第3章数学建模中的动态规划问题
- 格式:ppt
- 大小:979.50 KB
- 文档页数:72
1.某公司打算向它的三个营业区增设6个销售店,每个营业区至少增设1个。
各营业区每年增加的利润与增设的销售店个数有关,具体关系如表1所示。
试规划各营业区应增设销售店的个数,以使公司总利润增加额最大。
:个销售店,C 区增设1个销售店.最大利润为490万元。
贝尔曼(Bellman )最优化原理:在最优策略的任意一阶段上,无论过去的状态和决策如何,对过去决策所形成的当前状态而言,余下的诸决策必须构成最优子策略。
2.某公司拟将500万元的资本投入所属的甲、乙、丙三个工厂进行技术改造,各工厂获得投资后年利润将有相应的增长,增长额如表所示。
试确定500万元资解:将问题按工厂分为三个阶段3,2,1=k ,设状态变量k (3,2,1=k )代表从第k 个工厂到第3个工厂的投资额,决策变量k x 代表第k 个工厂的投资额。
于是有状态转移率k k k x S S -=+1、允许决策集合}0|{)(k k k k k S x x S D ≤≤=和递推关系式:)}()({max )(10k k k k k S x k k x S f x g S f k k -+=+≤≤ )1,2,3(=k0)(44=S f当3=k 时:)}({max }0)({max )(330330333333x g x g S f S x S x ≤≤≤≤=+=于是有表2-1,表中*3x 表示第三个阶段的最优决策。
当2=k 时:)}()({max )(2232202222x S f x g S f S x -+=≤≤于是有表7-3。
当1=k 时:)}()({max )(1121101111x S f x g S f S x -+=≤≤于是有表2-3。
然后按计算表格的顺序反推算,可知最优分配方案有两个:(1)甲工厂投资200万元,乙工厂投资200万元,丙工厂投资100万元;(2)甲工厂没有投资,乙工厂投资200万元,丙工厂投资300万元。
按最优分配方案分配投资(资源),年利润将增长210万元。
动态规划模型动态规划(Dynamic Programming)是一种优化问题的求解方法,它将原问题划分为多个子问题,并通过求解子问题的最优解来得到原问题的最优解。
动态规划方法适用于满足最优子结构(optimal substructure)和重叠子问题(overlapping subproblems)的问题。
动态规划模型由三个基本要素组成:状态(state)、状态转移方程(state transition equation)和初始条件(initial conditions)。
首先,我们需要定义问题的状态,即将原问题划分为多个子问题,并将子问题的结果组合起来得到原问题的结果。
状态可以是一个整数、一个数组、一个矩阵或者一个串等等。
状态具有两个性质:最优子结构和无后效性。
其次,我们需要确定状态之间的转移关系,即状态转移方程。
状态转移方程描述了一个状态如何从其前一个状态转移到后一个状态。
状态转移方程是问题求解的核心,通过它可以得到问题的最优解。
最后,我们需要确定初始条件,即问题的边界条件或者初始状态。
初始条件提供了问题的起始状态,是递推过程的终止条件。
动态规划模型的求解过程通常包括以下几个步骤:1. 定义状态:确定问题的状态,即将原问题划分为多个子问题,并定义每个子问题的状态。
2. 确定状态转移方程:根据问题的最优子结构性质,确定状态之间的转移关系,即状态转移方程。
3. 确定初始条件:确定问题的边界条件或者初始状态,提供递推过程的终止条件。
4. 设计算法:根据状态转移方程和初始条件,设计算法求解问题。
5. 检验结果:检验算法的正确性和有效性,确保得到的结果是问题的最优解。
动态规划模型的求解过程通常采用自底向上(bottom-up)的方法,即从最小的子问题开始求解,逐步通过求解子问题的最优解来得到原问题的最优解。
在求解过程中,将子问题的最优解存储起来,避免重复计算,提高求解效率。
总之,动态规划模型是一种有效的求解优化问题的方法,通过将原问题划分为多个子问题,并通过求解子问题的最优解来得到原问题的最优解。
在现代数学建模中,动态规划和贪心算法是两种常用的方法。
它们具有重要的理论和实际意义,可以在很多实际问题中得到应用。
动态规划是一种通过将问题分解为子问题,并反复求解子问题来求解整个问题的方法。
它的核心思想是将原问题分解为若干个规模较小的子问题,并将子问题的最优解合并得到原问题的最优解。
动态规划的求解过程通常包括问题的建模、状态的定义、状态转移方程的确定、初始条件的设置和最优解的确定等步骤。
通过动态规划方法,可以大大减少问题的求解时间,提高求解效率。
举个例子,假设我们有一组物品,每个物品有重量和价值两个属性。
我们希望从中选出一些物品放入背包中,使得在背包容量限定的条件下,背包中的物品的总价值最大化。
这个问题可以使用动态规划来解决。
首先,我们定义一个状态变量,表示当前的背包容量和可选择的物品。
然后,我们根据背包容量和可选择的物品进行状态转移,将问题分解为子问题,求解子问题的最优解。
最后,根据最优解的状态,确定原问题的最优解。
与动态规划相比,贪心算法更加简单直接。
贪心算法是一种通过每一步的局部最优选择来达到全局最优解的方法。
贪心算法的核心思想是每一步都做出当前看来最好的选择,并在此基础上构造整个问题的最优解。
贪心算法一般包括问题的建模、贪心策略的确定和解的构造等步骤。
尽管贪心算法不能保证在所有情况下得到最优解,但在一些特定情况下,它可以得到最优解。
举个例子,假设我们要找零钱,现有的零钱包括若干2元、5元和10元的硬币。
我们希望找出一种最少的方案来凑出某个金额。
这个问题可以使用贪心算法来解决。
首先,我们确定贪心策略,即每次选择最大面额的硬币。
然后,我们根据贪心策略进行解的构造,直到凑够目标金额。
动态规划和贪心算法在数学建模中的应用广泛,在实际问题中也有很多的成功应用。
例如,动态规划可以用于求解最短路径、最小生成树等问题;贪心算法可以用于求解调度、路径规划等问题。
同时,动态规划和贪心算法也相互补充和影响。
有一些问题既可以使用动态规划求解,也可以使用贪心算法求解。
动态规划及其在数学模型中的应用1动态规划的起源与发展动态规划是解决多阶段决策过程最优化的一种方法,大约产生于20世纪50年代。
1951年,美国数学家理查德?贝尔曼根据一类多阶段决策问题的特点,把多阶段决策问题表示为一系列单阶段问题,即把一个N—变量问题作为一系列的N个问题而逐个加以解决,提出了解决这类问题的“最优化原理”,并将其应用于很多实际问题的研究,从而建立了运筹学的一个分支-动态规划.1957年理查德?贝尔曼在美国普林斯顿大学发表了第一本正式的著作。
随后理查德?贝尔曼及其他科学工作者发表了一些列动态规划应用的著作,包括动态规划在最佳控制论、资源理论、工业工程、经济学、管理科学、变分法和马尔柯夫过程中的应用。
动态规划的发展始终伴随着它的广泛应用而不断臻善的。
2动态规划的优点与局限动态规划的核心思想是贝尔曼提出的最优化原理,这个原理导致了分阶段决策的方法。
分阶段决策的方法是建立在整体最优化的基础上的,在寻求某一阶段的决策时,不仅要考虑局部的利益,而且应考虑总体的最优。
动态规划通过将一个N维变量的复杂问题进行分阶段处理,把N维变量问题变成求解N个单变量问题,大大简化求解过程,节省巨大的计算量,这是经典的求解极值方法所做不到的。
动态规划几乎超越了所有现在的计算方法,特别是经典最优化方法,它能确定出绝对(全局)极大或极小,而不是相对(局部)的极值,使得我们不再需要关心伤脑筋的局部极大或极小问题。
动态规划的另一特点是泛函方程的“嵌入"特性。
动态规划方法求出的不仅是对整个过程的某一特定状态的一个解,而且也是对所有后部子过程的所有可能出现状态的一族解.动态规划方法的局限性表现有以下几个方面:第一,到目前为止,动态规划还没有一个统一的标准模型可供使用。
实际问题不同,其动态规划模型可能各异,虽然理论上说可以把其他数学规划问题化为动态规划模型求解,但是这种转化的过程对于复杂的数学规划问题将变得十分困难。
数学建模中的动态规划问题动态规划是一种常见且重要的数学建模技术,它在解决许多实际问题中发挥着关键作用。
本文将介绍动态规划问题的基本概念和解题方法,并通过几个实例来说明其在数学建模中的应用。
一、动态规划的基本概念动态规划是解决多阶段决策问题的一种方法。
一般来说,动态规划问题可以分为以下几个步骤:1. 确定阶段:将问题划分为若干个阶段,每个阶段对应一个决策。
2. 确定状态:将每个阶段的可能状态列出,并定义对应的决策集合。
3. 确定状态转移方程:根据当前阶段的状态和上一个阶段的决策,确定状态的转移关系。
4. 确定初始条件:确定问题的初始状态。
5. 确定决策的评价标准:根据问题的具体要求,确定决策的评价标准。
6. 使用递推或递归公式求解:根据状态转移方程,使用递推或递归公式求解问题。
二、动态规划问题的解题方法在解决动态规划问题时,一般可以使用自顶向下和自底向上两种方法。
自顶向下的方法,也称为记忆化搜索,是指从问题的最优解出发,逐步向下求解子问题的最优解。
该方法通常使用递归来实现,并通过记忆化技术来避免重复计算。
自底向上的方法,也称为动态规划的迭代求解法,是指从问题的初始状态出发,逐步向上求解各个阶段的最优解。
该方法通常使用迭代循环来实现,并通过存储中间结果来避免重复计算。
三、动态规划在数学建模中的应用1. 01背包问题:给定一组物品和一个背包,每个物品有对应的价值和重量,要求选择一些物品放入背包中,使得背包中物品的总价值最大,而且总重量不超过背包的容量。
这是一个经典的动态规划问题,在数学建模中经常遇到。
2. 最短路径问题:在给定的有向图中,求解从一个顶点到另一个顶点的最短路径。
该问题可以使用动态规划的思想对其进行求解,其中每个阶段表示到达某个顶点的最短路径。
3. 最长公共子序列问题:给定两个序列,求解它们最长的公共子序列的长度。
该问题可以使用动态规划的方法解决,其中每个阶段表示两个序列的某个子序列。
四、实例分析以01背包问题为例进行具体分析。