初一数学下册三角形的角平分线和中线
- 格式:ppt
- 大小:300.50 KB
- 文档页数:17
《三角形的高、中线和角平分线,三角形的稳定性》知识全解 课标要求掌握三角形的高、角平分线、中线的概念,会做三角形的三线,知道三角形的三线的表示方法,理解三角形的稳定性。
知识结构(1)三角形的主要线段的定义:①三角形的角平分线:三角形的一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.②三角形的中线:在三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. ③三角形的高:从三角形一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线,简称三角形的高.(2)三角形的主要线段的表示法:三角形的角平分线的表示法:如上图根据具体情况使用以下任意一种方式表示:①AD 是∆ABC 的角平分线;②AD 平分∠BAC ,交BC 于D ;③如果AD 是∆ABC 的角平分线,那么∠BAD =∠DAC =21∠BAC . 三角形的中线表示法:如上图根据具体情况使用以下任意一种方式表示:①AE 是∆ABC 的中线;②AE 是∆ABC 中BC 边上的中线;③如果AE 是∆ABC 的中线,那么BE =EC =21BC . 三角线的高的表示法:如下图,据具体情况,使用以下任意一种方式表示:①AM 是∆ABC 的高;②AM 是∆ABC 中BC 边上的高;③如果AM是∆ABC中BC边上高,那么AM⊥BC,垂足是E;④如果AM是∆ABC中BC边上的高,那么∠AMB=∠AMC=90︒.(3)三角形的稳定性三角形具有稳定性,四边形没有稳定性.内容解析本节课主要有:动手画三角形的高,在了解三角形的高的基础上学习三角形的中线、角平分线,归纳三角形的三条重要线段的概念,掌握其画法.这是以后学习各种特殊三角形的基础,也是研究其他图形的基础知识.从生活中体验三角形的稳定性.重点难点本节课的重点是:三角形的高、中线与角平分线的概念,会用工具准确画出三角形的高、中线与角平分线.难点是钝角三角形的高的画法.教法导引引导学生动手画图,从作图中总结发现概念,从而使学生掌握三角形的高、中线与角平分线的画法.联系生活实际,了解三角形的稳定性在生产、生活中的实际应用.学法建议经过动手画图,积极参与交流,增强学生克服困难和战胜困难的自信心.通过观察和实地操作得到三角形具有稳定性,四边形没有稳定性,联系稳定性与没有稳定性在生产、生活中的广泛应用.。
初中数学知识归纳三角形的中线角平分线高线初中数学知识归纳:三角形的中线、角平分线、高线三角形是初中数学学习中最基础的几何图形之一,它具有丰富的性质和特点。
本文将归纳总结三角形的中线、角平分线和高线的相关性质,帮助读者更好地理解和掌握这些概念。
一、三角形的中线中线是连接三角形的两个顶点和中点的线段。
三角形的中线有以下特点:1. 任意三角形的三条中线交于一点,这一点称为三角形的重心。
重心所在的位置离三角形的三个顶点距离相等,且重心将中线分成2:1的比例。
2. 三角形的重心到顶点的距离是中线对应中点到顶点距离的2倍,也就是说,如果连接重心和顶点,那么重心到顶点的距离是连接中点和顶点的线段的2倍。
3. 在等边三角形中,三条中线重合,即三条中线交于一点,同时这个点也是三角形的重心。
二、三角形的角平分线角平分线是指从一个角的顶点出发,将该角分成两个相等的角的线段。
三角形的角平分线有以下特点:1. 三角形的三条角平分线交于一点,称为三角形的内心。
内心所在的位置距离三角形的三条边的距离相等,且内心到三边的距离之和等于三角形的周长。
2. 在等腰三角形中,三条角平分线重合,即三条角平分线交于一点,同时这个点也是三角形的内心。
3. 角平分线和对边、邻边有如下关系:角平分线等分对边和邻边上的对应角;对边和邻边上的线段与角平分线比例相等。
三、三角形的高线高线是从一个顶点出发,与对边垂直相交的线段。
三角形的高线有以下特点:1. 任意三角形都有三条高线,它们分别从三个顶点出发,并与对边垂直相交。
2. 等腰三角形的高线同时也是角平分线和中线。
3. 在直角三角形中,高线就是斜边上的中线。
总结:三角形的中线、角平分线和高线都有各自的特点和性质。
通过了解和掌握这些性质,我们可以更好地理解和解决与三角形相关的问题。
在实际应用中,这些概念和性质也有着广泛的应用,例如在建筑、制图、几何证明等方面都可以看到它们的身影。
通过本文的归纳和总结,我们希望读者能够对三角形的中线、角平分线和高线有更全面的了解,并在实际问题中能够运用到这些知识,提高数学解题的能力。
2024北师大版数学七年级下册4.1.3《认识三角形—三角形的中线和角平分线》教案一. 教材分析《认识三角形—三角形的中线和角平分线》这一节内容,主要让学生掌握三角形的性质,理解三角形的中线和角平分线的概念,以及它们之间的关系。
为学生后续学习三角形的其他性质和判定定理打下基础。
二. 学情分析学生在六年级时已经学习了图形的性质,对图形的认识有了初步的基础。
但他们对三角形的中线和角平分线的理解可能还停留在直观层面,需要通过实例和几何画图工具,让学生在直观感知的基础上,进一步理解三角形的中线和角平分线的性质。
三. 教学目标1.了解三角形的中线和角平分线的概念。
2.掌握三角形的中线和角平分线的性质。
3.能够运用中线和角平分线解决实际问题。
四. 教学重难点1.重点:三角形的中线和角平分线的概念及性质。
2.难点:三角形的中线和角平分线在实际问题中的应用。
五. 教学方法采用问题驱动法,让学生在解决问题的过程中,掌握三角形的中线和角平分线的性质。
同时,利用几何画图工具,让学生直观地感知中线和角平分线的性质。
六. 教学准备1.教学课件。
2.几何画图工具。
3.练习题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的三角形,引导学生关注三角形的中线和角平分线。
提问:你们知道这些三角形的中线和角平分线吗?它们有什么作用?2.呈现(10分钟)介绍三角形的中线和角平分线的定义。
通过几何画图工具,展示三角形的中线和角平分线,让学生直观地感知它们的性质。
3.操练(10分钟)让学生利用几何画图工具,自己画出一个任意的三角形,并标出其中线和角平分线。
然后,相互交流并解释其中线和角平分线的性质。
4.巩固(10分钟)出示一些有关三角形中线和角平分线的练习题,让学生独立完成。
教师选取部分学生的作业进行点评,纠正学生在解答过程中可能出现的错误。
5.拓展(10分钟)引导学生思考:三角形的中线和角平分线在实际问题中的应用。
出示一些实际问题,让学生运用中线和角平分线进行解答。
中线与角平分线的关系
中线是一边中点和对应顶点的连线。
角平分线是将一角平分并与对边相交的线段。
只有为等腰三角形时或者等边三角形时,两者顶角平分线才与对边中线重合。
三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线。
任何三角形都有三条中线,而且这三条中线都在三角形的内部,并交于一点。
由定义可知,三角形的中线是一条线段。
三条中线交于一点。
这点称为三角形的重心。
每条三角形中线分得的两个三角形面积相等。
“中心”与“重心”很容易弄混淆,“中心”只存在于正三角形,也就是等边三角形当中。
在等边三角形中,其内心,外心,重心,垂心都在一个点上,于是称之为中心。
内心:三角形的内心是三角形三条内角平分线的交点。
外心:三角形三条边的中垂线的交点叫作三角形的外心,即外接圆圆心。
重心:三角形三条中线的交点叫作三角形的重心。
垂心:三角形三条垂线的交点叫作三角形的垂心。