高中数学:分类讨论思想、转化与化归思想
- 格式:ppt
- 大小:747.00 KB
- 文档页数:45
我们时常会遇到这样一些问题,若要直接解决会较为困难,若通过问题的转化、归类,就会使问题变得简单,这类问题的解决方法就是转化与化归思想,它在高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归.转化与化归思想,指的是在研究和解决有关数学问题时,通过某种转化过程,归结到一类已经解决或比较容易解决的问题,最终使问题得到解决的一种思想。
利用化归与转化的思想可以实现问题的规范化、模式化,以便应用已知的理论、方法和技巧来解决问题.数学解题过程,就是不断转化的过程,不断把问题由陌生转化成熟悉的来解决,几乎所有问题的解决都离不开转化与化归。
在其他的数学思想中明显体现了转化与化归的思想,比如,数形结合思想体现了数与形的相互转化,函数与方程思想体现了函数、方程、不等式等问题之间的相互转化,分类讨论思想体现了局部与整体的相互转化.一、常见的转化与化归的形式常见的有:陌生问题向熟悉问题的转化,复杂问题向简单问题的转化,不同数学问题之间的互相转化,实际问题向数学问题转化等。
二、常见的转化策略常见的有:正与反的转化、数与形的转化、整体与局部的转化、常量与变量的转化、相等与不等的转化、空间与平面的转化、数学语言之间的转化等。
三、常见的实现转化与化归的方法:1.直接转化法:把原问题直接转化为学过的基本定理、基本公式或基本图形问题.2.换元法:解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化。
3。
数形结合法,即数与形的转化。
将比较抽象的问题化为比较直观的问题来解决.例如在函数与图象的联系中可以体现出,把繁琐的代数问题转化为直观的几何图形来解决4。
特殊化方法:即特殊与一般的转化,把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题。
5。
补集法,即正与反的相互转化.当问题正面讨论遇到困难时,可考虑问题的反面,正难则反,设法从问题的反面去探讨,使问题获解.6.等价转化法:把原问题转化为一个易于解决的等价命题,即原问题的充要条件,达到化归的目的.7。
数学思想之一:转化与化归思想(概述)
1、转化与化归的思想方法转化与化归的思想方法是数学中最基本的思想方法,数学中一切问题的解决(当然包括解题)都离不开转化与化数形结合思想体现了数与形的相互转化;函数与方归,
程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现。
各种变换方法、分析法、反证法、待定系数法、构造法等都是转化
的手段。
所以说,转化与化归是数学思想方法的灵魂。
2、转化包括等价转化和非等价转化等价转化要求在转化过程中的前因后果既是充分的又是必要的,这样的转化能保证转化的结果仍为原问题所需要的结果,不等价转化其过程则是充分的或必要的,这样的转化能给人带来思维的启迪,找到解决问题的突破口,不等价变形要对所得结论进行必要的修改。
3、转化与化归的原则将不熟悉和难解的问题转化为熟知的易解的或已经解决的问题,将抽象的问题转化为具体的直观的问题,将复杂的问题转化为简单的问题,将一般性的问题转化为直观的特殊的问题;将实际问题转化为数学问题,使问题便与解决。
4、转化与化归的基本类型
(1)正与反、一般与特殊的转化;
(2)常量与变量的转化;
(3)数与形的转化;
(4)数学各分支之间的转化;
(5)相等与不相等之间的转化;
(6)实际问题与数学模型的转化。
高中数学_必须掌握的六种常用的数学思想方法数学思想方法与数学基础知识相比较,它有较高的地位和层次。
数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。
而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。
常用数学思想方法有:1、数形结合的思想方法2、分类讨论的思想方法3、函数与方程的思想方法4、转化(化归)的思想方法5、分类讨论的思想方法6、整体的思想方法。
更多数学思维方法,请参阅《高中数学_快速解题的六种数学思维方法》。
一、数形结合的数学思想方法数学中的知识,有的本身就可以看作是数形的结合。
如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。
1、导读:2、相关内容:3、再现性题组:1.如果θ是第二象限的角,且满足cos θ2-sinθ2=1-sinθ,那么θ2是_____。
A.第一象限角B.第三象限角C.可能第一象限角,也可能第三象限角D.第二象限角2.如果实数x、y满足等式(x-2)2+y2=3,那么yx的最大值是_____。
A. 12B.33C.32D. 34、巩固性题组:1.已知5x+12y=60,则x y22+的最小值是_____。
A. 6013 B. 135C. 1312D. 12.方程2x=x2+2x+1的实数解的个数是_____。
A. 1B. 2C. 3D.以上都不对3.方程x=10sinx的实根的个数是_______。
二、分类讨论的数学思想方法①问题所涉及到的数学概念是分类进行定义的。
如|a|的定义分a>0、a=0、a<0三种情况。
这种分类讨论题型可以称为概念型。
②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。
第2讲 分类讨论思想、转化与化归思想数学思想解读1.分类讨论的思想是当问题的对象不能进行统一研究时,就需要对研究的对象按某个标准进行分类,然后对每一类分别研究,给出每一类的结论,最终综合各类结果得到整个问题的解答.实质上分类讨论就是“化整为零,各个击破,再集零为整”的数学思想.2.转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.热点一 分类讨论思想的应用应用1 由概念、法则、公式、性质引起的分类讨论【例1】 (1)若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________; (2)在等比数列{a n }中,已知a 3=32,S 3=92,则a 1=________. 解析 (1)若a >1,有a 2=4,a -1=m ,解得a =2,m =12. 此时g (x )=-x 为减函数,不合题意. 若0<a <1,有a -1=4,a 2=m , 故a =14,m =116,检验知符合题意.(2)当q =1时,a 1=a 2=a 3=32,S 3=3a 1=92,显然成立.当q ≠1时,由a 3=32,S 3=92,∴⎩⎪⎨⎪⎧a 1q 2=32, ①a 1(1+q +q 2)=92, ②由①②,得1+q +q 2q 2=3,即2q 2-q -1=0, 所以q =-12或q =1(舍去).当q =-12时,a 1=a 3q 2=6, 综上可知,a 1=32或a 1=6. 答案 (1)14 (2)32或6探究提高 1.指数函数、对数函数的单调性取决于底数a ,因此,当底数a 的大小不确定时,应分0<a <1,a >1两种情况讨论.2.利用等比数列的前n 项和公式时,若公比q 的大小不确定,应分q =1和q ≠1两种情况进行讨论,这是由等比数列的前n 项和公式决定的.【训练1】 (1)(2017·长沙一中质检)已知S n 为数列{a n }的前n 项和且S n =2a n -2,则S 5-S 4的值为( ) A.8 B.10 C.16D.32(2)函数f (x )=⎩⎨⎧sin (πx 2),-1<x <0,e x -1,x ≥0.若f (1)+f (a )=2,则a 的所有可能取值的集合是________.解析 (1)当n =1时,a 1=S 1=2a 1-2,解得a 1=2. 因为S n =2a n -2,当n ≥2时,S n -1=2a n -1-2,两式相减得,a n =2a n -2a n -1,即a n =2a n -1,则数列{a n }为首项为2,公比为2的等比数列, 则S 5-S 4=a 5=25=32. (2)f (1)=e 0=1,即f (1)=1. 由f (1)+f (a )=2,得f (a )=1.当a ≥0时,f (a )=1=e a -1,所以a =1. 当-1<a <0时,f (a )=sin(πa 2)=1, 所以πa 2=2k π+π2(k ∈Z ).所以a 2=2k +12(k ∈Z ),k 只能取0,此时a 2=12, 因为-1<a <0,所以a =-22. 则实数a取值的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-22,1.答案 (1)D(2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-22,1 应用2 由图形位置或形状引起的分类讨论【例2】 (1)(2017·昆明一中质检)已知双曲线的离心率为233,则其渐近线方程为________;(2)设圆锥曲线C 的两个焦点分别为F 1,F 2,若曲线C 上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线C 的离心率等于________. 解析 (1)由于e =c a =233,∴c 2a 2=a 2+b 2a 2=43,则a 2=3b 2, 若双曲线焦点在x 轴上,渐近线方程y =±33x . 若双曲线焦点在y 轴上,渐近线方程y =±3x .(2)不妨设|PF 1|=4t ,|F 1F 2|=3t ,|PF 2|=2t ,其中t ≠0. 若该曲线为椭圆,则有|PF 1|+|PF 2|=6t =2a , |F 1F 2|=3t =2c ,e =c a =2c 2a =3t 6t =12;若该曲线为双曲线,则有|PF 1|-|PF 2|=2t =2a , |F 1F 2|=3t =2c ,e =c a =2c 2a =3t 2t =32. 答案 (1)y =±3x ,或y =±33x (2)12或32探究提高 1.圆锥曲线形状不确定时,常按椭圆、双曲线来分类讨论,求圆锥曲线的方程时,常按焦点的位置不同来分类讨论.2.相关计算中,涉及图形问题时,也常按图形的位置不同、大小差异等来分类讨论.【训练2】 设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|的值为________.解析 若∠PF 2F 1=90°.则|PF 1|2=|PF 2|2+|F 1F 2|2, 又因为|PF 1|+|PF 2|=6,|F 1F 2|=25, 解得|PF 1|=143,|PF 2|=43,所以|PF 1||PF 2|=72.若∠F 1PF 2=90°,则|F 1F 2|2=|PF 1|2+|PF 2|2, 所以|PF 1|2+(6-|PF 1|)2=20, 所以|PF 1|=4,|PF 2|=2,所以|PF 1||PF 2|=2.综上知,|PF 1||PF 2|=72或2.答案 72或2应用3由变量或参数引起的分类讨论【例3】已知f(x)=x-a e x(a∈R,e为自然对数的底).(1)讨论函数f(x)的单调性;(2)若f(x)≤e2x对x∈R恒成立,求实数a的取值范围.解(1)f′(x)=1-a e x,当a≤0时,f′(x)>0,函数f(x)是(-∞,+∞)上的单调递增函数;当a>0时,由f′(x)=0得x=-ln a,所以函数f(x)在(-∞,-ln a)上的单调递增,在(-ln a,+∞)上的单调递减.(2)f(x)≤e2x⇔a≥xe x-ex,设g(x)=xe x-ex,则g′(x)=1-e2x-xe x.当x<0时,1-e2x>0,g′(x)>0,∴g(x)在(-∞,0)上单调递增.当x>0时,1-e2x<0,g′(x)<0,∴g(x)在(0,+∞)上单调递减.所以g(x)max=g(0)=-1,所以a≥-1.故a的取值范围是[-1,+∞).探究提高 1.(1)参数的变化取值导致不同的结果,需对参数进行讨论,如含参数的方程、不等式、函数等.本题中参数a与自变量x的取值影响导数的符号应进行讨论.(2)解析几何中直线点斜式、斜截式方程要考虑斜率k存在或不存在,涉及直线与圆锥曲线位置关系要进行讨论.2.分类讨论要标准明确、统一,层次分明,分类要做到“不重不漏”.【训练3】(2015·全国Ⅱ卷)已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.解(1)f(x)的定义域为(0,+∞),f′(x)=1x-a.若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.综上,知当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a-1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1). 热点二 转化与化归思想 应用1 特殊与一般的转化【例4】 (1)过抛物线y =ax 2(a >0)的焦点F ,作一直线交抛物线于P ,Q 两点.若线段PF 与FQ 的长度分别为p ,q ,则1p +1q 等于( ) A.2a B.12a C.4aD.4a(2)(2017·浙江卷)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________.解析 (1)抛物线y =ax 2(a >0)的标准方程为x 2=1a y (a >0),焦点F ⎝ ⎛⎭⎪⎫0,14a .过焦点F 作直线垂直于y 轴,则|PF |=|QF |=12a ,∴1p +1q =4a .(2)由题意,不妨设b =(2,0),a =(cos θ,sin θ), 则a +b =(2+cos θ,sin θ),a -b =(cos θ-2,sin θ). 令y =|a +b |+|a -b | =(2+cos θ)2+sin 2θ+(cos θ-2)2+sin 2θ=5+4cos θ+5-4cos θ,令y =5+4cos θ+5-4cos θ,则y 2=10+225-16cos 2θ∈[16,20].由此可得(|a +b |+|a -b |)max =20=25, (|a +b |+|a -b |)min =16=4,即|a +b |+|a -b |的最小值是4,最大值是2 5. 答案 (1)C (2)4 2 5探究提高 1.一般问题特殊化,使问题处理变得直接、简单.特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果.2.对于某些选择题、填空题,如果结论唯一或题目提供的信息暗示答案是一个定值时,可以把题中变化的量用特殊值代替,即可得到答案.【训练4】 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,则cos A +cos C1+cos A cos C=________.解析 令a =b =c ,则△ABC 为等边三角形,且cos A =cos C =12,代入所求式子,得cos A +cos C 1+cos A cos C =12+121+12×12=45.答案 45应用2 函数、方程、不等式之间的转化【例5】 已知函数f (x )=3e |x |,若存在实数t ∈[-1,+∞),使得对任意的x ∈[1,m ],m ∈Z 且m >1,都有f (x +t )≤3e x ,试求m 的最大值. 解 ∵当t ∈[-1,+∞)且x ∈[1,m ]时,x +t ≥0, ∴f (x +t )≤3e x ⇔e x +t ≤e x ⇔t ≤1+ln x -x .∴原命题等价转化为:存在实数t ∈[-1,+∞),使得不等式t ≤1+ln x -x 对任意x ∈[1,m ]恒成立.令h (x )=1+ln x -x (1≤x ≤m ). ∵h ′(x )=1x -1≤0,∴函数h (x )在[1,+∞)上为减函数, 又x ∈[1,m ],∴h (x )min =h (m )=1+ln m -m . ∴要使得对任意x ∈[1,m ],t 值恒存在, 只需1+ln m -m ≥-1.∵h (3)=ln 3-2=ln ⎝ ⎛⎭⎪⎫1e ·3e >ln 1e =-1, h (4)=ln 4-3=ln ⎝ ⎛⎭⎪⎫1e ·4e 2<ln 1e =-1,又函数h (x )在[1,+∞)上为减函数, ∴满足条件的最大整数m 的值为3.探究提高 1.函数与方程、不等式联系密切,解决方程、不等式的问题需要函数帮助.2.解决函数的问题需要方程、不等式的帮助,因此借助于函数与方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变量的范围.【训练5】 (2017·江苏卷)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上.若P A → ·PB → ≤20,则点P 的横坐标的取值范围是________.解析 设点P (x ,y ),且A (-12,0),B (0,6).则P A → ·PB → =(-12-x ,-y )·(-x ,6-y )=x (12+x )+y (y -6)≤20, 又x 2+y 2=50, ∴2x -y +5≤0,则点P 在直线2x -y +5=0上方的圆弧上(含交点). 联立⎩⎪⎨⎪⎧y =2x +5,x 2+y 2=50,解得x =-5或x =1,结合图形知,-52≤x ≤1.故点P 横坐标的取值范围是[-52,1]. 答案 [-52,1]应用3 正与反、主与次的转化【例6】 (1)若对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x 在区间(t ,3)上总不为单调函数,则实数m 的取值范围是________;(2)对于满足0≤p ≤4的所有实数p ,不等式x 2+px >4x +p -3恒成立,则x 的取值范围是________.解析 (1)g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t ,3)上总为单调函数, 则①g ′(x )≥0在(t ,3)上恒成立,或②g ′(x )≤0在(t ,3)上恒成立. 由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x .当x ∈(t ,3)时恒成立,∴m +4≥2t -3t 恒成立, 则m +4≥-1,即m ≥-5;由②得m +4≤2x -3x ,当x ∈(t ,3)时恒成立,则m +4≤23-9,即m ≤-373. ∴使函数g (x )在区间(t ,3)上总不为单调函数的m 的取值范围为-373<m <-5. (2)设f (p )=(x -1)p +x 2-4x +3, 则当x =1时,f (p )=0.所以x ≠1.f (p )在0≤p ≤4上恒正,等价于⎩⎪⎨⎪⎧f (0)>0,f (4)>0,即⎩⎪⎨⎪⎧(x -3)(x -1)>0,x 2-1>0,解得x >3或x <-1.答案 ⎝ ⎛⎭⎪⎫-373,-5 (2)(-∞,-1)∪(3,+∞)探究提高 1.第(1)题是正与反的转化,由于不为单调函数有多种情况,先求出其反面,体现“正难则反”的原则.题目若出现多种成立的情形,则不成立的情形相对很少,从后面考虑较简单,因此,间接法多用于含有“至多”“至少”及否定性命题情形的问题中.2.第(2)题是把关于x 的函数转化为在[0,4]内关于p 的一次函数大于0恒成立的问题.在处理多变元的数学问题时,我们可以选取其中的参数,将其看作是“主元”,而把其它变元看作是参数.【训练6】 已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________.解析 由题意,知g (x )=3x 2-ax +3a -5,令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1.对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,∴⎩⎪⎨⎪⎧φ(1)<0,φ(-1)<0,即⎩⎪⎨⎪⎧3x 2-x -2<0,3x 2+x -8<0,解得-23<x <1.故当x ∈⎝ ⎛⎭⎪⎫-23,1时,对满足-1≤a ≤1的一切a 的值,都有g (x )<0. 答案 ⎝ ⎛⎭⎪⎫-23,11.分类讨论思想是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.对问题实行分类与整合,分类标准等于增加一个已知条件,实现了有效增设,将大问题(或综合性问题)分解为小问题(或基础性问题),优化解题思想,降低问题难度.常见的分类讨论问题:(1)集合:注意集合中空集∅讨论.(2)函数:对数函数或指数函数中的底数a ,一般应分a >1和0<a <1的讨论,函数y =ax 2+bx +c 有时候分a =0和a ≠0的讨论,对称轴位置的讨论,判别式的讨论.(3)数列:由S n 求a n 分n =1和n >1的讨论;等比数列中分公比q =1和q ≠1的讨论.(4)三角函数:角的象限及函数值范围的讨论.(5)不等式:解不等式时含参数的讨论,基本不等式相等条件是否满足的讨论.(6)立体几何:点线面及图形位置关系的不确定性引起的讨论.(7)平面解析几何:直线点斜式中k 分存在和不存在,直线截距式中分b =0和b ≠0的讨论;轨迹方程中含参数时曲线类型及形状的讨论.(8)去绝对值时的讨论及分段函数的讨论等.2.转化与化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而解决问题的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.。
数学重要的思想方法:
1.数形结合的思想
2.函数与方程的思想:函数与方程可以相互转化,注意运用函数与方程的思想解决问题;3。
分类讨论的思想在求解数学问题中,遇到下列情形常常要进行分类讨论.
①涉及的数学概念是分类定义的;
②运用的数学定理、公式或运算性质、法则是分类给出的;
③求解的数学问题的结论有多种情况或多种可能性;
④由运算的限制条件引起的分类.
⑤由实际问题的实际意义引起的分类.
⑥数学问题中含有参变量,这些参变量的不同取值会导致不同的结果.
⑦较复杂的或非常规的数学问题,需要采取分类讨论的解题策略来解决的.
⑧由图形的不确定性引起分类
4.转化与化归的思想
在处理问题时,把待解决或难解决的问题,采用某种手段通过某种转化过程,将问题进行变换和转化,归结为一类已经解决或容易解决的熟知问题,进而实现解决问题的目的,就是转化与化归的思想方法.这种思想方法一般总是将复杂的问题变换转化为简单的问题,把抽象的问题转化为具体的问题,把未知的问题转化为已知的问题,把难解的问题转化为容易求解的问题,从而找到解决问题的突破口,转化在高中数学中具有神奇的威力,要在今后的学习中不断体会、总结、积累,逐步形成能力.。