2014年初中毕业生学业水平考试数学试题(福建省莆田市)(WORD解析版)
- 格式:doc
- 大小:514.50 KB
- 文档页数:22
九年 数学A第1页,共6页2013-2014学年(上)期末考试试卷九年 数学(满分: 150分;考试时间:120分钟)一、精心选一选:本大题共8小题,每小题4分,共32分.每小题给出的四个选项中有且只有一个选项是符合题目要求的.答对的得4分,答错、不答或答案超过一个的一律得O 分.1. 下列各式一定是二次根式的是( )A.B.C.2. 已知关于的方程有两个不同的实数根,则的取值范围是( )A 、 B、C、 D 、3. 下列图形中,是中心对称图形,但不是轴对称图形是( )A 、正方形B 、矩形C 、菱形D 、平行四边形 4. 下列命题中,假命题是( )A.两条弧的长度相等,它们是等弧B.等弧所对的圆周角相等C.直径所对的圆周角是直角D.一条弧所对的圆心角等于它所对圆周角的2倍.5. 把二次函数23x y =的图象向左平移2个单位,再向上平移1个单位,所得到的A()1232+-=x y ; ()1232-+=x y ;C()1232--=x y D()1232++=x y6. 下图中几何体的左视图是( ).7. 当锐角30>α时,则αcos 的值是( )A .大于12 B .小于12C .大于D 8、 如图,AB ∥CD ,AC 、BD 交于O ,BO =7,DO =3,AC =25, 则AO 长为( ) A .10 B .12.5 C .15 D .17.5二、细心填一填:本大题共8小题,每小题4分,共32分.。
10. x 取值范围是 。
11. 已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是________。
12. 如果,则________。
13. 已知方程8322=-x x 的两个根为21x x ,那么=⋅21x x .第3页,共14.如图,△ABC绕点A旋转后到达△ADEA、B分别为切点,若∠C=62°,则∠APB= 。
16.将4个数a b c d,,,排成2行、2列,两边各加一条竖直线记成a bc d,定义a bc dad bc=-,上述记号就叫做2阶行列式.若1111x xx x+--+6=,则x=.三、耐心做一做:本大题共9小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤.17. 计算:(1-)2008-(π-3)0sin60°·tan45°(8分)18计算:.⎛÷⎝(8分)19.解方程:4x2-3x-1=0(8分)20.如图,在平面直角坐标系中,将四边形ABCD称为“基本图形”,且各点的坐标分别为A(4,4),B(1,3),C(3,3),D(3,1).(8分)(1)画出“基本图形”关于原点O对称的四边形A1B1C1D1,并求出A1,B1,, ),, ) ;(8分)(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.22.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE CD⊥,垂足为E,DA平分BDE∠.(1)求证:AE是⊙O的切线;(2)若301cmDBC DE∠==,,求BD的长.23.某商厦今年一月份销售额为60万元,二月份由于经营不善,销售额下降10%,以后改进管理,大大激发全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到96万元,求三、四月份平均每月增长的百分率是多少?(精确到0.1%)(10分)24.在△ABC中,AB=BC=2,∠ABC=第20题图B九年 数学A第5页,共6页120°,将△ABC 绕点B 顺时针旋转角α(0°<α<90°)得△A 1BC 1,A 1B 交AC 于点E ,A 1C 1分别交AC ,BC 于D ,F 两点.(12分)(1)如图(a),观察并猜想,在旋转过程中,线段EA 1与FC 是怎样的数量关系?并证明你的结论;(2)如图(b),当α=30°时,试判断四边形BC 1DA 的形状,并说明理由;(3)在(2)的情况下,求ED 的长. 图(a) 图(b)25. 如图,已知抛物线234y x b x c =-++与坐标轴交于A B C ,,三点,点A 的横坐标为1-,过点(03)C ,的直线334y x t =-+与x 轴交于点Q ,点P 是线段BC 上的一个动点,PH OB ⊥于点H .若5P B t =,且01t <<.(1)求b c ,的值(2)求出点B Q P ,,的坐标(其中Q P ,用含t 的式子表示): (3)依点P 的变化,是否存在t 的值,使PQB △为等腰三角形?若存在,求出所有t 的值;若不存在,说明理由.。
2024年莆田市初中毕业班质量检查试卷数学(满分150分;考试时间:120分钟)友情提示:本试卷分为“试题”和“答题卡”两部分,答题时,请按答题卡中的“注意事项”认真作答,答案写在答题卡上的相应位置。
一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.小华5月份体重增长2kg,记作+2kg.小颖体重减少1kg,记作A.+1kg B.-1kg C.-2kg D.-3kg2.2024年2月17日,全球首架C919大型客机从上海起飞参加第九届新加坡国际航空航天与防务展.商飞C919是中国首款按照国际通行适航标准自行研制、具备自主知识产权的喷气式中程干线客机.如图是C919大型客机的实物图,其俯视图是A.B.C.D.3.在2023中国正能量网络精品征集展播活动中,《16频道》以世界听得懂、看得见的表达方式,讲述海军故事,诠释了人类命运共同体理念.海外传播量超过3000万次,数据3000万用科学记数法表示是A.3000×104B.3×106C.3×107D.3×1084.红团是莆田的特色小吃,在以下红团图案中,既是中心对称图形,又是轴对称图形的是A.B.C.D.5.下列运算结果为x3的是A.x+x2B.x4-x C.x·x2D.x6÷x26.将一块含30°角的直角三角板ABC按如图方式放置在A4纸片上,其中点A,B分别落在纸片边上.若∠1=105°,则∠2的度数为A.15°B.60°C.65°D.75°7.若a =20242-2023×2024,2024420252⨯-=b ,20222024⨯=c ,则a ,b ,c 的大小关系是A .a <b <cB .a <c <bC .b <c <aD .c <b <a8.用一张正方形纸板,制成一副七巧板,如图1.在矩形区域内将它拼成一幅“火箭”图案,如图2.若在矩形区域内随机取点,则这个点落在“火箭”图案部分的概率为A .12B .22C .47D .389.如图,在Rt △ABC 中,∠ACB =90°,∠B =60°,求作∠ACB 的三等分线.阅读以下作图步骤:(1)分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧分别交于点D ,E ,作直线DE交AB 于点F ,交AC 于点H ,画射线CF ;(2)以点C 为圆心,适当的长为半径画弧,交BC 于点M ,交CF 于点N ;(3)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠BCF 的内部交于点G ,画射线CG ,则射线CF ,CG 即为所求.下列说法不正确的是A .AF =CF B .12FH CH=C .CG ⊥ABD .△BCF 为等边三角形10.为了解全班学生的身高情况,王老师测量了班上在场学生的身高,经计算后发现男生的平均身高是170cm ,女生的平均身高是160cm ,当天有两名学生缺课.第二天这两名学生均到校上课,老师也测量了他们的身高.有趣的是,重新计算后全班男、女生的平均身高都不变.下列说法正确的是A .全班学生的平均身高不变B .缺课的两名学生身高相同C .若缺课的两名学生都是男生,则身高都是170cmD .若缺课的学生是男、女生各一名,则男生身高170cm ,女生身高160cm 二、填空题:本大题共6小题,每小题4分,共24分。
A .第6题2013-2014学年度荔城区中考模拟试卷(三)数学考试时间:120分钟 满分:150分一、精心选一选 :本大题共8小题,每小题4分,共32分。
每个小题给出的四个选项中有且只有一个选项是符合要求,答对的得4分,答错、不答或答案超过一个的一律得0分。
1、在-3,-1,0,2四个数中,绝对值最小的数是( )A.-3B.-2C.0D.22、下列运算正确的是 ( ) A .236a a a ⋅= B .()325aa =C .325a a a +=D .632a a a ÷=3、为了解某小区居民的日用电量情况,居住在该小区的一名同学随机抽查了15户家庭的日用则关于这15户家庭的日用电量,下列说法错误的是( ) A .众数是6度 B .平均数是6.8度 C .极差是5度D .中位数是6度4、下列图形中是中心对称图形但不是轴对称图形的是( ) A . 等腰三角形 B .平行四边形 C .矩形 D .菱形5、如图①放置的一个水管三叉接头,若其主视图如图②,则其俯视图是( )6、如图,在Rt △ABC 中,∠ACB =90°,∠BAC =60°,AB =6,Rt A C B '' 可以看作是由Rt △ABC 绕点A 逆时针方向旋转60°得到的,则线段C B ' 的长为( )A 、33B 、6C 、73D 、367、如图,已知AB 是半圆O 的直径,∠BAC=32º,D 是弧AC 的中点,那么∠DAC 的度数是( ) A、25º B 、29º C 、30º D 、32°8、如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线 BD 重合,折痕为DG ,记与点A 重合的点为A ’,则△A ’BG 的面积与该矩形 的面积比为( ) A 、121 B 91 C 81 D 61二、细心填一填:本大题共8小题,每小题4分,共32分9、不等式组2430x x >-⎧⎨-<⎩的解集是 .10、许多人由于粗心,经常造成水龙头“滴水”或“流水”不断.根据测定,一般情况下一个水龙头“滴水”1个小时可以流掉3.5千克水.若1年约流掉30700千克水,将数据30700用科学计数法表示为 .11、如图所示,AB =DB ,∠ABD =∠CBE ,请你添加一个适当的条件 ,使ΔABC ≌ΔDBE . (只需添加一个即可)(第11题) (第12题)12、如图,在Rt△ABC 中,∠ACB=90°,CD 是AB 边上的中线,若BC=6,AC=8,则tan∠ACD 的值为 。
福建省莆田市2014年中考数学试卷一、精心选一选:本大题共8小题,每小题4分,共32分。
每小题给出的四个选项中有且只有一个选项是符合题目要求的,答对的得4分,答错、不答或答案超过一个的一律得0分。
1. 2013的相反数是( )2.下列运算正确的是( )3.对于一组统计数据:2,4,4,5,6,9.下列说法错误的是( )4.如图,一次函数y=(m ﹣2)x ﹣1的图象经过二、三、四象限,则m 的取值范围是( )5.如图是一个圆柱和一个长方体的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图可能是( )C6.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于( )7.如图,△ABC内接于⊙O,∠A=50°,则∠OB C的度数为()8.下列四组图形中,一定相似的是()二、细心填一填:本大题共8小题,每小题4分,共32分)9.不等式2x﹣4<0的解集是.10.小明同学在“百度”搜索引擎中输入“中国梦”,搜索到相关的结果个数约为8650000,将这个数用科学记数法表示为.11.如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件,使△ABC≌△DEF.12.已知在R t△ABC中,∠C=90°,sinA=,则tanB的值为.13.(4分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是.14.(4分)经过某个路口的汽车,它可能继续直行或向右转,若两种可能性大小相同,则两辆汽车经过该路口全部继续直行的概率为.15.(4分)如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为.16.(4分)统计学规定:某次测量得到n个结果x1,x2,…,x n.当函数y=++…+取最小值时,对应x的值称为这次测量的“最佳近似值”.若某次测量得到5个结果9.8,10.1,10.5,10.3,9.8.则这次测量的“最佳近似值”为.三、耐心做一做:本大题共9小题,共86分。
莆田市2014年初中毕业(升学)考试试卷物理试题(满分:100分;考试时间:90分钟)注意:本试卷分为“试卷”和“答题卡”两部分,答题时请按答题卡中的“注意事项”要求认真作答,答案写在答题卡上相应位置。
一、单项选择题(每小题2分,共30分)1. 电功的国际单位是A.伏特(V)B.安培(A)C.瓦特(W)D.焦耳(J)2. 金属导体之所以具有良好的导电性,是因为金属导体中存在大量的A.原子B.自由电子C.质子D.中子3. 如图是2013年10月19日凌晨发生的月偏食现象,它的成因是A.光的直传播B.光的反射C.光的折射D.光的色散4. 验电器的两片金属箔片因带电而张开,则这两片金属箔片一定带A.正电B.负电C.同种电荷D.异种电荷5. 我们通过电视观看王亚平太空授课时,不看电视画面,仅凭声音就知道是王亚平在讲话,判断的依据是声音的A.响度B.音色C.音调D.频率6. 下列不符合...安全用电原则的是A.发现有人触电时,应先切断电源B.同一插座不要同时使用多个大功率电器C.大功率用电器的金属外壳应接地D.导线或用电器起火时,可立即用水扑灭7. 关于电磁波和声波,下列说法正确的是A.它们都可以在真空中传播B.它们传播的速度都为3×108 m/sC.它们都可以传递信息D.它们都不会对人类和环境造成危害8. 下图中能正确表示光从空气进入玻璃的光路是()A B C D9. 四冲程汽油机的做功冲性,其能量转化过程是A.机械能转化成内能B.内能转化成机械能C.化学能转化成内能D.内能转化成化学能10. 运动员跳运时总是先助跑一段距离后再起跳,这是为了A.利用惯性B.克服惯性C.增大惯性D.减小惯性11. 关于温度、内能和热量,下列说法正确的是A.温度为0℃的冰没有内能B.温度高的物体比温度低的物体内能大C.温度高的的物体含有的热量多D.物体吸收或放出的热量可以为零,但物体的内能不会为零12. 利用图中甲、乙两种装置,将同一重物分别匀速提升同一高度,不计摩擦及绳子的重量,则A.以各自的滑轮为参照物,重物都是静止的B.拉力甲F 一定比拉力乙F 大C.两种装置的机械效率不一样D.两次重物增加的重力势能不一样13. 高考时,工作人员拿着金属探测仪对考生进行检查,以防止考生将手机等含有金属部分的作弊工具带入考场(如图)。
2014年莆田市九年数学中考模拟试卷(一)满分:150分,考试时间:120分钟一、精心选一选。
(每小题4分,共32分) 1.-3的绝对值是( ) A 、-3 B 、3 C 、31 D 、-312.下列计算正确的是( ) A 、()623a a -=- B 、()222b a b a -=-C 、532523a a a =+ D 、336a a a =÷ 3.下列说法不正确的是( )A 、了解一批电视机的使用寿命适合用抽样调查B 、若甲组数据方差S 2甲=0.27,乙组数据方差S 2乙=0.2,则乙组数据比甲组数据稳定 C 、某种彩票中奖的概率是10001,买1000张该种彩票一定会中奖 D 、在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件 4.某种的细胞的直径是4105-⨯毫米,这个数是( )A 、0.05毫米B 、0.005毫米C 、0.0005毫米D 、0.00005毫米5.如图,下列四个几何体中,它们各自的三视图有两个相同,而另一个不同的几何体是( )①正方体 ②圆柱 ③圆锥 ④球 A 、①② B 、②③ C 、②④ D 、③④6.在△ABC 中,∠C =900; AC=4,BC=3,则cos ∠B 的值是( ) A 、54 B 、53C 、34D 、437.如图,已知⊙O 的半径OA =6,∠AOB =900,则∠AOB 所对的弧AB 的长为( ) A 、2π B 、3π C 、6π D 、12π8. 已知二次函数2(0)y ax bx c a =++≠的图象如图所示, 给出以下结论①0a b c ++<;②0a b c -+<;③20b a +<; ④0abc >其中所有正确结论的序号是( ) 二、细心填一填。
(每小题4分,共32分) 9.当有意义。
时,二次根式2_________-x x 10.分解因式:______________422=-a a 11.已知圆锥的底面半径为3cm ,母线长为5cm , 则这个圆锥的侧面积为_____________。
数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前福建省福州市2014年初中毕业会考、高级中等学校招生考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.5-的相反数是( ) A .5-B .5C .15D .15-2.地球绕太阳公转的速度约是110 000千米/时,将110 000用科学记数法表示为 ( ) A .41110⨯B .51.110⨯C .41.110⨯D .60.1110⨯3.某几何体的三视图如图所示,则该几何体是( )A .三棱柱B .长方体C .圆柱D .圆锥 4.下列计算正确的是( )A .4416x x x =B .325()a a =C .236()ab ab =D .23a a a +=5.若7名学生的体重(单位:kg )分别是:40,42,43,45,47,47,58,则这组数据的平均数是( ) A .44B .45C .46D .47 6.下列命题中,假命题是( ) A .对顶角相等B .三角形两边的和小于第三边C .菱形的四条边都相等D .多边形的外角和等于3607.若2(1)0m -=,则m n +的值是( ) A .1-B .0C .1D .28.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A .60045050x x =+ B .60045050x x =- C .60045050x x =+D .60045050x x =- 9.如图,在正方形ABCD 外侧,作等边三角形,,ADE AC BE 相交于点F ,则BFC ∠为( )A .45B .55C .60D .7510.如图,已知直线2y x =-+分别与x 轴、y 轴交于,A B 两点,与双曲线ky x=交于,E F 两点.若2AB EF =,则k 的值是 ( ) A .1- B .1 C .12D .34第Ⅱ卷(非选择题 共110分)二、填空题(本大题共5小题,每小题4分,共20分.请把答案填在题中的横线上)11.分解因式:ma mb += .12.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是 .13.计算:1)= .14.如图,在□ABCD 中,DE 平分,6,2A D C A D B E ∠==,则□ABCD 的周长毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)是 .15.如图,在Rt ABC △中,90ACB ∠=,点,D E 分别是边,AB AC 的中点,延长BC 到点F ,使12CF BC =.若10AB =,则EF 的长是 .三、解答题(本大题共7小题,共90分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分14分,每题7分)(1)019+()+|1|2014-.(2)先化简,再求值:2((2))2x x x ++-,其中13x =.17.(本小题满分14分,每题7分)(1)如图1,点,E F 在BC 上,BE CF =,AB DC =,B C ∠=∠求证:A D ∠=∠. (2)如图2,在边长为1个单位长度的小正方形所组成的网格中,ABC △的顶点均在格点上.①sin B 的值是 ;②画出ABC △关于直线l 对称的111A B C △(A 与1A ,B 与1B ,C 与1C 相对应),连接11,AA BB ,并计算梯形11AA B B 的面积.18.(本小题满分12分)设中学生体质健康综合评定成绩为x 分,满分为100分.规定:85100x ≤≤为A 级,7585x ≤<为B 级,6075x ≤<为C 级,60x <为D 级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了 名学生,a = %; (2)补全条形统计图;(3)扇形统计图中C 级对应的圆心角为 度;(4)若该校共有2 000名学生,请你估计该校D 级学生有多少名?19.(本小题满分12分)现有,A B 两种商品,买2件A 商品和1件B 商品用了90元,买3件A 商品和2件B 商品用了160元.(1)求,A B 两种商品每件各是多少元?(2)如果小亮准备购买,A B 两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?数学试卷 第5页(共24页) 数学试卷 第6页(共24页)20.(本小题满分11分)如图,在ABC △中,45B ∠=,60ACB ∠=,AB =D 为BA 延长线上的一点,且,D ACB O ∠=∠为ACD △的外接圆. (1)求BC 的长; (2)求O 的半径.21.(本小题满分13分)如图1,点O 在线段AB 上,2,1,AO OB OC ==为射线,且60BOC ∠=,动点P 以每秒2个单位长度的速度从点O 出发,沿射线OC 做匀速运动,设运动时间为t 秒.(1)当12t =秒时,则OP = ,ABP S △= ; (2)当ABP △是直角三角形时,求t 的值;(3)如图2,当AP AB =时,过点A 作AQ BP ∥,并使得Q O P B ∠=∠,求证:3AQ BP =.22.(本小题满分14分)如图,抛物线2)12(31y x =--与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D .(1)求点,,A B D 的坐标;(2)连接CD ,过原点O 作OE CD ⊥,垂足为H ,OE 与抛物线的对称轴交于点E ,连接,AE AD .求证:AEO ADC ∠=∠;(3)以(2)中的点E 为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P ,过点P 作E 的切线,切点为Q ,当PQ 的长最小时,求点P 的坐标,并直接写出点Q 的坐标.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共24页)数学试卷 第8页(共24页)福建省福州市2014年初中毕业会考、高级中等学校招生考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】根据相反数的定义,只有符号不同的两个数是互为相反数,可知5-的相反数是5,故选B. 【考点】相反数的定义. 2.【答案】B【解析】将一个数写成10n a ⨯的形式,其中110a <…,n 为整数.当原数的绝对值大于等于10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值小于1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位上的零).即5110000 1.110=⨯,故选B. 【考点】科学记数法. 3.【答案】D【解析】根据三视图的形状可确定几何体是圆锥,故选D. 【考点】三视图. 4.【答案】D【解析】根据幂的运算法则44448x x x x +==g ,326()a a =,2332336()ab a b a b ⨯==,根据合并同类项法则,23a a a +=,故选D.【考点】整式计算. 5.【答案】C【解析】平均数等于一组数据中所有数据之和除以数据的个数,故这组数据的平均数是40424345474758467++++++=,故选C.【考点】统计中平均数的计算. 6.【答案】B【解析】对顶角相等,故A 选项不是假命题;三角形的两边之和大于第三边,故B 选项是假命题;菱形的四条边相等,故C 选项不是假命题:多边形的外角和等于360°,D 选项不是假命题,故选B. 【考点】命题真假的判定.5 / 127.【答案】A【解析】2(1)0m -=Q ,10,1,202,m m n n -==⎧⎧∴⇒⎨⎨+==-⎩⎩1m n ∴+=-,故选A. 【考点】偶次方和二次根式的非负性质. 8.【答案】A【解析】根据题意本题的等量关系是现在生产600台所需时间与原计划生产450台机器所需时间相同,即60045050x x=+,故选A. 【考点】由实际问题抽象出分式方程(工程问题). 9.【答案】C【解析】Q 四边形ABCD 是正方形,AB AD ∴=,90ABC BAD ∠=∠=︒,45BCA ∠=︒,ADE ∴△是等边三角形,AE AD ∴=,60DAE ∠=︒,AB AE ∴=,150BAE ∠=︒, 15ABE ∴∠=︒,901575CBF ∠=︒-︒=︒,18060BFC CBF BCA ∠=︒-∠-∠=︒,故选C.【考点】正方形和等边三角形的性质,三角形内角和定理. 10.【答案】D【解析】如图,连接OE ,OF ,过点E 作EH x ⊥轴,垂足为点H ,Q 直线2y x =-+交坐标轴于点A ,B ,(2,0)A ∴,(0,2)B ,12222AOB S =⨯⨯=△,2AB EF =Q ,12112EOF S ∴=⨯⨯=△Q 整个图形关于直线y x =对称,12AE BF EF ∴==,11()22EOA AOB EOF S S A =⨯-=△△△,EH y ∥Q 轴,AHE AOB ∴△△:,21()16AHE AOB S AE S AB ==△△,112168AHE S ∴=⨯=△,113288OHE S ∴=-=△,设点(,)E m n , 则332284OHE k mn S ===⨯=△,故选D.【考点】反比例函数与一次函数交点问题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,轴对称的性质.【提示】解答本题时应注意两个函数图象的特点是整个图形关于直线y x =对称,从而找到解决问题的办法.数学试卷 第11页(共24页)数学试卷 第12页(共24页)第Ⅱ卷二、填空题11.【答案】()m a b +【解析】将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否可用完全平方公式或平方差公式继续分解,因此本题只需直接提取公因式m 即可,()ma mb m a b +=+.【考点】因式分解. 12.【答案】15【解析】根据概率的求法,找准两点:(1)全部可能情况的总数;(2)符合条件情况数目;二者的比值就是其发生的概率,因此抽到不合格产品的概率是15. 【考点】概率. 13.【答案】1【解析】221)1211=-=-= 【考点】平方差公式和二次根式的计算. 14.【答案】20【解析】Q 四边形ABCD 是平行四边形,6AD =,2BE =,6AD BC ∴==,AD BC ∥,4EC ∴=,ADE DEC ∠=∠.又DE Q 平分ADC ∠,ADE EDC ∴∠=∠,DEC EDC ∠=∠,4CD EC ∴==,故平行四边形ABCD 的周长是2(64)=20⨯+.【考点】平行四边形的性质,平行的性质及等腰三角形的判定. 15.【答案】5【解析】在Rt ABC △中,90ACB ∠=︒,点D ,E 分别是AB ,AC 的中点,10AB =,∴5AD =,AE EC =,12DE BC =,90AEC ∠=︒,又12CF BC =Q ,DE FC ∴=,根据“SAS ”,Rt Rt ADE EFC ≌△△,5EF AD ∴==.【考点】三角形中位线定理,全等三角形的判定和性质. 三、解答题 16.【答案】(1)5 (2)13【解析】解:(1)原式3115=++=.7 / 12(2)原式22244264x x x x =+++-=+.当13x =时,原式16463=⨯+=.【考点】二次根式的化简,零指数幂,绝对值的计算,整式的化简与求值. 17.【答案】(1)证明:BE CF =Q ,BE EF CF EF +=+. 即BF CE =.又AB DC =Q ,B C ∠=∠,ABF DCE △≌△∴.A D ∴∠=∠.(2)如图所示.由轴对称的性质可得12AA =,18BB =,高是4.11111=()4=202AA B B S AA BB ∴+⨯梯形.【考点】全等三角形的判定和性质,勾股定理,三角函数,利用轴对称的性质作图. 18.【答案】(1)50;24 (2)如图所示.(3)72(4)该校D 级学生有42000=16050⨯人. 【考点】方程及不等式(组)在实际生活中的应用(方案型问题). 19.【答案】(1)设A 商品每件x 元,B 商品每件y 元.依题意,得290,32160.x y x y +=⎧⎨+=⎩ 解得20,50.x y =⎧⎨=⎩数学试卷 第15页(共24页)数学试卷 第16页(共24页)答:A 商品每件20元,B 商品每件50元.(2)设小亮准备购买A 商品a 件,则购买B 商品(10)a -件.依题意得2050(10)300,2050(10)350.a a a a +-⎧⎨+-⎩≥≤ 解得2563a ≤≤根据题意,a 的值应为整数,所以5a =或6a = .方案一:当5a =时,购买费用为20550(105)350⨯+⨯-=元; 方案二:当6a =时,购买费用为20650(106)320⨯+⨯-=元. ∵350320>,∴购买A 商品6件,B 商品4件的费用最低.答:有两种购买方案,方案一:购买A 商品5件,B 商品5件;方案二:购买A 商品6件,B 商品4件.其中方案二费用最低.【考点】利用条形统计图和扇形统计图的信息解决实际问题. 20.【答案】(1)过点A 作AE BC ⊥,垂足为E .90AEB AEC ∴∠=∠=︒.在Rt ABE △中,sin AE B AB =Q,sin sin 453AE AB B ∴==︒==g g . 45B ∴∠=︒,45BAE ∴∠=︒.3BE AE ∴==.在Rt ACE △中,tan AEACB EC∠=Q ,3tan tan 60AE EC ACB ∴====∠︒3BC BE EC ∴=+=(2)由(1)得,在Rt ACE △中,30EAC ∠=︒Q,EC =,AC ∴=. 解法一:连接AO 并延长交O e 于点M ,连接CM .AM Q 为直径,∴90ACM ∴∠=︒.在Rt ACM △中,60M D ACB ∠=∠=∠=︒Q ,sin ACM AM=,4sin AC AM M ∴===.O ∴e 的半径为2. 解法二:连接,OA OC ,过点O 作OF AC ⊥,垂足为F ,9 / 12则12AF AC ==60D ACB ∠=∠=︒Q ,120AOC ∴∠=︒.1602AOF AOC ∴∠=∠=︒.在Rt OAF △中,sin AF AOF AO ∠=Q .2sin AFAO AOF∴==∠,即O e 得半径为2. 【考点】锐角三角形函数定义,特殊角的三角函数值,相似三角形的判定和性质,圆周角定理,圆内接四边形的性质,含30°角直角三角形的性质及勾股定理等. 21.【答案】(1)1(2)①60A BOC ∠<∠=︒Q ,A ∴∠不可能为直角. ②当90ABP ∠=︒时,60BOC ∠=︒Q ,30OPB ∴∠=︒.2OP OB ∴=,即22t OB =,即22t =.1t ∴=.③当90APB ∠=︒时,作PD AB ⊥,垂足为D ,则90ADP PDB ∠=∠=︒.2OP t =Q ,OD t ∴=,PD =,2AD t =+,1BD t =-(BOP △是锐角三角形).解法一:222222(1)3,(2)3BP t t AP t t ∴=-+=++.222BP AP AB +=Q ,∴2222(1)3(2)39t t t t ∴-++++=,数学试卷 第19页(共24页)数学试卷 第20页(共24页)即2420t t +-=.解得12t t ==(舍去) 解法二:90,90APD BPD B BPD ∠+∠=︒∠+∠=︒Q ,APD B ∴∠=∠.APD PBD ∴△△:.AD PD PD BD∴=,2PD AD BD ∴=g .于是2)(2)(1)t t =+-,即2420t t +-=.解得12t t ==(舍去). 综上,当ABP △是直角三角形时,1t =或18-+.(3)证法一:AP AB =Q ,APB B ∴∠=∠.作OE AP ∥,交BP 于点E ,OEB APB B ∴∠=∠=∠.AQ BP ∥Q ,180QAB B ∴∠+∠=︒.又3180OEB ∠+∠=︒Q ,3QAB ∴∠=∠.又21AOC B QOP ∠=∠+∠=∠+∠Q ,已知B QOP ∠=∠,12∴∠=∠.QAO OEP △∽△∴,AQ AOEO EP∴=,即AQ EP EO AO =g g .OE AP ∥Q ,OBE ABP △∽△∴. 13OE BE BO AP BP BA ∴===.13132OE AP BP EP ∴===,. 333213222AQ BP AQ EP AO OE ∴===⨯⨯=g g g .证法二:连接PQ ,设AP 与OQ 相交于点F .AQ BP ∥Q ,QAP APB ∴∠=∠.AP AB =Q ,APB B ∴∠=∠.QAP B ∴∠=∠.又QOP B ∠=∠Q ,QAP QOP ∴∠=∠.QFA PFO ∠=∠Q ,∴QFA PFO △∽△∴.FQ FA FP FO ∴=,即FQ FPFA FO=. 又PFQ OFA ∠=∠Q ,PFQ OFA △∽△∴,31∴∠=∠.21AOC B QOP ∠=∠+∠=∠+∠Q ,已知B QOP ∠=∠,12∴∠=∠.23∴∠=∠.11 / 12APQ BPO △∽△∴.AQ AP BO BP∴=.313AQ BP AP BO ∴==⨯=g g . 【考点】动点问题,锐角三角函数定义,特殊角的三角函数值,相似三角形的判定和性质. 22.【答案】(1)顶点D 的坐标为(3,1).令0y =,得21(3)102x --=,解得1233x x =+=Q 点A 在点B 的左侧,∴A ∴点坐标(3,点B坐标(3+.(2)证明:过D 作DG y ⊥轴,垂足为G ,则(0,1),3G GD =.令0x =,则72y =,∴C 点坐标为7(0,)2.79(1)22GC ∴=--=. 设对称轴交x 轴于点M . OE CD ⊥Q ,90GCD GOH ∴∠+∠=︒.90MOE COH ∠+∠=︒Q ,MOE GCD ∴∠=∠.又90CGD OME ∠=∠=︒Q ,DCG EOM △∽△∴CG DG OM EM ∴=,即233EM=. 2EM ∴=,即点E 坐标为(3,2),3ED =.由勾股定理得226,3AE AD ==,222639AE AD ED ∴+=+==.AED ∴△是直角三角形,即90DAE ∠=︒.设AE 交CD 于点F . 90ADC AFD ∴∠+∠=︒.又90,AEO HFE AFD HFE ∠+∠=︒∠=∠Q ,AEO ADC ∴∠=.(3)由E e 的半径为1,根据勾股定理得221PQ EP =-.要使切线长PQ 最小,只需EP 长最小,即2EP 最小.设P 坐标为(,)x y ,由勾股定理得222(3)(2)EP x y =-+-.21(3)12y x =--Q ,2(3)22x y ∴-=+.数学试卷 第23页(共24页)数学试卷 第24页(共24页) 2222244(1)5EP y y y y ∴=++-+=-+.当1y =时,2EP 取得最小值为5.当1y =时,2EP 取得最小值为5.把1y =代入21(3)12y x =--,得21(3)112x --=解得121,5x x ==.又Q 点P 在对称轴右侧的抛物线上,11x ∴=舍去.∴点P 坐标为(5,1).此时Q 点坐标为(3,1)或1913(,)55. 【考点】二次函数的图象和性质,单动点问题,曲线上点的坐标与方程的关系,直角三角形两锐角的关系,相似三角形的判定和性质,勾股定理和逆定理,切线的性质,解二元一次方程组等.。
2014年福州市初中毕业会考、高级中等学校招生考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共40分)一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项)1.-5的相反数是( )A.-5B.5C.15D.-152.地球绕太阳公转的速度约是110 000千米/时,将110 000用科学记数法表示为( )A.11×104B.1.1×105C.1.1×104D.0.11×1063.某几何体的三视图如图所示,则该几何体是( )A.三棱柱B.长方体C.圆柱D.圆锥4.下列计算正确的是( )A.x4·x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a5.若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是( )A.44B.45C.46D.476.下列命题中,假命题...是( )A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°7.若(m-1)2+√n+2=0,则m+n的值是( )A.-1B.0C.1D.28.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是( )A.600n+50=450nB.600n-50=450nC.600n=450n+50D.600n=450n-509.如图,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )A.45°B.55°C.60°D.75°10.如图,已知直线y=-x+2分别与x轴,y轴交于A,B两点,与双曲线y=nn交于E,F两点.若AB=2EF,则k的值是( )A.-1B.1C.12D.34第Ⅱ卷(非选择题,共110分)二、填空题(共5小题,每题4分,满分20分;请将正确答案填在相应位置)11.分解因式:ma+mb= .12.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.13.计算:(√2+1)(√2-1)= .14.如图,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,则▱ABCD的周长是.BC.15.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=12若AB=10,则EF的长是.三、解答题(满分90分;请将正确答案及解答过程写在相应位置.作图或添加辅助线用铅笔画完,再用黑色签字笔描黑)16.(每小题7分,共14分))0+|-1|;(1)计算:√9+(12 014.(2)先化简,再求值:(x+2)2+x(2-x),其中x=1317.(每小题7分,共14分)(1)如图1,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D;(2)如图2,在边长为1个单位长度的小正方形所组成的网格中,△ABC的顶点均在格点上.①sin B的值是;②画出△ABC关于直线l对称的△A1B1C1(A与A1,B与B1,C与C1相对应),连结AA1,BB1,并计算梯形AA1B1B的面积.图1 图218.(满分12分)设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,a= %;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2 000名学生,请你估计该校D级学生有多少名?19.(满分12分)现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元;(2)如果小亮准备购买A,B两种商品共10件,总费用不超过...300元,问有几...350元,且不低于种购买方案,哪种方案费用最低?20.(满分11分)如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3√2,点D为BA延长线上的一点,且∠D=∠ACB,☉O为△ACD的外接圆.(1)求BC的长;(2)求☉O的半径.21.(满分13分)如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=1秒时,则OP= ,S△ABP= ;2(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B.求证:AQ·BP=3.图1 图2 备用图22.(满分14分)(x-3)2-1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为如图,抛物线y=12D.(1)求点A,B,D的坐标;(2)连结CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连结AE,AD.求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作☉E 的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.备用图答案全解全析:一、选择题1.B 只有符号不同的两个数互为相反数,-5的相反数是5,故选B. 评析 本题考查相反数的定义,属容易题.2.B 科学记数法的表示形式为a×10n ,1≤|a|<10,故110 000=1.1×105,故选B. 评析 本题考查科学记数法的定义,属容易题.3.D 由主视图和左视图为三角形知此几何体为锥体,由俯视图为圆可推得此几何体为圆锥.评析 本题考查由三视图抽象出几何体和学生的空间想象能力,属容易题.4.D x 4·x 4=x 4+4=x 8,A 选项错误;(a 3)2=a 3×2=a 6,B 选项错误;(ab 2)3=a 3·b 2×3=a 3b 6,C 选项错误;根据合并同类项法则知,D 选项正确,故选D. 5.C 这组数据的平均数是40+42+43+45+47+47+587=46,故选C.评析 本题考查数据分析中的平均数的计算方法,属容易题. 6.B 根据三角形三条边之间的关系可知B 是错误的,故选B.7.A ∵(m -1)2+√n +2=0,∴{n -1=0,n +2=0,∴{n =1,n =-2,∴m+n=-1,故选A.8.A 根据“现在生产600台机器所需时间与原计划生产450台机器所需时间相同”可以列出方程600n +50=450n,故选A.评析 本题考查分式方程的应用,根据题意正确找出等量关系是关键,属容易题. 9.C 由已知得AB=AE,∠BAE=150°,∴∠ABF=15°,∴∠BFC=∠ABF+∠BAF=60°. 评析 本题考查正方形、等边三角形、等腰三角形的性质,属中等难度题.10.D 如图,作ED⊥OB,EC⊥OA,FG⊥OA,垂足分别为D,C,G,ED 交FG 于H,易得A(2,0),B(0,2),∴△ACE、△AOB、△EHF 都是等腰直角三角形, 又∵AB=2EF,∴EH=FH=1,设OG=x,∴AC=EC=1-x, ∴E(x+1,1-x),F(x,2-x).又∵点E 、F 在双曲线上,∴(x+1)(1-x)=x(2-x),解得x=12,∴E (32,12),k=34.评析 本题考查反比例函数与一次函数图象的交点问题,相似三角形的判定和性质,属难题.二、填空题11.答案 m(a+b) 解析 ma+mb=m(a+b).评析 本题考查提公因式法分解因式,属容易题. 12.答案 15解析 5件外观相同的产品中有1件不合格,从中任意抽取1件进行检测,则抽到不合格产品的概率是15.评析 本题考查概率,属容易题. 13.答案 1解析 (√2+1)(√2-1)=(√2)2-12=2-1=1.评析 本题考查二次根式的运算法则和平方差公式,属容易题. 14.答案 20解析 ∵四边形ABCD 是平行四边形,AD=6,BE=2, ∴BC=AD=6,∴EC=4.又∵DE 平分∠ADC,∴∠ADE=∠EDC. ∵AD∥BC,∴∠ADE=∠DEC, ∴∠DEC=∠EDC.∴CD=EC=4.∴▱ABCD 的周长是2×(6+4)=20.评析 本题考查平行四边形的性质和等腰三角形的判定,属中等难度题. 15.答案 5解析 ∵在Rt△ABC 中,∠ACB=90°,点D,E 分别是边AB,AC 的中点,AB=10, ∴AD=5,AE=EC,DE=12BC,∠AED=90°. ∵CF=12BC,∴DE=FC.在Rt△ADE 和Rt△EFC 中,∵AE=EC,∠AED=∠ECF=90°,DE=FC, ∴Rt△ADE≌Rt△EFC(SAS).∴EF=AD=5.评析 本题考查三角形中位线定理,属中等难度题. 三、解答题16.解析 (1)原式=3+1+1=5.(2)原式=x 2+4x+4+2x-x 2=6x+4. 当x=13时,原式=6×13+4=6.评析 本题考查了实数的运算,属容易题. 17.解析 (1)证明:∵BE=CF, ∴BE+EF=CF+EF, 即BF=CE.又∵AB=DC,∠B=∠C, ∴△ABF≌△DCE. ∴∠A=∠D. (2)①35.②如图所示.由轴对称的性质可得,AA 1=2,BB 1=8,梯形AA 1B 1B 的高是4. ∴n 梯形nn 1n 1B =12(AA 1+BB 1)×4=20.评析 本题考查了全等三角形的判定与性质,属容易题. 18.解析 (1)50;24. (2)如图所示.综合评定成绩条形统计图(3)72.(4)该校D 级学生约有2 000×450=160(名).评析 本题考查了条形统计图和扇形统计图的综合运用,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比,属容易题. 19.解析 (1)设A 商品每件x 元,B 商品每件y 元.依题意,得{2n +n =90,3n +2n =160.解得{n =20,n =50.答:A 商品每件20元,B 商品每件50元.(2)设小亮准备购买A 商品a 件,则购买B 商品(10-a)件.依题意,得{20n +50(10-n )≥300,20n +50(10-n )≤350.解得5≤a≤623.根据题意知,a 的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20×5+50×(10-5)=350元; 方案二:当a=6时,购买费用为20×6+50×(10-6)=320元. ∵350>320,∴购买A 商品6件,B 商品4件的费用最低.答:有两种购买方案,方案一:购买A 商品5件,B 商品5件;方案二:购买A 商品6件,B 商品4件.其中方案二费用最低.20.解析 (1)过点A 作AE⊥BC,垂足为E. ∴∠AEB=∠AEC=90°. 在Rt△ABE 中,∵sin B=nnnn ,∴AE=AB·sin B=3√2·sin 45°=3√2×√22=3. ∵∠B=45°,∴∠BAE=45°. ∴BE=AE=3.在Rt△ACE 中,∵tan∠ACB=nnnn, ∴EC=nntan∠nnn =3tan60°=√3=√3.∴BC=BE+EC=3+√3.(2)由(1)得,在Rt△ACE 中,∠EAC=30°,EC=√3, ∴AC=2√3.解法一:连结AO 并延长交☉O 于M,连结CM. ∵AM 为直径,∴∠ACM=90°.在Rt△ACM 中,∵∠M=∠D=∠ACB=60°,sin M=nnnn , ∴AM=nnsin n =2√3sin60°=4. ∴☉O 的半径为2.解法二:连结OA,OC,过点O 作OF⊥AC,垂足为F,则AF=12AC=√3.∵∠D=∠ACB=60°,∴∠AOC=120°. ∴∠AOF=12∠AOC=60°.在Rt△OAF 中,∵sin∠AOF=nnnn , ∴AO=nnsin∠nnn =2,即☉O 的半径为2.评析 本题主要考查了解直角三角形以及锐角三角函数的应用,属中等难度题. 21.解析 (1)1;3√34. (2)①∵∠A<∠BOC=60°, ∴∠A 不可能为直角. ②当∠ABP=90°时,∵∠BOC=60°, ∴∠OPB=30°. ∴OP=2OB,即2t=2. ∴t=1.③当∠APB=90°时,作PD⊥AB,垂足为D,则∠ADP=∠PDB=90°. ∵OP=2t,∴OD=t,PD=√3t,AD=2+t,BD=1-t(△BOP 是锐角三角形).解法一:BP 2=(1-t)2+3t 2,AP 2=(2+t)2+3t 2.∵BP 2+AP 2=AB 2,∴(1-t)2+3t 2+(2+t)2+3t 2=9,即4t 2+t-2=0. 解得t 1=-1+√338,t 2=-1-√338(舍去). 解法二:∵∠APD+∠BPD=90°,∠B+∠BPD=90°,∴∠APD=∠B.又∵∠ADP=∠PDB=90°, ∴△APD∽△PBD, ∴nn nn =nn nn,∴PD 2=AD·BD. 于是(√3t)2=(2+t)(1-t),即4t 2+t-2=0. 解得t 1=-1+√338,t 2=-1-√338(舍去). 综上,当△ABP 是直角三角形时,t=1或-1+√338.(3)证法一:∵AP=AB,∴∠APB=∠B.作OE∥AP,交BP 于点E, ∴∠OEB=∠APB=∠B. ∵AQ∥BP,∴∠QAB+∠B=180°. 又∵∠3+∠OEB=180°, ∴∠3=∠QAB.又∵∠AOC=∠2+∠B=∠1+∠QOP, 已知∠B=∠QOP, ∴∠1=∠2.∴△QAO∽△OEP. ∴nn nn =nnnn,即AQ·EP=EO·AO.∵OE∥AP,∴△OBE∽△ABP. ∴nn nn =nn nn =nn nn =13.∴OE=13AP=1,BP=32EP.∴AQ·BP=AQ·32EP=32AO·OE=32×2×1=3.证法二:连结PQ,设AP 与OQ 相交于点F.∵AQ∥BP,∴∠QAP=∠APB. ∵AP=AB, ∴∠APB=∠B. ∴∠QAP=∠B. 又∵∠QOP=∠B, ∴∠QAP=∠QOP. ∵∠QFA=∠PFO, ∴△QFA∽△PFO. ∴nn nn =nn nn ,即nn nn =nnnn . 又∵∠PFQ=∠OFA, ∴△PFQ∽△OFA. ∴∠3=∠1.∵∠AOC=∠2+∠B=∠1+∠QOP, 已知∠B=∠QOP, ∴∠1=∠2. ∴∠2=∠3.∴△APQ∽△BPO. ∴nn nn =nnnn .∴AQ·BP=AP·BO=3×1=3.22.解析 (1)顶点D 的坐标为(3,-1). 令y=0,得12(x-3)2-1=0,解得x 1=3+√2,x 2=3-√2. ∵点A 在点B 的左侧,∴点A 坐标为(3-√2,0),点B 坐标为(3+√2,0). (2)证明:过D 作DG⊥y 轴,垂足为G, 则G(0,-1),GD=3.令x=0,则y=72,∴点C 坐标为(0,72).∴GC=72-(-1)=92. 设对称轴交x 轴于点M.∵OE⊥CD,∴∠GCD+∠COH=90°. ∵∠MOE+∠COH=90°, ∴∠MOE=∠GCD.又∵∠CGD=∠OME=90°, ∴△DCG∽△EOM.∴nn nn =nn nn ,即923=3nn. ∴EM=2,即点E 的坐标为(3,2),∴ED=3.由勾股定理,得AE 2=6,AD 2=3,∴AE 2+AD 2=6+3=9=ED 2.∴△AED 是直角三角形,且∠DAE=90°.设AE 交CD 于点F. ∴∠ADC+∠AFD=90°. 又∵∠AEO+∠HFE=90°, ∠AFD=∠HFE, ∴∠AEO=∠ADC.(3)由☉E 的半径为1,根据勾股定理,得PQ 2=EP 2-1.要使切线长PQ 最小,只需EP 长最小,即EP 2最小. 设点P 的坐标为(x,y),由勾股定理,得EP 2=(x-3)2+(y-2)2. ∵y=12(x-3)2-1,∴(x -3)2=2y+2.∴EP 2=2y+2+y 2-4y+4=(y-1)2+5.当y=1时,EP 2取最小值,为5.把y=1代入y=12(x-3)2-1,得12(x-3)2-1=1, 解得x 1=1,x 2=5.又∵点P 在对称轴右侧的抛物线上, ∴x 1=1舍去.∴点P 的坐标为(5,1).此时Q 点坐标为(3,1)或(195,135).评析本题是压轴题,涉及考点众多,难度较大.第(2)问中,注意观察图形,将问题转化为证明△ADE为直角三角形的问题,综合运用勾股定理及其逆定理、三角函数(或相似形)求解;第(3)问中,解题关键是将最值问题转化为求EP2最小值的问题,注意求EP2最小值的具体方法.属难题.11。
莆田市2014年初中毕业(升学)考试试卷英语试题(满分:150分;考试时间:120分钟)听力部分(满分30分)I. 听音选图听句子,根据你所听到的内容,选择正确的图画顾序。
每个句子读两遍。
(6分)1. ________2. ________3. ________4. ________5. ________6. ________Ⅱ.听对话根据你所听到的内容,选择正确的答案。
每段对话读两遍。
(12分)第一节听下面4段对话,每段对话后有1个小题,从题中所给的A、B、C三个选项中选出最佳选项。
(6分)( )7. Who wrote the letter?A. Kate.B. Sally.C. Jane.( )8. What did Linda buy for her dad on Father's Day?A. A watch.B. A shirt.C. A tie.( )9. When are they going to meet tomorrow?A. At 7:30 a.m.B. At 8:00 a.m.C. At 8:30 a.m. .( )10. What does the man ask the woman to do?A. To buy a hat.B. To leave the company.C. To keep some secret.第二节听下面2段对话,每段对话后有2个小题,从题中所给的A、B、C三个选项中选出最佳选项。
(6分)听第5段材料,回答第11. 12题。
( )II. What day is it today?A. Thursday.B. Friday.C. Saturday.( )12. Where are they going tomorrow?A. Nanri Island.B. Meizhou Island.C. Huanggua Island.听第6段材料,回答第13、14题。
莆田市2014年初中毕业(升学)考试试卷数学试题(满分:150分;考试时间:120分钟)注意:本试卷分为“试题”和“答题卡”两部分,答题时请按答题卡中的“注意事项”要求认真作答,答案写在答题卡上的相应位置一、精心选一选:本大题共8小题,每小题4分,共32分,每小题给出的四个选项中有且只有一个选项是符合题目要求的,答对的得4分,答错、不答或答案超过一个的一律和0分。
1.3的相反数是A .-3B .31-C .3D .31 2.下列运算正确的是( )A .623a a a =⋅ B .236)2(a a =C .222)(b a b a -=-D .22223a a a =-3.下列图形中,是轴对称图形,但不是中心对称图形的是4.如图是由6个大小相同的小正方体组成的几何体,它的左视图是5.若x ,y 满足方程组⎩⎨⎧=+=+5373y x y x ,则x —y 的值等于 A .-1 B .1 C .2 D .36.在半径为2的圆中,弦AB 的长为2,则AB ⌒的长等于A .3πB .2π C .32π D .23π 7.如图,点B 在x 轴上,∠ABO=90°,∠A=30°,OA= 4,将△OAB 绕点O 按顺时针方向旋转120°得到△B A O '',则点A '的坐标是A .(2,-22)B .(2,-32)C .( 22,-2)D .(32,-2)8.如图,在矩形ABCD 中,AB=2,点E 在边AD 上,∠ABE=45°,BE=DE,连接BD ,点P 在线段DE 上,过点P 作PQ ∥BD 交BE 于点Q ,连接QD ,设PD=x ,△PQD 的面积为y ,则能表示y 与x 函数关系的图象大致是二、细心填一填:本大题共8小题,每小题4分,共32分。
9.我国的北斗星卫星导航系统与美国的GPS 和俄罗斯格洛纳斯系统并称世界三大卫星导航系统,北斗系统的卫星轨道高达36000公里,将36000用科学记数法表示为 。
福建省莆田市2014年中考数学试卷
一、精心选一选:本大题共8小题,每小题4分,共32分,每小题给出的四个选项中有且只有一个选项是符合题目要求的.答对的得4分,答错、不答或答案超过一个的一律得0分.
.
4.(4分)(2014•莆田)如图是由6个大小相同的小正方体组成的几何体,它的左视图是()
B
5.(4分)(2014•莆田)若x、y满足方程组,则x﹣y的值等于(
)
6.(4分)(2014•莆田)在半径为2的圆中,弦AB的长为2,则的长等于()
B
解答:
的长为=,
7.(4分)(2014•莆田)如图,点B在x轴上,∠ABO=90°,∠A=30°,OA=4,将△OAB 饶点O按顺时针方向旋转120°得到△OA′B′,则点A′的坐标是()
))2,﹣
AB=OB=2
AB=,)
)
8.(4分)(2014•莆田)如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()
.D
BE=AB=2
PD=2﹣
QE=PE=2
=﹣
﹣﹣﹣﹣+
﹣﹣+
9.(4分)(2014•莆田)我国的北斗卫星导航系统与美国的GPS和俄罗斯格洛纳斯系统并称世界三大卫星导航系统,北斗系统的卫星轨道高达36000公里,将36000用科学记数法表示为 3.6×104.
10.(4分)(2014•莆田)若正n边形的一个外角为45°,则n=8.
11.(4分)(2014•莆田)若关于x的一元二次方程x2+3x+a=0有一个根是﹣1,则a=2.
12.(4分)(2014•莆田)在一个不透明的袋子中,装有大小、形状、质地等都相同的红色、黄色、白色小球各1个,从袋子中随机摸出一个小球,之后把小球放回袋子中并摇匀,再随
机摸出一个小球,则两次摸出的小球颜色相同的概率是.
∴两次摸出的小球颜色相同的概率是:
故答案为:
13.(4分)(2014•莆田)在一次数学测试中,小明所在小组6人的成绩(单位:分)分别为84、79、83、87、77、81,则这6人本次数学测试成绩的中位数是82.
14.(4分)(2014•莆田)计算:=a﹣2.
=
15.(4分)(2014•莆田)如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是2.
AD
DH=2
==2
16.(4分)(2014•莆田)如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等
边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则A2014的坐标是(2014,2016).
y=
,
的横坐标为:的横坐标为:,
y=
y=
×
(
2
×
2014,
2014
三、耐心做一做:本大题共9小题,共86分,解答应写出必要的文字说明、证明过程或演算步骤
×
+
18.(8分)(2014•莆田)解不等式≥,并把它的解集在数轴上表示出来.
19.(8分)(2014•莆田)某校为了解该校九年级学生对蓝球、乒乓球、羽毛球、足球四种球类运动项目的喜爱情况,对九年级部分学生进行了随机抽样调查,每名学生必须且只能选择最喜爱的一项运动项目上,将调查结果统计后绘制成如图两幅不完整的统计图,请根据图中的信息,回答下列问题:
(1)这次被抽查的学生有60人;请补全条形统计图;
(2)在统计图2中,“乒乓球”对应扇形的圆心角是144度;
(3)若该校九年级共有480名学生,估计该校九年级最喜欢足球的学生约有48人.
×
×
20.(8分)(2014•莆田)如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE.(1)求证:BE=CE;
(2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.
ED=
BD=
21.(8分)(2014•莆田)如图,在平面直角坐标系中,直线l与x轴相交于点M,与y轴相交于点N,Rt△MON的外心为点A(,﹣2),反比例函数y=(x>0)的图象过点A.(1)求直线l的解析式;
(2)在函数y=(x>0)的图象上取异于点A的一点B,作BC⊥x轴于点C,连接OB交直线l于点P.若△ONP的面积是△OBC面积的3倍,求点P的坐标.
代入得:
22.(10分)(2014•莆田)如图,AB是⊙O的直径,C是⊙O上的一点,过点A作AD⊥CD于点D,交⊙O于点E,且=.
(1)求证:CD是⊙O的切线;
(2)若tan∠CAB=,BC=3,求DE的长.
,由,根据圆周角定理得∠
,;根据垂径定理的推论由=
EF=CD=
=
=
=5
=,即=AD=,
=,即=CD=
=
EF=CD=,
BE=2EF=
AE==
AE==.
23.(10分)(2014•莆田)某水果店销售某中水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图1(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2﹣8mx+n,其变化趋势如图2.
(1)求y2的解析式;
(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?
x+
+x+
++
,
时,所获得利润最大,为
月销售这种水果,每千克所获得利润最大,最大利润是
24.(12分)(2014•莆田)如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿折线BC﹣CD向点D运动,动点E比动点F先出发1秒,其中一个动点到达终点时,
另一个动点也随之停止运动,设点F的运动时间为t
秒.
(1)点F在边BC上.
①如图1,连接DE,AF,若DE⊥AF,求t的值;
②如图2,连结EF,DF,当t为何值时,△EBF与△DCF相似?
(2)如图3,若点G是边AD的中点,BG,EF相交于点O,试探究:是否存在在某一时刻t,使得=?若存在,求出t的值;若不存在,请说明理由.
,得出,列出方程求解.
=
,运用=
=
=
t=(舍去)t=
y=
=2
=
的坐标为(,
x+3×
t=t=
y=
=2
=
x+3
×
t=.
t=t=,使得=
25.(14分)(2014•莆田)如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,设点D的横坐标为a.
(1)如图1,若m=.
①当OC=2时,求抛物线C2的解析式;
②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;
(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的
x+a+
a+PE=.
BCO==
=
a=
a=
﹣2a+m=2
AB=OB+OA=2.
BE=AB=BE=
ABD==,∴∠
==1(
==3
(
=AB=2
(﹣3
((﹣3。