动态规划(数学建模资料)
- 格式:ppt
- 大小:271.50 KB
- 文档页数:23
1.某公司打算向它的三个营业区增设6个销售店,每个营业区至少增设1个。
各营业区每年增加的利润与增设的销售店个数有关,具体关系如表1所示。
试规划各营业区应增设销售店的个数,以使公司总利润增加额最大。
:个销售店,C 区增设1个销售店.最大利润为490万元。
贝尔曼(Bellman )最优化原理:在最优策略的任意一阶段上,无论过去的状态和决策如何,对过去决策所形成的当前状态而言,余下的诸决策必须构成最优子策略。
2.某公司拟将500万元的资本投入所属的甲、乙、丙三个工厂进行技术改造,各工厂获得投资后年利润将有相应的增长,增长额如表所示。
试确定500万元资解:将问题按工厂分为三个阶段3,2,1=k ,设状态变量k (3,2,1=k )代表从第k 个工厂到第3个工厂的投资额,决策变量k x 代表第k 个工厂的投资额。
于是有状态转移率k k k x S S -=+1、允许决策集合}0|{)(k k k k k S x x S D ≤≤=和递推关系式:)}()({max )(10k k k k k S x k k x S f x g S f k k -+=+≤≤ )1,2,3(=k0)(44=S f当3=k 时:)}({max }0)({max )(330330333333x g x g S f S x S x ≤≤≤≤=+=于是有表2-1,表中*3x 表示第三个阶段的最优决策。
当2=k 时:)}()({max )(2232202222x S f x g S f S x -+=≤≤于是有表7-3。
当1=k 时:)}()({max )(1121101111x S f x g S f S x -+=≤≤于是有表2-3。
然后按计算表格的顺序反推算,可知最优分配方案有两个:(1)甲工厂投资200万元,乙工厂投资200万元,丙工厂投资100万元;(2)甲工厂没有投资,乙工厂投资200万元,丙工厂投资300万元。
按最优分配方案分配投资(资源),年利润将增长210万元。
在现代数学建模中,动态规划和贪心算法是两种常用的方法。
它们具有重要的理论和实际意义,可以在很多实际问题中得到应用。
动态规划是一种通过将问题分解为子问题,并反复求解子问题来求解整个问题的方法。
它的核心思想是将原问题分解为若干个规模较小的子问题,并将子问题的最优解合并得到原问题的最优解。
动态规划的求解过程通常包括问题的建模、状态的定义、状态转移方程的确定、初始条件的设置和最优解的确定等步骤。
通过动态规划方法,可以大大减少问题的求解时间,提高求解效率。
举个例子,假设我们有一组物品,每个物品有重量和价值两个属性。
我们希望从中选出一些物品放入背包中,使得在背包容量限定的条件下,背包中的物品的总价值最大化。
这个问题可以使用动态规划来解决。
首先,我们定义一个状态变量,表示当前的背包容量和可选择的物品。
然后,我们根据背包容量和可选择的物品进行状态转移,将问题分解为子问题,求解子问题的最优解。
最后,根据最优解的状态,确定原问题的最优解。
与动态规划相比,贪心算法更加简单直接。
贪心算法是一种通过每一步的局部最优选择来达到全局最优解的方法。
贪心算法的核心思想是每一步都做出当前看来最好的选择,并在此基础上构造整个问题的最优解。
贪心算法一般包括问题的建模、贪心策略的确定和解的构造等步骤。
尽管贪心算法不能保证在所有情况下得到最优解,但在一些特定情况下,它可以得到最优解。
举个例子,假设我们要找零钱,现有的零钱包括若干2元、5元和10元的硬币。
我们希望找出一种最少的方案来凑出某个金额。
这个问题可以使用贪心算法来解决。
首先,我们确定贪心策略,即每次选择最大面额的硬币。
然后,我们根据贪心策略进行解的构造,直到凑够目标金额。
动态规划和贪心算法在数学建模中的应用广泛,在实际问题中也有很多的成功应用。
例如,动态规划可以用于求解最短路径、最小生成树等问题;贪心算法可以用于求解调度、路径规划等问题。
同时,动态规划和贪心算法也相互补充和影响。
有一些问题既可以使用动态规划求解,也可以使用贪心算法求解。
【最新整理,下载后即可编辑】动态规划动态规划(dynamic programming)是运筹学的一个重要分支,它是解决多阶段决策问题的一种有效的数量化方法.动态规划是由美国学者贝尔曼(R.Bellman)等人所创立的.1951年贝尔曼首先提出了动态规划中解决多阶段决策问题的最优化原理,并给出了许多实际问题的解法.1957年贝尔曼发表了《动态规划》一书,标志着运筹学这一重要分支的诞生.§1动态规划的概念与原理一、动态规划的基本概念引例: 最短路线问题美国黑金石油公司(The Black Gold Petroleum Company)最近在阿拉斯加(Alaska)的北斯洛波(North Slope)发现了大的石油储量。
为了大规模开发这一油田,首先必须建立相应的输运网络,使北斯洛波生产的原油能运至美国的3个装运港之一。
在油田的集输站(结点C)与装运港(结点P1、P2、P3)之间需要若干个中间站,中间站之间的联通情况如图1所示,图中线段上的数字代表两站之间的距离(单位:10千米)。
试确定一最佳的输运线路,使原油的输送距离最短。
解:最短路线有一个重要性质,即如果由起点A经过B 点和C点到达终点D是一条最短路线,则由B点经C点到达终点D一定是B到D的最短路(贝尔曼最优化原理)。
此性质用反证法很容易证明,因为如果不是这样,则从B点到D点有另一条距离更短的路线存在,不妨假设为B—P—D;从而可知路线A—B—P—D比原路线A—B—C—D距离短,这与原路线A—B—C—D是最短路线相矛盾,性质得证。
根据最短路线的这一性质,寻找最短路线的方法就是从最后阶段开始,由后向前逐步递推求出各点到终点的最短路线,最后求得由始点到终点的最短路;即动态规划的方法是从终点逐段向始点方向寻找最短路线的一种方法。
按照动态规划的方法,将此过程划分为4个阶段,即阶段变量4,3,2,1 k;取过程在各阶段所处的位置为状态变量x,按逆序算法求解。
§6 动态规划模型举例以上讨论的优化问题属于静态的,即不必考虑时间的变化,建立的模型——线性规划、非线性规划、整数规划等,都属于静态规划。
多阶段决策属于动态优化问题,即在每个阶段(通常以时间或空间为标志)根据过程的演变情况确定一个决策,使全过程的某个指标达到最优。
例如:(1)化工生产过程中包含一系列的过程设备,如反应器、蒸馏塔、吸收器等,前一设备的输出为后一设备的输入。
因此,应该如何控制生产过程中各个设备的输入和输出,使总产量最大。
(2)发射一枚导弹去击中运动的目标,由于目标的行动是不断改变的,因此应当如何根据目标运动的情况,不断地决定导弹飞行的方向和速度,使之最快地命中目标。
(3)汽车刚买来时故障少、耗油低,出车时间长,处理价值和经济效益高。
随着使用时间的增加则变得故障多,油耗高,维修费用增加,经济效益差。
使用时间俞长,处理价值也俞低。
另外,每次更新都要付出更新费用。
因此,应当如何决定它每年的使用时间,使总的效益最佳。
动态规划模型是解决这类问题的有力工具,下面介绍相关的基本概念及其数学描述。
(1)阶段 整个问题的解决可分为若干个相互联系的阶段依次进行。
通常按时间或空间划分阶段,描述阶段的变量称为阶段变量,记为k 。
(2)状态 状态表示每个阶段开始时所处的自然状况或客观条件,它描述了研究过程的状况。
各阶段的状态通常用状态变量描述。
常用k x 表示第k 阶段的状态变量。
n 个阶段的决策过程有1+n 个状态。
用动态规划方法解决多阶段决策问题时,要求整个过程具有无后效性。
即:如果某阶段的状态给定,则此阶段以后过程的发展不受以前状态的影响,未来状态只依赖于当前状态。
(3)决策 某一阶段的状态确定后,可以作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。
描述决策的变量称为决策变量。
决策变量限制的取值范围称为允许决策集合。
用)(k k x u 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数,用)(k k x D 表示k x 的允许决策集合。
第四章动态规划§1 引言1.1 动态规划的发展及研究内容动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。
20 世纪50 年代初R. E. Bellman 等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。
1957 年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。
动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。
例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。
虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。
应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法)。
因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。
因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。
例1 最短路线问题图1 是一个线路网,连线上的数字表示两点之间的距离(或费用)。
试寻求一条由A 到G距离最短(或费用最省)的路线。
图1 最短路线问题例2 生产计划问题工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3 (千元),工厂每季度的最大生产能力为6(千件)。
经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。
数学建模常用算法模型在数学建模中,常用的算法模型包括线性规划、整数规划、非线性规划、动态规划、图论算法以及遗传算法等。
下面将对这些算法模型进行详细介绍。
1.线性规划:线性规划是一种用于求解最优化问题的数学模型和解法。
它的目标是找到一组线性约束条件下使目标函数取得最大(小)值的变量取值。
线性规划的常用求解方法有单纯形法、内点法和对偶理论等。
2.整数规划:整数规划是一种求解含有整数变量的优化问题的方法。
在实际问题中,有时变量只能取整数值,例如物流路径问题中的仓库位置、设备配置问题中的设备数量等。
整数规划常用的求解方法有分支界定法和割平面法等。
3.非线性规划:非线性规划是一种求解非线性函数优化问题的方法,它在实际问题中非常常见。
与线性规划不同,非线性规划的目标函数和约束函数可以是非线性的。
非线性规划的求解方法包括牛顿法、拟牛顿法和全局优化方法等。
4.动态规划:动态规划是一种用于解决决策过程的优化方法。
它的特点是将问题划分为一系列阶段,然后依次求解每个阶段的最优决策。
动态规划常用于具有重叠子问题和最优子结构性质的问题,例如背包问题和旅行商问题等。
5.图论算法:图论算法是一类用于解决图相关问题的算法。
图论算法包括最短路径算法、最小生成树算法、网络流算法等。
最短路径算法主要用于求解两点之间的最短路径,常用的算法有Dijkstra算法和Floyd-Warshall算法。
最小生成树算法用于求解一张图中连接所有节点的最小代价树,常用的算法有Prim算法和Kruskal算法。
网络流算法主要用于流量分配和问题匹配,例如最大流算法和最小费用最大流算法。
6.遗传算法:遗传算法是一种借鉴生物进化原理的优化算法。
它通过模拟生物的遗传、变异和选择过程,不断优化问题的解空间。
遗传算法适用于对问题解空间有一定了解但难以确定最优解的情况,常用于求解复杂的组合优化问题。
总结起来,数学建模中常用的算法模型包括线性规划、整数规划、非线性规划、动态规划、图论算法以及遗传算法等。
动态规划的原理及应用动态规划是运筹学的一个分支,是求解多阶段决策过程的最优化数学方法。
20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类问题的新方法——动态规划。
动态规划主要用于以时间划分阶段的动态过程优化问题,但一些与时间无关的静态规划如线性规划或非线性规划,人为引进时间因素后,把它们看成多阶段过程,也可用动态规划求解。
1.动态规划的基本理论一.动态规划的术语在研究现实的系统时,我们必须将系统具体的术语抽象为数学统一的术语。
在此先简要介绍动态规划中的常用术语。
级:我们把系统顺序地向前发展划分为若干个阶段,称这些阶段为“级”。
在离散动态规划中,“级”顺序的用自然整数编号,即1,2,…,n.状态(λ):用来描述、刻画级的特征。
状态可以是单变量,也可以时向量。
在此,我们假设研究的状态具有“无记忆性”,即当前与未来的收益仅决定于当前的状态,并不依赖于过去的状态和决策的历史。
状态空间(Λ):由全部系统可能存在的状态变量所组成。
决策:在每一级,当状态给定后,往往可以做出不同的决定,从而确定下一级的状态,这种决定称为决策。
描述决策的变量称为决策变量。
对每个状态λ∈Λ,有一非空集X(λ)称为λ的决策集。
决策变量x(λ)∈X(λ)。
变换:若过程在状态λ,选择决策x(λ),可确定一个状态集T(λ,x(λ)),过程将从λ移动到其中某个状态.T(λ,x(λ))称为变换函数,它确定过程从一个状态到另一个状态的演变。
T(λ,x(λ))可分为两种类型,即确定型和不确定型。
确定型的T(λ,x(λ))只含有一个元。
不确定型指我们不能确切知道决策的结果,但作为某已知概率分布支配的变换结果,在每级状态和决策是确定的。
这时,集函数T(λ,x(λ))将包含多个元素。
当T(λ,x(λ))=0 时,过程终止。
策略:顺序排列的决策集,记为v。
动态规划建模(完善版)符号说明:(1)1kno表示第k月份需要更换刀片的车床的数量(2)*1kno表示必须在第k月份进行更换刀片的车床的数量(3)2kno表示第k月份报废的车床的数量(4)*3kno代表每年大修的车床的总量(5)4*kno代表每年更换B型刀片的车床的总数量(6)5kno表示在第k月份进行大修的车床的数量(7)*5kno表示必须在第k月份进行大修的车床的数量(8)*t表示报废车床的刀片的剩余寿命(9)count表示更换刀片的次数(10)*count表示大修次数(11)lifetime为车床的寿命(12)sm表示购进新刀片的单价(13)k x表示第k阶段的状态变量假设(1)只在车床自新购使用时间为600时进行刀片的替换,在车床自新购使用时间为300小时时只进行大修假设(2)当车床到寿报废时,买进新的车床进行替换,新的车床的刀片的寿命均为600小时假设(3)我们考虑每台机器更新一次,即只计算七年之内更换的刀片的数量。
一、问题分析本文是车床替换策略的数学建模问题,属于动态规划模型。
本文研究机床寿命,自上次大修使用的时间和刀片剩余寿命之间的关系,并考虑A、B刀片不同的价格对最终替换策略的影响,制定车床替换方案,利用现有条件在规划的时间里获得新片最低的消耗量。
针对问题一:在不考虑A型刀片停产,并且全部使用A型刀片进行替换的情况下,要求得进行更换总计需要消耗的刀片数量,消耗的新购刀片的总价值,各剩余刀片的寿命及其总和,以及每年最少消耗的新购刀片的数量,即求得最佳车床替换策略。
可以根据已知各车床的自新购使用时间,自上次大修使用时间,刀片剩余寿命以及大修次数,确定必须在第k个月进行大修和更换刀片的车床,并且求得既可以在第k个月也可以在第1k个月进行大修和更换刀片的车床,然后根据约束条件和优化条件,确定出最优车床更换策略。
针对问题二:考虑到A型刀片停产,在大修时全部使用B型刀片进行更换,要求得进行更换总计需要消耗的刀片的数量,消耗的B型新购刀片的总价值,各剩余刀片的寿命及其总和,以及每年最少消耗的B型新购刀片的数量,即求得最佳更换策略。
数学建模算法合集之《动态规划的特点及其应用》动态规划的特点及其应用目录 (点击进入) §1动态规划的本质§1.1多阶段决策问题§1.2阶段与状态§1.3决策和策略§1.4最优化原理与无后效性§1.5最优指标函数和规划方程§2动态规划的设计与实现§2.1动态规划的多样性§2.2动态规划的模式性§2.3动态规划的技巧性§3动态规划与一些算法的比较§3.1动态规划与递推§3.2动态规划与搜索§3.3动态规划与网络流§4结语【附录:部分试题与源程序】1.“花店橱窗布置问题”试题2.“钉子与小球”试题 3.例2“花店橱窗布置问题”方法1的源程序 4.例2“花店橱窗布置问题”方法2的源程序 5.例3“街道问题”的扩展 6.例4“mod 4最优路径问题”的源程序 7.例5“钉子与小球”的源程序 8.例6的源程序,“N个人的街道问题” 【参考文献】第 1 页共 29页【摘要】动态规划是信息学竞赛中的常见算法,本文的主要内容就是分析它的特点。
文章的第一部分首先探究了动态规划的本质,因为动态规划的特点是由它的本质所决定的。
第二部分从动态规划的设计和实现这两个角度分析了动态规划的多样性、模式性、技巧性这三个特点。
第三部分将动态规划和递推、搜索、网络流这三个相关算法作了比较,从中探寻动态规划的一些更深层次的特点。
文章在分析动态规划的特点的同时,还根据这些特点分析了我们在解题中应该怎样利用这些特点,怎样运用动态规划。
这对我们的解题实践有一定的指导意义【正文】动态规划是编程解题的一种重要的手段,在如今的信息学竞赛中被应用得越来越普遍。
最近几年的信息学竞赛,不分大小,几乎每次都要考察到这方面的内容。
因此,如何更深入地了解动态规划,从而更为有效地运用这个解题的有力武器,是一个值得深入研究的问题。