2014届辽宁省沈阳市高三第二次模拟考试理科数学试题(含答案解析)(2014.04)(pdf版)
- 格式:pdf
- 大小:2.43 MB
- 文档页数:15
【恒心】东北三省三校2014年高三第二次联合模拟考试数学(理科)参考答案【考前绝密】13.22333(1)124n n n +++⋅⋅⋅+= 14.315.23 16.①②④17.(Ⅰ)解:当1=n 时,111151,4=+∴=-a S a ………2分 又1151,51++=+=+ n n n n a S a S 115,n n n a a a ++∴-= ………4分114n n a a +=-即∴数列{}n a 是首项为114=-a ,公比为14=-q 的等比数列,∴1()4=-nn a ………6分(Ⅱ)n b nn -=-=)41(log 4, ………8分所以211111(2)22n n b b n n n n +⎛⎫==- ⎪++⎝⎭………10分 1111111111(1)()()1232422212n T n n n n ⎡⎤⎡⎤=-+-++-=+--⎢⎥⎢⎥+++⎣⎦⎣⎦………12分 18.(Ⅰ)解:第三组的频率是0.150×2=0.3;第四组的频率是0.100×2=0.2;第五组的频率是0.050×2=0.1 ………3分(Ⅱ)①由题意可知,在分层抽样的过程中第三组应抽到6×0.5=3个,而第三组共有100×0.3=30个,所以甲乙两产品同时被选中的概率为1283301145C P C == ………7分②第四组共有X 个产品被购买,所以X 的取值为0,1,21233266(0)15C C P X C +===;111322268(1)15C C C P X C +===;22261(2)15C P X C ===; 所以X 的分布列为01228151515XP………10分 812215153EX =+⨯= ………12分19.(Ⅰ)证明:连结MO1111////A M MA MO AC AO OC MO BMD AC BMD AC BMD =⎫⎫⇒⎬⎪=⎭⎪⎪⊂⇒⎬⎪⊄⎪⎪⎭平面平面平面 ………3分(Ⅱ)11BD AA BD AC BD A AC ⊥⊥⊥,得面于是1BD A O ⊥AC BD O ⋂=1111116022cos 60ABCD BAD AO AC AB AA AO AC AO ABCD A AC AO BD ⎫⎫⎫⎪⎪∠=⇒=⎬⎪⎪⎪⎪=⎭⎪⎪⎪⎪=⇒⊥⎬⎪⇒⊥⎬⎪∠=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎪⊥⎪⎭平面 ………7分yxz(Ⅲ)如图建立直角坐标系,1(0,0,3)((0,1,0)(0,1,0)A A C B D -111((AC AC C ==-⇒-33()()2222M MB =--1(0,2,0)(1,3)DB BC ==--设平面1BC D 的法向量为(,,)n x y z =11200300y n DB n DB n y z n BC n BC ⎧⎧=⎧⊥⋅=⎪⎪⎪⇒⇒⇒=⎨⎨⎨-+=⊥⋅=⎪⎪⎪⎩⎩⎩………9分cos ,BM n <>= ………11分所以,直线BM 与平面1BC D………12分 20.解:(Ⅰ)设(,)P x y2(1)18y x y =++⇒= ………4分(Ⅱ)设直线BC :y kx b =+,1122(,),(,)B x y C x y将直线BC 代入到28x y =中得2880x kx b --=,所以12128,8x x k x x b +==-………5分又因为1122(4,2),(4,2)AB x y AC x y =--=--所以12121212221212(4)(4)(2)(2)(4)(4)(2)(2)(1)[(2)4]()(2)160AB AC x x y y x x kx b kx b k x x k b x x b ⋅=--+--=--++-+-=++--++-+=2222228(1)8[(2)4](2)160121632200(6)16(1)0b k k k b b b b k k b k ⇔-++--+-+=⇔---+=⇔--+=………8分410b k ⇒=+或42b k ⇒=-+ ………10分所以恒过定点(4,10)- ………12分21.解(Ⅰ)()()()()22'2222122()11a x x ax b ax bx af x xx+-++-==-++令'2()020f x ax bx a =⇒+-=224()0b a ∆=+> ………2分'()0f x ∴=有两实根不妨记为,αβ所以,()f x 有两个极值点 ,一个极大值点一个极小值点 ………4分(Ⅱ)220ax bx a +-=,由韦达定理得2baαβ+=-()()()()()2222110200110f a b a b f a b ααααβαβαβαββββ=-⎫⎧+++=⎪⇒⇒-+++=⇒+-=⎬⎨=--+=⎪⎩⎭ ………6分00,1,1b αβαβ∴+=⇒==-=,所以2a = ………7分(Ⅲ)因为22()01xxe g x e =>+,所以0m ≥ ………8分 又因为当0x =时,不等式恒成立所以,原问题22x x e e m x -+-⇔≤对一切()(),00,x ∈-∞+∞ 恒成立法一、设22()x x e e u x x -+-=(()(),00,x ∈-∞+∞ )()()()()2'432222()xx x x xx x x e e x x e e e e x e e u x x x ------+---+-==设()()()22x xx x h x e ex e e --=--+-,()()'()x x x x h x e e x e e --=+--,()''()x x h x e e x -=- 当0x >时,x xe e->,所以''()0h x >,当0x <时,xxe e-<,所以''()0h x >,所以'()h x 在R 上单调递增,又因为'(0)0h =所以当0x >时, '()0h x <,当0x <时, '()0h x >所以()h x 在(),0-∞上递减,()0,+∞递增,所以()(0)0h x h >= ………10分所以当0x >时, '()0u x <,当0x <时, '()0u x >所以()u x 在(),0-∞上递减,()0,+∞递增,所以0()lim ()1x h x h x →>=所以01m ≤≤ ………12分法二不妨设0x >()2()2x x h x e e mx -=+--()'()2x x h x e e mx -=--,()''()2x x h x e e m -=+-当1m ≤时,()22x xe em -+≥≥,''()0h x ≥,所以'()h x 在()0,+∞上单调递增,''()(0)0h x h >=所以()h x 在()0,+∞上单调递增, ()(0)0h x h >=,所以当1m ≤时成立………10分当1m >时''()0h x =得0ln(ln(x m x m ==+令当()x 0∈0,x 时''()0h x ≤所以'()h x 在()00,x 上单调递减,''()(0)0h x h <=所以()h x 在()00,x 上单调递减,()(0)0h x h <=,与条件矛盾,同理0x <时亦如此综上01m ≤≤ ……… 12分22.(Ⅰ)2//AB CD PAB AQCAQC ACB ACB CQAPA O PAB ACB AQ O QAC CBA AC ABAC AB CQ CQ AC⇒∠=∠⎫⎫⇒∠=∠⎬⎪⇒⇒∠=∠⎬⎭⎪⇒∠=∠⎭⇒=⇒=⋅ 为切线为切线 ………5分(Ⅱ)//113622,AB CD BP AP AB AP PC PQ QC QC PC AQ BP AB ⎫⎫⎪⎪⇒===⎬⎪=⇒==⎬⎪⎭⎪⎪==⎭ AP 为O切线212AP PB PC QA ⇒=⋅=⇒=又因为AQ 为O切线2AQ QC QD QD ⇒=⋅⇒=………10分 23.解:(Ⅰ)221:22C x y +=,4l x += ………5分 (Ⅱ)设),sin Q θθ,则点Q 到直线l 的距离d ==≥ ………8分 当且仅当242k ππθπ+=+,即24k πθπ=+(k Z ∈)时取等 ………10分24.解:(Ⅰ)由柯西不等式得,2222222()(111)()3a b c a b c ++≤++++=∴a b c ≤++ 所以a b c ++的取值范围是[ ………5分(Ⅱ)同理,2222222()[111]()3a b c a b c -+≤+-+++=() ………7分 若不等式2|1|1()x x a b c -++≥-+对一切实数,,a b c 恒成立, 则311≥++-x x ,解集为33(,][,)22-∞-⋃+∞ ………10分。
2013-2014学年度下学期高三第二次模拟考试试题理科综合能力测试考试时间:150分钟满分:300分本试卷分第I卷(选择题)和第II卷(非选择题)两部分,考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前考生务必将自己的姓名、准考证号、科考号涂写在答题卡上。
考试结束,将试题卷和答题卡一并交回。
2.答第I卷选择题时,每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦千净后,再选涂其它答案标号,不能答在试题卷上。
相对原子质量:H:1 C:12 O:16 Cu:64第I卷(选择题共126分)一、选择题(本题包括13小题,每小题6分。
每小题只有一个选项符合题意)1.下列有关人体内某些细胞的结构及其功能的叙述,正确的是A.细胞膜的选择透过性只与膜蛋白的种类与数量有关B.核糖体的形成与细胞核有关,红细胞中没有细胞核,所以没有核糖体C.若用胰蛋白酶短时问地处理甲状腺细胞,就有可能使其无法识别促甲状腺激素D.人体内的某些细胞有吞噬功能,而细胞器却都不具有此功能2.下列关于物质跨膜运输的叙述,错误的是A.海带细胞可通过积累碘离子等溶质防止质壁分离B.相对分子质量小的物质或离子就能通过自由扩散方式进人细胞C.人体细胞从组织液中吸收甘油的速率主要取决于组织液中甘油的浓度D.红细胞吸收无机盐和葡萄糖的共同点是都需要载体协助3.下图表示某DNA片段遗传信息的传递过程,①~⑤表示物质或结构,a、b、c表示生理过程。
以下有关此图的说法正确的是A.图中表示DNA复制的过程是a,表示基因表达的过程是bB.过程b和过程c发生的场所一定不同C.若在②的AUG后插人1个核昔酸,所产生的④将失去其原有的功能D.图中c过程进行时,③向左移动4.现有两个不同品种的小麦.其表现型分别为高秆抗病(AABB)和矮秆易染病(aabb),为培育出符合生产要求的优良小麦(aaBB)品种,对下图所示多种培育方法描述正确的是A.过程⑥的育种方法一定能产生符合要求的新品种B.育种工作者可在④过程后进行选择并继续育种过程C.图中采用了4种方法培育出符合要求的小麦新品种D.过程⑦导人的两个D基因可能位于不同对的染色体上5.下列对有关实验的描述正确的是A.低温或化学物质诱导染色体加倍实验需要使用显微镜B.对酵母菌计数前应用吸管直接从盛有酵母菌培养液的试管中随机取样C.用紫色洋葱鳞片叶外表皮细胞观察DNA和RNA在细胞中的分布D.探究水族箱中的群落演替实验应在黑暗环境下进行6.下列有关各植物激素与其功能对应关系的描述错误的是解水分对蝴蝶兰生长的影响,研究人员将盆栽蝴蝶兰置于正常和长期干早条件下.并分别测定其CO2吸收率的日变化,得到如图所示的曲线。
2014年辽宁省高考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1} 2.(5分)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A.2+3i B.2﹣3i C.3+2i D.3﹣2i3.(5分)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a 4.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α5.(5分)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A.p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)6.(5分)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144B.120C.72D.247.(5分)某几何体三视图如图所示,则该几何体的体积为()A.8﹣2πB.8﹣πC.8﹣D.8﹣8.(5分)设等差数列{a n}的公差为d,若数列{}为递减数列,则()A.d<0B.d>0C.a1d<0D.a1d>09.(5分)将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,]上单调递减C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增10.(5分)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A.B.C.D.11.(5分)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A.[﹣5,﹣3]B.[﹣6,﹣]C.[﹣6,﹣2]D.[﹣4,﹣3] 12.(5分)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为()A.B.C.D.二、填空题:本大题共4小题,每小题5分。
2014年辽宁省高考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1} 2.(5分)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A.2+3i 3.(5分)已知a= A.a>b>c B.2﹣3i,b=log2,c=logB.a>c>bC.3+2i,则()C.c>a>b D.c>b>aD.3﹣2i4.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n C.若m⊥α,m⊥n,则n∥αB.若m⊥α,nα,则m⊥n D.若m∥α,m⊥n,则n⊥α5.(5分)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A.p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)6.(5分)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144B.120C.72D.247.(5分)某几何体三视图如图所示,则该几何体的体积为()A .8﹣2πB .8﹣πC .8﹣D .8﹣8.(5分)设等差数列{a n }的公差为d ,若数列{A .d <09.(5分)将函数应的函数()A .在区间[C .在区间[﹣,,]上单调递增]上单调递减B .在区间[B .d >0C .a 1d <0的图象向右平移}为递减数列,则()D .a 1d >0个单位长度,所得图象对,,]上单调递减]上单调递增D .在区间[﹣10.(5分)已知点A (﹣2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为()A .B .C .D .11.(5分)当x ∈[﹣2,1]时,不等式ax 3﹣x 2+4x +3≥0恒成立,则实数a 的取值范围是()A .[﹣5,﹣3]B .[﹣6,﹣]C .[﹣6,﹣2]D .[﹣4,﹣3]12.(5分)已知定义在[0,1]上的函数f (x )满足:①f (0)=f (1)=0;②对所有x ,y ∈[0,1],且x ≠y ,有|f (x )﹣f (y )|<|x ﹣y |.若对所有x ,y ∈[0,1],|f (x )﹣f (y )|<m 恒成立,则m 的最小值为()A .二、填空题:本大题共4小题,每小题5分。
2014年辽宁省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2014•辽宁)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1} C.{x|0≤x≤1} D.{x|0<x<1}考点:交、并、补集的混合运算.专题:集合.分析:先求A∪B,再根据补集的定义求C U(A∪B).解答:解:A∪B={x|x≥1或x≤0},∴C U(A∪B)={x|0<x<1},故选:D.点评:本题考查了集合的并集、补集运算,利用数轴进行数集的交、并、补运算是常用方法.2.(5分)(2014•辽宁)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A.2+3i B.2﹣3i C.3+2i D.3﹣2i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:把给出的等式两边同时乘以,然后利用复数代数形式的除法运算化简,则z可求.解答:解:由(z﹣2i)(2﹣i)=5,得:,∴z=2+3i.故选:A.点评:本题考查了复数代数形式的除法运算,是基础的计算题.3.(5分)(2014•辽宁)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a考点:对数的运算性质.专题:计算题;综合题.分析:利用指数式的运算性质得到0<a<1,由对数的运算性质得到b<0,c>1,则答案可求.解答:解:∵0<a=<20=1,b=log2<log21=0,c=log=log23>log22=1,∴c>a>b.故选:C.点评:本题考查指数的运算性质和对数的运算性质,在涉及比较两个数的大小关系时,有时借助于0、1这样的特殊值能起到事半功倍的效果,是基础题.4.(5分)(2014•辽宁)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α考点:空间中直线与直线之间的位置关系.专题:空间位置关系与距离.分析:A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断.解答:解:A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,n⊂α,则m⊥n,故B正确;C.若m⊥α,m⊥n,则n∥α或n⊂α,故C错;D.若m∥α,m⊥n,则n∥α或n⊂α或n⊥α,故D错.故选B.点评:本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟这些定理是迅速解题的关键,注意观察空间的直线与平面的模型.5.(5分)(2014•辽宁)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A.p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)考点:复合命题的真假;平行向量与共线向量.专题:简易逻辑.分析:根据向量的有关概念和性质分别判断p,q的真假,利用复合命题之间的关系即可得到结论.解答:解:若•=0,•=0,则•=•,即(﹣)•=0,则•=0不一定成立,故命题p为假命题,若∥,∥,则∥平行,故命题q为真命题,则p∨q,为真命题,p∧q,(¬p)∧(¬q),p∨(¬q)都为假命题,故选:A.点评:本题主要考查复合命题之间的判断,利用向量的有关概念和性质分别判断p,q的真假是解决本题的关键.6.(5分)(2014•辽宁)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.24考点:计数原理的应用.专题:应用题;排列组合.分析:使用“插空法“.第一步,三个人先坐成一排,有种,即全排,6种;第二步,由于三个人必须隔开,因此必须先在1号位置与2号位置之间摆放一张凳子,2号位置与3号位置之间摆放一张凳子,剩余一张凳子可以选择三个人的左右共4个空挡,随便摆放即可,即有种办法.根据分步计数原理可得结论.解答:解:使用“插空法“.第一步,三个人先坐成一排,有种,即全排,6种;第二步,由于三个人必须隔开,因此必须先在1号位置与2号位置之间摆放一张凳子,2号位置与3号位置之间摆放一张凳子,剩余一张凳子可以选择三个人的左右共4个空挡,随便摆放即可,即有种办法.根据分步计数原理,6×4=24.故选:D.点评:本题考查排列知识的运用,考查乘法原理,先排人,再插入椅子是关键.7.(5分)(2014•辽宁)某几何体三视图如图所示,则该几何体的体积为()A.8﹣2πB.8﹣πC.8﹣D.8﹣考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:几何体是正方体切去两个圆柱,根据三视图判断正方体的棱长及切去的圆柱的底面半径和高,把数据代入正方体与圆柱的体积公式计算.解答:解:由三视图知:几何体是正方体切去两个圆柱,正方体的棱长为2,切去的圆柱的底面半径为1,高为2,∴几何体的体积V=23﹣2××π×12×2=8﹣π.故选:B.点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)(2014•辽宁)设等差数列{a n}的公差为d,若数列{}为递减数列,则()A.d<0 B.d>0 C.a1d<0 D.a1d>0考点:数列的函数特性.专题:函数的性质及应用;等差数列与等比数列.分析:由于数列{2}为递减数列,可得=<1,解出即可.解答:解:∵等差数列{a n}的公差为d,∴a n+1﹣a n=d,又数列{2}为递减数列,∴=<1,∴a1d<0.故选:C.点评:本题考查了等差数列的通项公式、数列的单调性、指数函数的运算法则等基础知识与基本技能方法,属于中档题.9.(5分)(2014•辽宁)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:直接由函数的图象平移得到平移后的图象所对应的函数解析式,然后利用复合函数的单调性的求法求出函数的增区间,取k=0即可得到函数在区间[,]上单调递增,则答案可求.解答:解:把函数y=3sin(2x+)的图象向右平移个单位长度,得到的图象所对应的函数解析式为:y=3sin[2(x﹣)+].即y=3sin(2x﹣).当函数递增时,由,得.取k=0,得.∴所得图象对应的函数在区间[,]上单调递增.故选:B.点评:本题考查了函数图象的平移,考查了复合函数单调性的求法,复合函数的单调性满足“同增异减”原则,是中档题.10.(5分)(2014•辽宁)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A.B.C.D.考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:由题意先求出准线方程x=﹣2,再求出p,从而得到抛物线方程,写出第一象限的抛物线方程,设出切点,并求导,得到切线AB的斜率,再由两点的斜率公式得到方程,解出方程求出切点,再由两点的斜率公式求出BF的斜率.解答:解:∵点A(﹣2,3)在抛物线C:y2=2px的准线上,即准线方程为:x=﹣2,∴p>0,=﹣2即p=4,∴抛物线C:y2=8x,在第一象限的方程为y=2,设切点B(m,n),则n=2,又导数y′=2,则在切点处的斜率为,∴即m=2m,解得=2(舍去),∴切点B(8,8),又F(2,0),∴直线BF的斜率为,故选D.点评:本题主要考查抛物线的方程和性质,同时考查直线与抛物线相切,运用导数求切线的斜率等,是一道基础题.11.(5分)(2014•辽宁)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()C.[﹣6,﹣2]D.[﹣4,﹣3] A.[﹣5,﹣3]B.[﹣6,﹣]考点:函数恒成立问题;其他不等式的解法.专题:综合题;导数的综合应用;不等式的解法及应用.分析:分x=0,0<x≤1,﹣2≤x<0三种情况进行讨论,分离出参数a后转化为函数求最值即可,利用导数即可求得函数最值,注意最后要对a取交集.解答:解:当x=0时,不等式ax3﹣x2+4x+3≥0对任意a∈R恒成立;当0<x≤1时,ax3﹣x2+4x+3≥0可化为a≥,令f(x)=,则f′(x)==﹣(*),当0<x≤1时,f′(x)>0,f(x)在(0,1]上单调递增,f(x)max=f(1)=﹣6,∴a≥﹣6;当﹣2≤x<0时,ax3﹣x2+4x+3≥0可化为a≤,由(*)式可知,当﹣2≤x<﹣1时,f′(x)<0,f(x)单调递减,当﹣1<x<0时,f′(x)>0,f(x)单调递增,f(x)min=f(﹣1)=﹣2,∴a≤﹣2;综上所述,实数a的取值范围是﹣6≤a≤﹣2,即实数a的取值范围是[﹣6,﹣2].故选:C.点评:本题考查利用导数研究函数的最值,考查转化思想、分类与整合思想,按照自变量讨论,最后要对参数范围取交集;若按照参数讨论则取并集.12.(5分)(2014•辽宁)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为()A.B.C.D.考点:函数恒成立问题;绝对值不等式的解法.专题:综合题;函数的性质及应用.分析:依题意,构造函数f(x)=(0<k<),分x∈[0,],且y∈[0,];x∈[0,],且y∈[,1];x∈[0,],且y∈[,1];及当x∈[,1],且y∈[,1]时,四类情况讨论,可证得对所有x,y∈[0,1],|f(x)﹣f(y)|<恒成立,从而可得m≥,继而可得答案.解答:解:依题意,定义在[0,1]上的函数y=f(x)的斜率|k|<,依题意,k>0,构造函数f(x)=(0<k<),满足f(0)=f(1)=0,|f(x)﹣f(y)|<|x﹣y|.当x∈[0,],且y∈[0,]时,|f(x)﹣f(y)|=|kx﹣ky|=k|x﹣y|≤k|﹣0|=k×<;当x∈[0,],且y∈[,1],|f(x)﹣f(y)|=|kx﹣(k﹣ky)|=|k(x+y)﹣k|≤|k(1+)﹣k|=<;当y∈[0,],且x∈[,1]时,同理可得,|f(x)﹣f(y)|<;当x∈[,1],且y∈[,1]时,|f(x)﹣f(y)|=|(k﹣kx)﹣(k﹣ky)|=k|x﹣y|≤k×(1﹣)=<;综上所述,对所有x,y∈[0,1],|f(x)﹣f(y)|<,∵对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,∴m≥,即m的最小值为.故选:B.点评:本题考查函数恒成立问题,着重考查构造函数思想、分类讨论思想、函数方程思想与等价转化思想的综合运用,考查分析、推理及运算能力,属于难题.二、填空题:本大题共4小题,每小题5分。
2014年沈阳市高中三年级教学质量监测(二)数 学(理科)命题:东北育才双语学校 王海涛 沈阳市第20中学 李蕾蕾 沈阳市第11中学 孟媛媛东北育才学校 侯雪晨 沈阳市第120中学 董贵臣 沈阳市第4中学 韩 娜主审:沈阳市教育研究院 王孝宇本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷2至4页。
满分150分,考试时间120分钟。
注意事项:1. 答题前,考生务必将自己的姓名、考号填写在答题卡上,并将条形码粘贴在答题卡指定区域。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色墨水签字笔在答题卡指定位置书写作答,在本试题卷上作答无效。
3. 考试结束后,考生将答题卡交回。
第Ⅰ卷(共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}1,2,3A =,集合{}2,3,4,5B =,则A.A B ⊆B.B A ⊆C.{}2,3A B =D.{}1,4,5A B = 2.设复数12iz +=(i 是虚数单位),则||z =A.2B.12C.13.下列命题中,真命题的是A.x ∀∈R ,20x > B.x ∀∈R ,1sin 1x -<<C.0x ∃∈R ,020x< D.0x ∃∈R ,0tan 2x =4.已知ABCD中,(2,8)AD = ,(3,4)AB =- ,对角线AC 与BD 相交于点M ,则AM的坐标为A. 1(,6)2--B.1(,6)2-C.1(,6)2-D.1(,6)25.若a ,b ,c 成等比数列,则函数c bx ax y ++=2的图象与x 轴的交点个数为A.0B.1C.2D.不能确定6.一次试验:向如图所示的正方形中随机撒一大把豆子. 经查数,落在正方形中的豆子的总数为N 粒,其中有m (m N <)粒豆子落在该正方形的内切圆内,以此估计圆周率π的值为 A.m N B.2m N C.3m N D.4m N7.已知中心在坐标原点,焦点在坐标轴上的双曲线的渐近线方程为x y 43±=,则此双曲线的离心率为 A.54 B.53 C.54或53 D.45或358.若[]x 表示不超过x 的最大整数,如[]2.12=,[]2.13-=-. 执行如图所示的程序框图,则输出的S 值为 A.2 B.3 C.4D.59.已知曲线()sin())f x x x ωω=(0ω>的距离为2π,且曲线关于点0(,0)x 成中心对称,若0[0,]2xπ∈,则0x =A.12πB.6πC.3πD.512π10.已知实数x ,y 满足26002x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,若目标函数z mx y =-+210m -+,最小值为22m --,则实数m 的取值范围是A.[1,2]-B.[2,1]-C.[2,3]D.[1,3]- 11.四面体ABCD 的四个顶点都在球O 的球面上,AB BCD ⊥平面,BCD △是边长为3的等边三角形. 若2AB =,则球O 的表面积为A.323π B.12π C.16π D.32π 12.已知函数()f x 满足:①定义域为R ;②对任意x ∈R ,有(2)2()f x f x +=;③当[1,1]x ∈-时,()f x =若函数 (0)()ln (0)x e x g x x x ⎧≤=⎨>⎩,则函数()()y f x g x =-在区间[5,5]-上零点的个数是A.7B.8C.9D.10第Ⅱ卷 (共90分)二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题纸上.) 13.如图,某几何体的主视图和俯视图都是矩形,左视图是等腰直角三角形,则该几何体的体积为 . 14.6(2x -的二项展开式中的常数项为 . 15.已知函数()()()f x x x a x b =--的导函数为()f x ',且(0)4f '=,则222a b +的最小值为 .16.已知抛物线22y px =(0p >)的焦点为F ,ABC △的顶点都在抛物线上,且满足FA FB FC ++= 0, 则111AB BC CAk k k ++= . 俯视图主视图左视图三、解答题:(解答应写出文字说明,证明过程或演算步骤,解答过程书写在答题纸的对应位置.) 17.(本小题满分12分)在ABC △中,角A B C 、、的对边分别是a b c 、、,满足222b c bc a +=+. (Ⅰ)求角A 的大小;(Ⅱ)已知等差数列{}n a 的公差不为零,若1cos 1a A =,且2a ,4a ,8a 成等比数列. 求14n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S .18.(本小题满分12分)为向国际化大都市目标迈进,沈阳市今年新建三大类重点工程,它们分别是30项基础设施类工程、20项民生类工程和10项产业建设类工程. 现有来沈的3名工人相互独立地从这60个项目中任选一个项目参与建设.(Ⅰ)求这3人选择的项目所属类别互异的概率;(Ⅱ)将此3人中选择的项目属于基础设施类工程或产业建设类工程的人数记为X ,求X 的分布列和数学期望.19.(本小题满分12分)如图,BC 为圆O 的直径,D 为圆周上异于B 、C 的一点,AB 垂直于圆O 所在的平面,BE AC ⊥于点E ,BF AD ⊥于点F . (Ⅰ)求证:BF ⊥平面ACD ;(Ⅱ)若2AB BC ==,45CBD ∠=,求平面BEF 与平面所成锐角二面角的余弦值.20.(本小题满分12分)已知椭圆C 的方程是22221x y a b+=(0>>b a ),,且经过点. (Ⅰ)求椭圆C 的方程;(Ⅱ)圆O 的方程是2222x y a b +=+,过圆O 上任一点P 作椭圆C 的两条切线,若切线的斜率都存在,分别记为1k 、2k ,求12k k ⋅的值.C21.(本小题满分12分)已知函数()sin f x mx x =-,()cos 2sin g x ax x x =-(0a >). (Ⅰ)若过曲线()y f x =上任意相异两点的直线的斜率都大于0,求实数m 的最小值; (Ⅱ)若1m =,且对于任意[0,]2x π∈,都有不等式()()f x g x ≥成立,求实数a 的取值范围.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分。
整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(东北三省三校2014年高三第二次联合模拟考试数学(理)试卷及答案(推荐完整))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为东北三省三校2014年高三第二次联合模拟考试数学(理)试卷及答案(推荐完整)的全部内容。
(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望东北三省三校2014年高三第二次联合模拟考试数学(理)试卷及答案(推荐完整)这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力.本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <东北三省三校2014年高三第二次联合模拟考试数学(理)试卷及答案(推荐完整)> 这篇文档的全部内容。
东北三省三校2014年高三第二次联合模拟考试(哈师大附中、东北师大附中、辽宁实验中学)数学理试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1。
若}7,6,5{}3,2,1{}8,7,6,5,4,3,2,1{===B A U ,,,则()()U U C A C B = A 。
{4,8} B. {2,4,,6,8} C. {1,3,5,7} D. {1,2,3,5,6,7}2。
一.基础题组1.【辽宁省五校协作体2014届高三摸底考试数学(理)】将函数()sin cos f x x x =的图象向左平移4π个长 度单位,得到函数)(x g 的图象,则)(x g 的单调递增区间是( )A .(,)()2k k k Z πππ-∈ B .(,)()2k k k Z πππ+∈C .(,)()44k k k Z ππππ-+∈D .3(,)()44k k k Z ππππ++∈2.【辽宁省抚顺市六校联合体2014届高三上学期期中考试理】函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期是π,若其图象向右平移3π个单位后得到的函数为奇函数,则函数()f x 的图象( )A.关于点,012π⎛⎫⎪⎝⎭对称B.关于直线12x π=对称C.关于点5,012π⎛⎫⎪⎝⎭对称D.关于直线512x π=对称-2 -3.【辽宁省沈阳二中2014届高三上学期期中考试理】将函数sin(2)y x ϕ=+的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A. 34π B. 4π C. 0 D.4π-4.【辽宁省五校协作体2014届高三摸底考试数学(理)】已知1(0,),sin cos ,tan 22a a a απ∈+=且则的值为 . 【答案】773 【解析】5.【辽宁省沈阳二中2014届高三上学期期中考试理】ABC ∆的三个内角,,A B C 所对的边分别为,,a b c ,1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则( ) A.6π B .3πC .23πD .56π二.能力题组1.【辽宁省沈阳二中2014届高三上学期期中考试理】ABC ∆的三个内角,,A B C 所对的边分- 4 -别为,,a b c ,给出下列三个叙述: ①::sin :sin :sin a b c A B C = ②::cos :cos :cos a b c A B C = ③::::a b c A B C =以上三个叙述中能作为“ABC ∆是等边三角形”的充分必要条件的个数为( ) A. 0个 B. 1个 C. 2个 D. 3个2.【辽宁省铁岭市第一高级中学2013—2014学年高三上学期期中考试试题理】在ABC ∆中,角A,B,C 所对的边,,a b c,已知tan 2,tan A ca c B b==+=则C=( ) A. 30︒ B. 45︒ C. 45︒或135︒ D.60︒ 【答案】B 【解析】 试题分析:由tan 21tan A c B b +=切化弦,边化角得:sin()2sin cos sin sin A B C A B B +=,从而1cos 2A =,所以3.【辽宁省铁岭市第一高级中学2013—2014学年高三上学期期中考试试题理】若函数()()sin 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=( ) A. 3 B. 2 C.23 D. 324.【辽宁省铁岭市第一高级中学2013—2014学年高三上学期期中考试试题理】设α为锐角,若4cos 65πα⎛⎫+= ⎪⎝⎭,则sin 212πα⎛⎫+ ⎪⎝⎭的值为___________.cos 2()6πα+=725,所以sin 212πα⎛⎫+ ⎪⎝⎭=50.- 6 -考点:1、两角差的正弦公式;2、正弦和余弦的二倍角公式.三.拔高题组1.【辽宁省抚顺市六校联合体2014届高三上学期期中考试理】(本小题共12分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c , q =(a 2,1),p =(c b -2, C cos )且q p //. (1)求A sin 的值; (2)求三角函数式1tan 12cos 2++-CC的取值范围?试题解析:(1)∵//p q ,∴2cos 2a C b c =-, 根据正弦定理得,2sin cos 2sin sin A C B C =-, 又()sin sin sin cos cos sin B A C A C A C =+=+,∴1sin cos sin 2C A C =, ∵sin 0C ≠,∴1cos 2A =,又∵0πA <<,∴3πA =,∴sin A =. ………………………………6分2.【辽宁省沈阳二中2014届高三上学期期中考试理】(本小题满分10分)在ABC ∆中,内角,,A B C 所对的边长分别为,,a b c ,2a =,c =cos A =. 求sinC 和b 的值.-8 -3.【辽宁省铁岭市第一高级中学2013—2014学年高三上学期期中考试试题理】已知函数()21cos cos 2222x x x f x =++(1)求()f x 的单调减区间;(2)在锐角三角形ABC 中,A 、B 、C 的对边,,a b c 且满足()2cos cos b a C c A -=⋅,求()f A 的取值范围.意ABC ∆是锐角三角形这个条件),然后确定x u ωϕ=+的范围,再结合sin y u =的图象求sin(x )ωϕ+的范围,从而可求出()f A 的取值范围.。
2014年辽宁省高考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1} 2.(5分)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A.2+3i B.2﹣3i C.3+2i D.3﹣2i3.(5分)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a 4.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α5.(5分)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A.p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)6.(5分)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144B.120C.72D.247.(5分)某几何体三视图如图所示,则该几何体的体积为()A.8﹣2πB.8﹣πC.8﹣D.8﹣8.(5分)设等差数列{a n}的公差为d,若数列{}为递减数列,则()A.d<0B.d>0C.a1d<0D.a1d>09.(5分)将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,]上单调递减C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增10.(5分)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A.B.C.D.11.(5分)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A.[﹣5,﹣3]B.[﹣6,﹣]C.[﹣6,﹣2]D.[﹣4,﹣3] 12.(5分)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为()A.B.C.D.二、填空题:本大题共4小题,每小题5分。