第3章数学建模中的动态规划问题
- 格式:ppt
- 大小:979.50 KB
- 文档页数:72
1.某公司打算向它的三个营业区增设6个销售店,每个营业区至少增设1个。
各营业区每年增加的利润与增设的销售店个数有关,具体关系如表1所示。
试规划各营业区应增设销售店的个数,以使公司总利润增加额最大。
:个销售店,C 区增设1个销售店.最大利润为490万元。
贝尔曼(Bellman )最优化原理:在最优策略的任意一阶段上,无论过去的状态和决策如何,对过去决策所形成的当前状态而言,余下的诸决策必须构成最优子策略。
2.某公司拟将500万元的资本投入所属的甲、乙、丙三个工厂进行技术改造,各工厂获得投资后年利润将有相应的增长,增长额如表所示。
试确定500万元资解:将问题按工厂分为三个阶段3,2,1=k ,设状态变量k (3,2,1=k )代表从第k 个工厂到第3个工厂的投资额,决策变量k x 代表第k 个工厂的投资额。
于是有状态转移率k k k x S S -=+1、允许决策集合}0|{)(k k k k k S x x S D ≤≤=和递推关系式:)}()({max )(10k k k k k S x k k x S f x g S f k k -+=+≤≤ )1,2,3(=k0)(44=S f当3=k 时:)}({max }0)({max )(330330333333x g x g S f S x S x ≤≤≤≤=+=于是有表2-1,表中*3x 表示第三个阶段的最优决策。
当2=k 时:)}()({max )(2232202222x S f x g S f S x -+=≤≤于是有表7-3。
当1=k 时:)}()({max )(1121101111x S f x g S f S x -+=≤≤于是有表2-3。
然后按计算表格的顺序反推算,可知最优分配方案有两个:(1)甲工厂投资200万元,乙工厂投资200万元,丙工厂投资100万元;(2)甲工厂没有投资,乙工厂投资200万元,丙工厂投资300万元。
按最优分配方案分配投资(资源),年利润将增长210万元。
动态规划模型动态规划(Dynamic Programming)是一种优化问题的求解方法,它将原问题划分为多个子问题,并通过求解子问题的最优解来得到原问题的最优解。
动态规划方法适用于满足最优子结构(optimal substructure)和重叠子问题(overlapping subproblems)的问题。
动态规划模型由三个基本要素组成:状态(state)、状态转移方程(state transition equation)和初始条件(initial conditions)。
首先,我们需要定义问题的状态,即将原问题划分为多个子问题,并将子问题的结果组合起来得到原问题的结果。
状态可以是一个整数、一个数组、一个矩阵或者一个串等等。
状态具有两个性质:最优子结构和无后效性。
其次,我们需要确定状态之间的转移关系,即状态转移方程。
状态转移方程描述了一个状态如何从其前一个状态转移到后一个状态。
状态转移方程是问题求解的核心,通过它可以得到问题的最优解。
最后,我们需要确定初始条件,即问题的边界条件或者初始状态。
初始条件提供了问题的起始状态,是递推过程的终止条件。
动态规划模型的求解过程通常包括以下几个步骤:1. 定义状态:确定问题的状态,即将原问题划分为多个子问题,并定义每个子问题的状态。
2. 确定状态转移方程:根据问题的最优子结构性质,确定状态之间的转移关系,即状态转移方程。
3. 确定初始条件:确定问题的边界条件或者初始状态,提供递推过程的终止条件。
4. 设计算法:根据状态转移方程和初始条件,设计算法求解问题。
5. 检验结果:检验算法的正确性和有效性,确保得到的结果是问题的最优解。
动态规划模型的求解过程通常采用自底向上(bottom-up)的方法,即从最小的子问题开始求解,逐步通过求解子问题的最优解来得到原问题的最优解。
在求解过程中,将子问题的最优解存储起来,避免重复计算,提高求解效率。
总之,动态规划模型是一种有效的求解优化问题的方法,通过将原问题划分为多个子问题,并通过求解子问题的最优解来得到原问题的最优解。
在现代数学建模中,动态规划和贪心算法是两种常用的方法。
它们具有重要的理论和实际意义,可以在很多实际问题中得到应用。
动态规划是一种通过将问题分解为子问题,并反复求解子问题来求解整个问题的方法。
它的核心思想是将原问题分解为若干个规模较小的子问题,并将子问题的最优解合并得到原问题的最优解。
动态规划的求解过程通常包括问题的建模、状态的定义、状态转移方程的确定、初始条件的设置和最优解的确定等步骤。
通过动态规划方法,可以大大减少问题的求解时间,提高求解效率。
举个例子,假设我们有一组物品,每个物品有重量和价值两个属性。
我们希望从中选出一些物品放入背包中,使得在背包容量限定的条件下,背包中的物品的总价值最大化。
这个问题可以使用动态规划来解决。
首先,我们定义一个状态变量,表示当前的背包容量和可选择的物品。
然后,我们根据背包容量和可选择的物品进行状态转移,将问题分解为子问题,求解子问题的最优解。
最后,根据最优解的状态,确定原问题的最优解。
与动态规划相比,贪心算法更加简单直接。
贪心算法是一种通过每一步的局部最优选择来达到全局最优解的方法。
贪心算法的核心思想是每一步都做出当前看来最好的选择,并在此基础上构造整个问题的最优解。
贪心算法一般包括问题的建模、贪心策略的确定和解的构造等步骤。
尽管贪心算法不能保证在所有情况下得到最优解,但在一些特定情况下,它可以得到最优解。
举个例子,假设我们要找零钱,现有的零钱包括若干2元、5元和10元的硬币。
我们希望找出一种最少的方案来凑出某个金额。
这个问题可以使用贪心算法来解决。
首先,我们确定贪心策略,即每次选择最大面额的硬币。
然后,我们根据贪心策略进行解的构造,直到凑够目标金额。
动态规划和贪心算法在数学建模中的应用广泛,在实际问题中也有很多的成功应用。
例如,动态规划可以用于求解最短路径、最小生成树等问题;贪心算法可以用于求解调度、路径规划等问题。
同时,动态规划和贪心算法也相互补充和影响。
有一些问题既可以使用动态规划求解,也可以使用贪心算法求解。
动态规划及其在数学模型中的应用1动态规划的起源与发展动态规划是解决多阶段决策过程最优化的一种方法,大约产生于20世纪50年代。
1951年,美国数学家理查德?贝尔曼根据一类多阶段决策问题的特点,把多阶段决策问题表示为一系列单阶段问题,即把一个N—变量问题作为一系列的N个问题而逐个加以解决,提出了解决这类问题的“最优化原理”,并将其应用于很多实际问题的研究,从而建立了运筹学的一个分支-动态规划.1957年理查德?贝尔曼在美国普林斯顿大学发表了第一本正式的著作。
随后理查德?贝尔曼及其他科学工作者发表了一些列动态规划应用的著作,包括动态规划在最佳控制论、资源理论、工业工程、经济学、管理科学、变分法和马尔柯夫过程中的应用。
动态规划的发展始终伴随着它的广泛应用而不断臻善的。
2动态规划的优点与局限动态规划的核心思想是贝尔曼提出的最优化原理,这个原理导致了分阶段决策的方法。
分阶段决策的方法是建立在整体最优化的基础上的,在寻求某一阶段的决策时,不仅要考虑局部的利益,而且应考虑总体的最优。
动态规划通过将一个N维变量的复杂问题进行分阶段处理,把N维变量问题变成求解N个单变量问题,大大简化求解过程,节省巨大的计算量,这是经典的求解极值方法所做不到的。
动态规划几乎超越了所有现在的计算方法,特别是经典最优化方法,它能确定出绝对(全局)极大或极小,而不是相对(局部)的极值,使得我们不再需要关心伤脑筋的局部极大或极小问题。
动态规划的另一特点是泛函方程的“嵌入"特性。
动态规划方法求出的不仅是对整个过程的某一特定状态的一个解,而且也是对所有后部子过程的所有可能出现状态的一族解.动态规划方法的局限性表现有以下几个方面:第一,到目前为止,动态规划还没有一个统一的标准模型可供使用。
实际问题不同,其动态规划模型可能各异,虽然理论上说可以把其他数学规划问题化为动态规划模型求解,但是这种转化的过程对于复杂的数学规划问题将变得十分困难。
数学建模中的动态规划问题动态规划是一种常见且重要的数学建模技术,它在解决许多实际问题中发挥着关键作用。
本文将介绍动态规划问题的基本概念和解题方法,并通过几个实例来说明其在数学建模中的应用。
一、动态规划的基本概念动态规划是解决多阶段决策问题的一种方法。
一般来说,动态规划问题可以分为以下几个步骤:1. 确定阶段:将问题划分为若干个阶段,每个阶段对应一个决策。
2. 确定状态:将每个阶段的可能状态列出,并定义对应的决策集合。
3. 确定状态转移方程:根据当前阶段的状态和上一个阶段的决策,确定状态的转移关系。
4. 确定初始条件:确定问题的初始状态。
5. 确定决策的评价标准:根据问题的具体要求,确定决策的评价标准。
6. 使用递推或递归公式求解:根据状态转移方程,使用递推或递归公式求解问题。
二、动态规划问题的解题方法在解决动态规划问题时,一般可以使用自顶向下和自底向上两种方法。
自顶向下的方法,也称为记忆化搜索,是指从问题的最优解出发,逐步向下求解子问题的最优解。
该方法通常使用递归来实现,并通过记忆化技术来避免重复计算。
自底向上的方法,也称为动态规划的迭代求解法,是指从问题的初始状态出发,逐步向上求解各个阶段的最优解。
该方法通常使用迭代循环来实现,并通过存储中间结果来避免重复计算。
三、动态规划在数学建模中的应用1. 01背包问题:给定一组物品和一个背包,每个物品有对应的价值和重量,要求选择一些物品放入背包中,使得背包中物品的总价值最大,而且总重量不超过背包的容量。
这是一个经典的动态规划问题,在数学建模中经常遇到。
2. 最短路径问题:在给定的有向图中,求解从一个顶点到另一个顶点的最短路径。
该问题可以使用动态规划的思想对其进行求解,其中每个阶段表示到达某个顶点的最短路径。
3. 最长公共子序列问题:给定两个序列,求解它们最长的公共子序列的长度。
该问题可以使用动态规划的方法解决,其中每个阶段表示两个序列的某个子序列。
四、实例分析以01背包问题为例进行具体分析。
动态规划问题常见解法动态规划(Dynamic Programming)是一种常用的算法思想,用于解决一类具有重叠子问题性质和最优子结构性质的问题。
动态规划通常通过将问题划分为若干个子问题,并分别求解子问题的最优解,从而得到原问题的最优解。
以下是动态规划问题常见的解法:1. 斐波那契数列斐波那契数列是动态规划问题中的经典案例。
它的递推关系式为 F(n) = F(n-1) + F(n-2),其中 F(0) = 0,F(1) = 1。
可以使用动态规划的思想来解决斐波那契数列问题,通过保存已经计算过的子问题的结果,避免重复计算。
2. 背包问题背包问题是一个经典的优化问题,可以使用动态规划的方法进行求解。
背包问题包括 0/1 背包问题和完全背包问题。
0/1 背包问题中每个物品要么被选中放入背包,要么不选。
完全背包问题中每个物品可以被选中多次放入背包。
通过定义状态转移方程和使用动态规划的思想,可以高效地求解背包问题。
3. 最长递增子序列最长递增子序列是一个常见的子序列问题,可以使用动态规划的方法进行求解。
最长递增子序列指的是在一个序列中,找到一个最长的子序列,使得子序列中的元素按照顺序递增。
通过定义状态转移方程和使用动态规划的思想,可以有效地求解最长递增子序列问题。
4. 最长公共子序列最长公共子序列是一个经典的字符串问题,可以使用动态规划的方法进行求解。
给定两个字符串,找到它们之间最长的公共子序列。
通过定义状态转移方程和使用动态规划的思想,可以高效地求解最长公共子序列问题。
5. 矩阵链乘法矩阵链乘法是一个求解最优括号化问题的经典案例,可以使用动态规划的方法进行求解。
给定多个矩阵的大小,需要找到一个最优的计算顺序,使得计算乘积的次数最少。
通过定义状态转移方程和使用动态规划的思想,可以高效地求解矩阵链乘法问题。
以上是动态规划问题的常见解法,通过使用动态规划的思想和方法,可以解决这些问题,并求得最优解。
§6 动态规划模型举例以上讨论的优化问题属于静态的,即不必考虑时间的变化,建立的模型——线性规划、非线性规划、整数规划等,都属于静态规划。
多阶段决策属于动态优化问题,即在每个阶段(通常以时间或空间为标志)根据过程的演变情况确定一个决策,使全过程的某个指标达到最优。
例如:(1)化工生产过程中包含一系列的过程设备,如反应器、蒸馏塔、吸收器等,前一设备的输出为后一设备的输入。
因此,应该如何控制生产过程中各个设备的输入和输出,使总产量最大。
(2)发射一枚导弹去击中运动的目标,由于目标的行动是不断改变的,因此应当如何根据目标运动的情况,不断地决定导弹飞行的方向和速度,使之最快地命中目标。
(3)汽车刚买来时故障少、耗油低,出车时间长,处理价值和经济效益高。
随着使用时间的增加则变得故障多,油耗高,维修费用增加,经济效益差。
使用时间俞长,处理价值也俞低。
另外,每次更新都要付出更新费用。
因此,应当如何决定它每年的使用时间,使总的效益最佳。
动态规划模型是解决这类问题的有力工具,下面介绍相关的基本概念及其数学描述。
(1)阶段 整个问题的解决可分为若干个相互联系的阶段依次进行。
通常按时间或空间划分阶段,描述阶段的变量称为阶段变量,记为k 。
(2)状态 状态表示每个阶段开始时所处的自然状况或客观条件,它描述了研究过程的状况。
各阶段的状态通常用状态变量描述。
常用k x 表示第k 阶段的状态变量。
n 个阶段的决策过程有1+n 个状态。
用动态规划方法解决多阶段决策问题时,要求整个过程具有无后效性。
即:如果某阶段的状态给定,则此阶段以后过程的发展不受以前状态的影响,未来状态只依赖于当前状态。
(3)决策 某一阶段的状态确定后,可以作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。
描述决策的变量称为决策变量。
决策变量限制的取值范围称为允许决策集合。
用)(k k x u 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数,用)(k k x D 表示k x 的允许决策集合。
高中数学中常见的数学建模题分析一、引言数学建模题在高中数学学习中起到了非常重要的作用,它既锻炼了学生的数学思维能力,又培养了学生的实际问题解决能力。
本文将重点分析高中数学中常见的数学建模题,并探讨解决这些问题的方法和步骤。
二、数学建模题的分类1. 线性规划问题线性规划是数学建模中最基本的问题之一。
该问题通常涉及到在一定的约束条件下,求解一个线性方程组的最优解。
例如,某工厂在一定的资源限制下,如何安排生产,以使成本最小化或产量最大化。
2. 最优化问题最优化问题包括最大化问题和最小化问题。
这类问题的解决方法通常是通过求导数进行优化,找到使目标函数取得极值的点。
例如,在扔老师纳什扬尼的蛋问题中,要确定扔鸡蛋的起始楼层,以便在最坏情况下扔的次数最少。
3. 动态规划问题动态规划问题是将一个复杂的问题分解为多个重叠子问题,通过求解子问题的最优解来获取原问题的最优解。
例如,在路径规划问题中,我们可以使用动态规划来确定从起点到终点的最短路径。
4. 概率模型问题概率模型问题涉及到在给定的概率条件下,预测某个事件发生的概率。
例如,在赌博游戏中,我们可以使用概率模型来计算某个玩家获胜的概率。
5. 统计问题统计问题主要是研究如何通过样本数据来推断总体的某些特性。
通常通过收集样本数据,计算样本均值、标准差等统计量,然后通过统计推断方法来估计总体的参数。
三、数学建模题的解决方法和步骤1. 理解问题首先要对问题进行深入的理解,包括确定问题的背景、目标、约束条件等。
通过仔细阅读问题描述,了解问题所涉及的数学概念和模型。
2. 建立模型在理解问题的基础上,根据问题的特点建立适当的数学模型。
模型的建立应符合实际情况,并能够准确描述问题的要求。
3. 分析模型对建立的数学模型进行分析,包括模型的性质、特点和解的存在性及唯一性等。
通过分析模型的特点,可以更好地理解问题的本质,并为后续的解决方法提供指导。
4. 求解模型根据建立的数学模型,选择合适的求解方法进行求解。
数学建模中的动态规划问题的开题报告一、选题背景动态规划作为一种求解最优化问题的有效方法,被广泛应用于数学建模中。
在实际问题中,需要考虑多个决策的选择,以使得目标函数能够达到最优值。
与贪心算法相比,动态规划通过记录历史状态的方式来优化决策,具有更强的求解能力。
因此,本次选题将探讨与动态规划相关的数学建模问题。
二、选题意义作为数学建模的重要组成部分,动态规划既能够解决实际问题中的最优化问题,又能够为学生提供优秀的数学思维和计算机编程能力的锻炼机会。
此外,动态规划的模型具有很强的推广性和普适性,对提高学生的综合素质以及培养计算思维和解决问题能力具有重要意义。
三、选题目的本次选题的目的在于探究动态规划常见问题的建模思路和数值求解方法,为实际问题的建模提供参考。
以背包问题、最长公共子序列问题、最长递增子序列问题、最长回文子序列问题等为例,深入研究动态规划模型的建立方法和数值计算方法,提高学生的动手实践能力和创新能力。
四、选题内容(一)背包问题针对背包问题,可将其分为01 背包问题、完全背包问题和多重背包问题等类型。
本次选题将重点考虑 01 背包问题和完全背包问题的建模和求解方法。
(二)最长公共子序列问题最长公共子序列问题(LCS)在计算机科学中应用广泛,是处理字符串相似度的基础算法之一。
本次选题将研究 LCS 问题的建模方法和数值求解方法。
(三)最长递增子序列问题最长递增子序列问题(LIS)是指在一个给定的序列中,找到一个严格递增子序列使其长度最长。
本次选题将研究 LIS 问题的建模方法和数值求解方法。
(四)最长回文子序列问题最长回文子序列问题(LPS)是指在一个给定的序列中,找到一个回文子序列使其长度最长。
本次选题将研究 LPS 问题的建模方法和数值求解方法。
五、选题方法本次选题的研究方法主要为文献资料查阅和数值计算。
通过阅读相关文献和代码,整理动态规划建模的基本思路和数值求解的方法;通过编写算法程序、调试代码和进行实验计算,进一步验证理论分析的可行性和有效性。