引起的强迫振动:强迫振动不一定都是由激扰力引起的,振动系统支座的周期运动同样可以引发强迫振动。
例如精密仪表受到基座振动的影响而振动,如果支撑的运动可以用简谐函数来描述,则系统的振动也可以用简谐强迫振动理论来分析。
支撑运动的运动和受力简图
单自由度强迫振动的运用实例。
第一章绪论1-1机械振动的概念振动是一种特殊形式的运动,它是指物体在其平衡位置附近所做的往复运动。
如果振动物体是机械零件、部件、整个机器或机械结构,这种运动称为机械振动。
振动在大多数情况下是有害的。
由于振动,影响了仪器设备的工作性能:降低了机械加工的精度和粗糙度;机器在使用中承受交变载荷而导致构件的疲劳和磨损,以至破坏。
此外, 由于振动而产生的环境噪声形成令人厌恶的公害,交通运载工具的振动恶化了乘载条件,这些都直接影响了人体的健康等等。
但机械振动也有可利用的一面,在很多工艺过程中,随着不同的工艺要求,出现了各种类型利用振动原理工作的机械设备,被用来完成各种工艺过程, 如振动输送、振动筛选、振动研磨、振动抛光、振动沉桩等等。
这些都在生产实践中为改善劳动条件、提髙劳动生产率等方而发挥了积极作用。
研究机械振动的目的就是要研究产生振动的原因和它的运动规律,振动对机器及人体的影响,进而防I匕与限制英危害,同时发挥其有益作用。
任何机器或结构物,由于具有弹性与质疑,都可能发生振动。
研究振动问题时,通常把振动的机械或结构称为振动系统(简称振系)。
实际的振系往往是复杂的,影响振动的因素较多。
为了便于分析研究,根据问题的实际情况抓住主要因素,略去次要因素,将复杂的振系简化为一个力学模型,针对力学模型来处理问题。
振系的模型可分为两大类:离散系统(或称集中参数系统)与连续系统(或称分布参数系统),离散系统是由集中参数元件组成的,基本的集中参数元件有三种:质量、弹簧与阻尼器。
苴中质量(包括转动惯虽:)只具有惯性: 弹簧只具有弹性,其本身质量略去不计,弹性力只与变形的一次方成正比的弹簧称为线性弹簧:在振动问题中,各种阻力统称阻尼,阻尼器既不具有惯性,也不具有弹性,它是耗能元件,在有相对运动时产生阻力,其阻力与相对速度的一次方成正比的阻尼器称为线性阻尼器。
连续系统是由弹性元件组成的,典型的弹性元件有杆、梁、轴、板、壳等,弹性体的惯性、弹性与阻尼是连续分布的。
机械振动中的阻尼振动与强迫振动机械振动是指物体在受到外力作用下发生的周期性运动。
在机械振动中,阻尼振动和强迫振动是两种常见的振动形式。
本文将探讨这两种振动的特点、原理和应用。
一、阻尼振动阻尼振动是指在物体振动过程中,受到阻力的作用而逐渐减小振幅的振动。
阻尼振动可以分为三种类型:无阻尼振动、欠阻尼振动和过阻尼振动。
无阻尼振动是指物体在没有阻力的情况下进行的振动。
在无阻尼振动中,振幅保持不变,频率也是恒定的。
这种振动在一些精密仪器和科学实验中常常被使用,因为它的振幅和频率都非常稳定。
欠阻尼振动是指物体在受到一定阻尼作用后的振动。
在欠阻尼振动中,振幅会逐渐减小,但是振动周期仍然保持稳定。
这种振动常见于建筑、桥梁等结构物的振动分析中。
过阻尼振动是指物体在受到较大阻尼作用后的振动。
在过阻尼振动中,振幅会更快地逐渐减小,振动周期也会增加。
这种振动常用于汽车避震器、工程减振器等领域,以减少振动对结构物的破坏。
二、强迫振动强迫振动是指物体在受到外力作用下进行的振动。
外力的频率与物体的固有频率相近时,会引起共振现象,使物体振幅增大。
强迫振动可以分为共振和非共振两种情况。
共振是指外力频率与物体固有频率完全相等时的振动现象。
在共振时,外力对物体的作用将使振幅不断增大,直到达到最大值。
共振现象在音乐乐器、桥梁等领域有广泛应用。
非共振是指外力频率与物体固有频率不完全相等时的振动现象。
在非共振情况下,外力对物体的作用会引起振幅的周期性变化,但不会持续增大。
这种振动常见于机械系统中的噪声和干扰。
三、阻尼振动与强迫振动的应用阻尼振动和强迫振动在各个领域都有广泛的应用。
在工程领域,阻尼振动的研究可以帮助设计更稳定和耐久的结构物。
通过合理地调节阻尼,可以减少结构物受到外力作用时的振动幅度,提高结构物的安全性和稳定性。
在音乐领域,强迫振动的原理被广泛应用于乐器的制作和演奏。
乐器的共振频率和声波的频率相匹配,使乐器能够发出特定的音调和音色。
机械振动系统与机械振动分类1. 机械振动系统简介机械振动系统是指由于外界激励或系统自身特性而引起的物体或结构产生振动运动的系统。
机械振动系统广泛应用于工程领域,如机械制造、工程结构、航空航天等。
了解机械振动系统及其分类对于研究和应用机械振动具有重要意义。
2. 机械振动分类机械振动可以根据不同的分类标准进行分类,包括运动形式、激励方式、振动特性等。
2.1 运动形式机械振动根据物体或结构的运动形式可以分为自由振动和强迫振动。
2.1.1 自由振动自由振动是指系统在无外界激励的情况下,由于系统本身的特性而产生的振动。
自由振动分为自由衰减振动和自由无衰减振动两种形式。
自由衰减振动是指振动系统在没有外界激励的情况下,由于系统阻尼的存在而衰减的振动。
在自由衰减振动中,振动幅值呈指数衰减。
自由无衰减振动是指振动系统在没有外界激励的情况下,没有阻尼或阻尼较小而不影响振动的情况下产生的振动。
在自由无衰减振动中,振动幅值保持不变。
2.1.2 强迫振动强迫振动是指系统由外界激励引起的振动。
外界激励可以是周期性的,也可以是非周期性的。
强迫振动分为共振和非共振两种形式。
共振是指外界激励频率与系统的固有频率相等,从而使得系统振动幅值达到最大的状态。
共振时,振动幅值会明显增大,甚至会出现破坏性振动。
非共振是指外界激励频率与系统的固有频率不同,振动幅值会有所减小。
2.2 激励方式机械振动根据激励方式可以分为有源振动和无源振动。
有源振动是指通过外部能量源对振动系统进行能量输入的振动。
典型的有源振动系统包括激励器、驱动器等。
无源振动是指在自由振动状态下,由于外界条件或系统初始激励引起的振动。
无源振动通常分为两种情况,即系统外力激励和几何和材料非均匀性。
2.3 振动特性机械振动根据振动特性可以分为单自由度振动和多自由度振动。
单自由度振动是指一个自由度的振动系统,在一个平面或轴向上只有一个振动方向的振动。
典型的单自由度振动系统包括单摆、弹簧振子等。
机械传动系统中的强迫振动控制一、引言机械传动系统是工业生产中常见的一种设备,广泛应用于各个领域。
然而,在机械传动系统的运行过程中,往往会出现振动问题,这不仅会影响设备的正常运行,还会加速设备的磨损,减短设备的使用寿命。
因此,对于机械传动系统中的强迫振动进行控制是至关重要的。
二、机械传动系统中的强迫振动原因强迫振动是指机械传动系统在受到外界激励作用下而产生的一种不稳定振动现象。
在机械传动过程中,强迫振动主要有以下几个原因:1.不平衡质量:传动系统中的某些部件存在质量不平衡的情况,当这些部件旋转时,就会产生一定的离心力,从而引起系统的振动。
2.齿轮啮合:在齿轮传动中,由于齿轮的精度、配合间隙等问题,会导致齿轮啮合时产生振动和噪声。
3.轴承故障:轴承是机械传动系统中重要的部件之一,当轴承出现故障时,会引起系统的不稳定振动。
三、机械传动系统中强迫振动的危害强迫振动对机械传动系统产生的危害主要表现在以下几个方面:1.降低传动效率:强迫振动会使机械传动系统受到外界激励,振动能量会损耗部分机械能,从而导致传动效率降低。
2.增加噪声:强迫振动会引起机械传动系统的噪声,给周围环境和使用者带来不适。
3.加剧磨损:振动会增加机械传动系统内各部件之间的相对运动,从而加剧部件的磨损和疲劳。
四、强迫振动控制方法为了控制机械传动系统中的强迫振动,可以采取以下几种控制方法:1.通过改变结构来控制振动:对于槽型齿轮传动等结构,可以通过改变传动结构,选择更好的齿轮精度、增加配合间隙等方法来控制振动。
2.使用减振装置:通过在传动系统中引入减振装置,如减振器、减振器、减震垫等,可以有效地抑制振动传递,减少传动系统的振动。
3.精确平衡:对于不平衡质量引起的振动问题,可以采取平衡校正的方法,通过调整和平衡不平衡质量,降低振动的发生。
4.提高轴承精度:对于由于轴承故障引起的振动问题,可以通过提高轴承的装配精度,选择合适的轴承材料和润滑方式,来降低系统的振动。
振动学知识点归纳总结1. 振动的基本概念振动是指物体在一定时间内来回或往复运动的现象。
振动可以是机械系统、电磁场系统、声场系统以及量子力学中的原子和分子系统等特有的运动形式。
振动的基本要素包括振幅、周期、频率和相位,它们分别代表着振动的振幅大小、周期的长度、振动的频率以及相位的大小。
振动还可表现为往复振动、旋转振动和波动等形式。
2. 自由振动自由振动是指物体在受到外力作用之后,不再受到外力的干扰而自行振动的过程。
对于线性弹簧振子系统而言,自由振动的周期与该系统的质量、弹簧的刚度和振幅有关,产生自由振动的物体称为振动体。
3. 受迫振动受迫振动是指振动体受到外力作用时的振动过程。
当振动体受到强迫振动时,它会与外力同频振动,当频率接近振动体的固有频率时,振动体可能产生共振现象。
4. 谐振动谐振动是指振动体在受到外力作用时,如果外力的频率与振动体的固有频率相等或接近,振动体便会产生谐振现象,即振幅较大,这一现象在机械工程、电子电路、音响等领域有着广泛的应用。
5. 阻尼振动阻尼振动是指振动体在振动过程中受到阻尼力的作用,通过与外界环境的摩擦力相互作用,使振动体逐渐减弱、停止振动并回到平衡位置的过程。
阻尼振动可分为欠阻尼振动、临界阻尼振动和过阻尼振动三种情况。
6. 共振现象共振是指振动体在受到频率相同或接近的外力作用时,振幅急剧增大的现象。
共振现象广泛存在于物理、工程、地震学和生物学等领域,如桥梁共振振动、建筑结构共振破坏、音乐乐器共鸣等。
7. 振动的能量振动体在振动过程中的能量变化主要包括动能和势能的转换。
在自由振动中,当振动体距离均衡位置最远时,动能最大,势能最小;当振动体通过均衡位置时,动能最小,势能最大。
振动的能量守恒定律形成了机械振动中的一个重要原理。
8. 振动的控制与应用振动的控制手段包括消除外力、减小振幅、增大阻尼和改变系统的固有频率等方法。
振动学在工程、航空航天、地震学、声学和生物学等领域都具有重要的应用价值,如利用振动传感器检测机械故障、利用振动分析技术改善建筑结构的抗震性能、利用谐振技术改善声音品质等。
机械振动的分类机械振动是指机械系统中由于外界或内部因素引起的物体运动,它在机械工程中具有广泛的应用。
机械振动可以分为自由振动、强迫振动和阻尼振动等多种类型。
本文将对机械振动的分类进行详细介绍。
一、自由振动自由振动是指机械系统在没有外界干扰的情况下发生的振荡运动。
它是由于物体受到某种力的作用而偏离平衡位置后,又受到弹性力的作用而回到平衡位置,然后再次偏离平衡位置并回到平衡位置,如此反复进行。
自由振动不需要外部能量输入,其频率和幅值只与系统本身的特性有关。
二、强迫振动强迫振动是指机械系统在外界施加周期性力或随时间变化的力作用下发生的周期性运动。
它需要外部能量输入才能维持运动状态,并且其频率与施加力的频率相同或者是其倍数。
强迫振动可以通过改变施加力的频率和幅值来改变系统响应。
三、阻尼振动阻尼振动是指机械系统在运动过程中由于摩擦、空气阻力等因素的存在而逐渐减弱振幅,最终停止运动的一种振动。
阻尼振动可以分为过阻尼、临界阻尼和欠阻尼三种类型。
1. 过阻尼过阻尼是指机械系统在受到外界干扰后,由于摩擦、空气阻力等因素的作用,使得系统无法回到平衡位置,最终停止运动。
此时系统没有任何周期性运动。
2. 临界阻尼临界阻尼是指机械系统在受到外界干扰后,由于摩擦、空气阻力等因素的作用,使得系统回到平衡位置的速度最快。
此时系统不会发生周期性运动。
3. 欠阻尼欠阻尼是指机械系统在受到外界干扰后,由于摩擦、空气阻力等因素的作用,使得系统逐渐减弱振幅并最终停止运动。
此时系统会发生周期性运动,但其振幅会逐渐减小。
四、弹性振动弹性振动是指机械系统在受到外界干扰后,由于弹性力的作用而发生的振动。
弹性振动可以分为简谐振动和复合振动两种类型。
1. 简谐振动简谐振动是指机械系统在受到外界干扰后,由于弹性力的作用而发生的周期性运动。
简谐振动具有固定的频率和幅值,其运动状态可以用正弦函数或余弦函数来描述。
2. 复合振动复合振动是指机械系统在受到多个外界干扰作用下发生的非周期性运动。
《机械振动噪声学》习题集1-1 阐明下列概念,必要时可用插图。
(a) 振动;机械或结构在平衡位置附近的往复运动称为机械振动。
(b) 周期振动和周期;能用时间的周期函数表示系统相应的振动叫做周期振动,周期振动完全重复一次的时间叫做周期(c) 简谐振动。
能用一项时间的正弦,余弦表示系统响应的振动叫做简谐振动振幅:物体离开平衡位置的最大位移频率:每一秒重复相同运动的次数相位角:1-2 一简谐运动,振幅为0.20 cm,周期为0.15 s,求最大的速度和加速度。
最大速度=A*w 最大加速度=A*W*W1-3 一加速度计指示结构谐振在82 Hz 时具有最大加速度50 g,求其振动的振幅。
a =A*W*W=A*(2*PI*f)*(2*PI*f)------将f=82,a=500代入即可1-4 一简谐振动频率为10 Hz,最大速度为4.57 m/s,求其振幅、周期和最大加速度。
略(方法同上一题)1-5 证明两个同频率但不同相位角的简谐运动的合成仍是同频率的简谐运动。
即:A cos ωn t +B cos (ωn t + φ) =C cos (ωn t + φ' ),并讨论φ=0、π/2 和π三种特例。
将两个简谐运动化成复数形式即可相加1-6 一台面以一定频率作垂直正弦运动,如要求台面上的物体保持与台面接触,则台面的最大振幅可有多大?设台面运动频率为f, 即要求a=A*W*W =A*(2*PI*f)*(2*PI*f)<=g1-7 计算两简谐运动x1 = X1 cos ω t和x2 = X2 cos (ω + ε ) t之和。
其中ε << ω。
如发生拍的现象,求其振幅和拍频。
1-8 将下列复数写成指数A e i θ形式:(a) 1 + i3(b) -2 (c) 3 / (3- i ) (d) 5 i (e) 3 / (3- i ) 2(f) (3+ i ) (3 + 4 i ) (g) (3- i ) (3 - 4 i ) (h) [ ( 2 i ) 2 + 3 i + 8 ]2-1 钢结构桌子的周期τ=0.4 s,今在桌子上放W = 30 N 的重物,如图2-1所示。
机械加工工艺规程设计作业题:l-10 根据六点定位原理分析图1–92各图的定位方案并判断各定位元件分别限制了哪些自由度?1-18 图1-96所示小轴系大量生产,毛坯为热轧棒料,经过粗车、精车、淬火、粗磨、精磨后达到图纸要求。
现给出各工序的加工余量及工序尺寸公差如表1-27。
毛坯的尺寸公差为±1.5mm。
试计算各工序尺寸,标注工序尺寸公差,计算精磨工序的最大余量和最小余量。
1-20在图1-97所示工件中,315.03025.02025.005.01,20,60,70L L mm L mm L mm+--===不便直接测量,试重新给出测量尺寸,并标注该测量尺寸的公差。
l-21 某齿轮零件,其轴向设计尺寸如图1-99所示,试根据下述工艺方案标注各工序尺寸的公差:1.车端面l 和端面4;2.以端面l 为轴向定位基准车端面3;直接测量端面4和端面3之间的距离;3.以端面4为轴向定位基准车端面2,直接测量端画l 和端面2之间的距离(提示:属公差分配问题)。
1-23 图1-100所示小轴的部分工艺过程为:车外圆至φ30.5-0.1mm ,铣键槽深度为H+TH,热处理,磨外圆至mm 036.0015.030++φ。
设磨后外圆与车后外圆的同度公差为φ0.05mm ,求保证键槽深度为4+0.2mm 的铣槽深度H +TH 。
讨论题:1-5某机床厂年产CA6140车床2000台,已知机床主轴的备品率为14%,机械加工[废品率为4%,试计算机床主轴的年生产纲领并说明属于何种生产类型,工艺过程有何特点?若一年工作日为282天,试计算每月(按26天计算)的生产批量。
1-6 试分析图1-90所示零件有哪些结构工艺性问题并提出正确的改进意见。
l-9 在图l-91中,注有加工符号的表面为待加工表面,试分别确定应限制的自由度。
l-12 图1-93为车床主箱体的一个视图,图中Ⅰ孔为主轴孔,是重要孔,加工时希望加工余量均匀。
试选择加工主轴孔的粗、精基准。