浅谈转换与化归思想(精)
- 格式:doc
- 大小:113.00 KB
- 文档页数:3
浅谈化归思想数学思想方法是数学的灵魂所在,而化归思想不仅是一种重要数学思想,也是一种最基本的思维策略,更是一种非常有效的数学思维方式和解题方法。
一、什么是化归从字面上来看,化归,可以理解为转化和归结。
数学方法论中提到的“化归”,是指把需要解决的问题,运用一些手段方法先把它转化(或再转化)然后归结到已经能解决(或容易解决)的问题中去,采用迂回的方式以先求转化后的问题答案再反过来,求未解决的问题,最终得到原问题答案的一种方法。
数学中的化归形成,还与数学本身的根源有关即公理化方法。
数学总是用已有的概念去定义新出现的概念,并且以此为据去处理解决各种新出现的未解决问题或者说把未知转化归结为已知,这就是化归思想。
化归有三个最基本的要素:化归对象(把什么进行转化),化归目标(化归对象转化成什么形式),化归途径(用什么方法进行转化)。
二、化归原则一般情况下,化归的时应遵循以下几个原则:1.熟悉化原则(也叫一般化原则),把我们所遇到的“陌生”问题转化成相对熟悉的问题以便于解答。
2.简单化原则,把复杂的问题转化为简单且容易解答的问题。
这里的简单与复杂是相对而言,简单也可以是解决问题的方案或处理方式简单。
3.直观化原则,把抽象的或内部关系模糊不清的问题转化为比较直观具体的问题。
有利于理清并把握问题涉及的各对象间的相互关系。
4.和谐化原则,指的是在对未知问题进行转化时应注意问题内部的和谐统一,便于制定解决问题的程序和选择处理方法。
5.寻找对立面原则,是指在解决问题时,如果从正面无法处理或很难处理,此时可以解决问题的反面从中找到处理原问题的灵感和方法。
化归的过程中这几个基本原则是相互联系、相互渗透和相互补充的,在解决实际性问题的过程中,常常需要把它们结合起来使用,这样可以让化归过程更加快速和简洁,会收到更好的效果。
三、化归方法进行化归时,选择适当的方法可以使转化处理问题更快捷。
化归有五种基本方法:分割法与组合法、一般化与特殊化法、恒等变形法、RMI方法和基本模型法。
转化与化归思想等价转化思想方法的特点是具有灵活性和多样性.在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行.它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形.消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化.可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变.由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型.►探究点一高维与低维的转化事物的空间形成,总是表现为不同维数且遵循由低维向高维的发展规律,如从点研究线,由线到面,由面再到空间.通过降维可以把问题从一个领域带到另一个领域研究,从而使问题简单化.如立体几何中三维问题转化为平面几何的二维问题,多元问题转化为一元问题进行研究等.例(1)如图30-1,直三棱柱ABC-A1B1C1中,AB=1,BC=2,AC=5,AA1=3,M为线段BB1上的一动点,则当AM+MC最小时,△AMC的面积为________.30-1(2)若不等式x2108+y24≥xy3k对于任意正实数x,y总成立的必要不充分条件是k∈[m,+∞),则正整数m只能取________.►探究点二特殊与一般的转化所谓特殊化的策略,就是当我们面临的是一道难以入手的一般性题目时,要注意从一般退到特殊,先考查包含在一般情形里的某些比较简单的特殊问题,以便从特殊问题的研究,拓宽解题的思路,从而发现解答原题的方向或途径,即“由一般退回特殊,再由特殊推广至一般”.例2已知椭圆x24+y22=1,A、B是其左、右顶点,动点M满足MB⊥AB,连结AM交椭圆于点P,在x轴上有异于点A、B的定点Q,以MP为直径的圆经过直线BP,MQ的交点,则点Q的坐标为________.► 探究点三 陌生与熟悉的转化化陌生为熟悉,即当我们面临一个没有接触过的问题时,要设法把它转化为曾经解过的或比较熟悉的题目,以便充分利用已有知识、经验或解题模式解出原题.一般来说对题目的熟悉程度取决于对题目自身结构的认识和理解.常用转化途径有:(1)充分联想、回忆基本知识和题型;(2)全方位、多角度地分析题意;(3)恰当构造辅助元素.例3 若关于x 的方程x 4+ax 3+ax 2+ax +1=0有实数根,求实数a 的取值范围.变式 设x ,y 为正实数,a =x 2+xy +y 2,b =p xy ,c =x +y .(1)如果p =1,则是否存在以a ,b ,c 为三边长的三角形?请说明理由;(2)对任意的正实数x ,y ,试探索当存在以a ,b ,c 为三边长的三角形时p 的取值范围.例 [2011·江苏卷] 在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且仅有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.例设实数x ,y 满足⎩⎪⎨⎪⎧ x -y -2≤0,x +2y -5≥0,y -2≤0,则u =y x -x y 的取值范围是________.例设A 1、A 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,若在椭圆上存在异于A 1、A 2的点P ,使得PO →·PA 2→=0,其中O 为坐标原点,则椭圆的离心率e 的取值范围是________.► 探究点四 函数中的分类讨论问题函数的基本概念和基本性质中本身涉及分类讨论的问题并不多,但是有一类带有参数的函数即动态函数问题中,其单调性的求解、值域的研究、零点问题等往往都需要对参数的取值进行划分后,分成不同情况进行研究.例1已知函数f (x )=x 2-a ln x (a ∈R).(1)若a =2,求证:f (x )在(1,+∞)上是增函数;(2)求f (x )在[1,e]上的最小值.。
转化与化归思想转化与化归思想就是把那些待解决或难解决的问题,通过某种手段,使之转化为一类已解决或易解决的问题,最终使原问题获解.使用化归思想的原则是:化难为易、化生为熟、化繁为简、化未知为已知.转化与化归思想高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归,它几乎可以渗透到所有的数学内容和解题过程中. 类型一 直接转化【典例1】 已知在数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.【答题模板】【解析】 ∵a n +1=2a n a n +2,a 1=1,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12.又a 1=1,则1a 1=1,∴{1a n}是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12,∴a n =2n +1(n ∈N *).【对点练1】 求下列函数的值域:(1)y =sin x +cos x ;(2)y =sin 2x -cos x +1; (3)y =cos x2cos x +1;(4)y =1+sin x 3+cos x.【解析】 (1)∵y =sin x +cos x =2sin(x +π4),∴函数的值域为[-2,2]. (2)∵y =sin 2x -cos x +1=2-cos 2x -cos x =-(cos x +12)2+94,∴函数的值域为[0,94]. (3)由y =cos x 2cos x +1,得cos x =y1-2y .∵|cos x |≤1,∴解不等式|y 1-2y |≤1,得y ≤13或y ≥1.∴函数的值域为(-∞,13]∪[1,+∞).(4)由y =1+sin x3+cos x ,得sin x -y cos x =3y -1,即1+y 2·sin(x -φ)=3y -1.∴sin(x -φ)=3y -11+y 2.∵|sin(x -φ)|≤1,∴|3y -11+y 2|≤1.平方化简得y ·(4y -3)≤0.∴0≤y ≤34,即函数值域为[0,34].类型二 换元法【典例2】 求函数y =(4-3sin x )(4-3cos x )的最小值. 【答题模板】【解析】 y =16-12(sin x +cos x )+9sin x cos x ,令t =sin x +cos x ,则t ∈[-2,2]且sin x cos x =t 2-12.∴y =16-12t +9×t 2-12=12(9t 2-24t +23). 故当t =43时,y min =72.【对点练2】 (2015·衡水调研)已知x +y =-1,且x ,y 都是负数,求xy +1xy 的最值. 【解析】 设x =-sin 2α(sin 2α≠0),y =-cos 2α(cos 2α≠0),则xy +1xy =sin 2αcos 2α+1sin 2αcos 2α=14sin 22α+4sin 22α=14(sin 22α+16sin 22α). ∵sin 22α+16sin 22α在sin 22α∈(0,1]上是减函数,∴sin 22α=1时,取得最小值,∴xy +1xy 的最小值为14(1+161)=174.【典例3】 若关于x 的方程9x +(4+a )·3x +4=0有解,则实数a 的取值范围是________. 【答题模板】 可采用换元法,令t =3x ,将问题转化为关于t 的方程有正解进行解决. 【解析】 设t =3x ,则原命题等价于关于t 的方程 t 2+(4+a )t +4=0有正解,分离变量a 得a +4=-(t +4t ),∵t >0,∴-(t +4t )≤-4.∴a ≤-8,即实数a 的取值范围是(-∞,-8]. 【对点练3】 设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________. 【解析】 令2x +y =t ,则y =t -2x .则4x 2+y 2+xy =1变形为6x 2-3tx +t 2-1=0. Δ=9t 2-4·6·(t 2-1)≥0,t 2≤85.∴-2105≤t ≤2105,即2x +y 的最大值是2105.类型三 数形结合法【典例4】 求函数f (x )=2-sin x2+cos x 的值域.【解析】 函数f (x )=2-sin x2+cos x ,可看作点(2,2),(-cos x ,sin x )两点连线的斜率.点(-cos x ,sin x )的轨迹为x 2+y 2=1.函数值域即为(2,2)与单位圆x 2+y 2=1上点连线斜率的范围,由图可知,过(2,2)且与单位圆相切的直线斜率存在,不妨设为k .∴切线方程为y -2=k (x -2),即kx -y -2k +2=0.∴满足|2-2k |1+k 2=1,解之得k =4±73.∴函数f (x )的值域为[4-73,4+73]. 【对点练4】 设f (x )=1+x 2,求证:对于任意实数a ,b ,a ≠b ,都有|f (a )-f (b )|<|a -b |.【解析】 设A (x 1,1),B (x 2,1),则|OA |=1+x 21,|OB |=1+x 22,|AB |=|x 1-x 2|.在△AOB 中,||OA |-|OB ||<|AB |,即有|1+x 21-1+x 22|<|x 1-x 2|,所以|f (x 1)-f (x 2)|<|x 1-x 2|,即|f (a )-f (b )|<|a -b |. 类型四 构造法【典例5】 在三棱锥P -ABC 中,PA =BC =234,PB =AC =10,PC =AB =241,则三棱锥P -ABC 的体积为________.【答题模板】 用常规方法利用三棱锥的体积公式求解体积时,无法求出三棱锥的高.但若换个角度来思考,注意到三棱锥的三对棱两两相等,我们可以构造一个特定的长方体,将问题转化为长方体中的某个问题.【解析】 如图所示,把三棱锥P -ABC 补成一个长方形AEBG -FPDC ,易知三棱锥P -ABC 的各棱分别是长方体的面对角线,不妨令PE =x ,EB =y ,EA =z ,则由已知有:⎩⎪⎨⎪⎧ x 2+y 2=100,x 2+z 2=136,y 2+z 2=164,解得⎩⎪⎨⎪⎧x =6,y =8,z =10.所以V P -ABC =V AEBG -FPDC -V P -AEB -V C -ABG -V B -PDC -V A -FPC =V AEBG -FPDC -4V P -AEB =6×8×10-4×16×6×8×10=160.故所求三棱锥P -ABC 的体积为160.【对点练5】 已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.【解析】先在一个正方体中找一个满足条件的正三棱锥,再利用正方体的性质解题.如图,满足题意的正三棱锥P -ABC 可以是正方体的一部分,其外接球的直径是正方体的体对角线,且面ABC 与体对角线的交点是体对角线的一个三等分点,所以球心到平面ABC 的距离等于体对角线长的16,故球心到截面ABC 的距离为16×23=33. 类型七 参数法【典例8】 已知直线l 过点A (2,3)且与x 轴,y 轴的正半轴分别交于M ,N 两点,则当|AM |·|AN |最小时,直线l 的方程为________. 【解析】 设∠AMO 为θ,则θ∈(0,π2), ∴|AM |=3sin θ,|AN |=2cos θ. ∴|AM |·|AN |=6sin θ·cos θ=12sin2θ≥12. 当且仅当sin2θ=1,即θ=π4时取“=”号.此时k l =-1,∴l 的方程为x +y -5=0. 【对点练8】 (2015·北京东城联考)已知点P (3,4)与圆C :(x -2)2+y 2=4,A ,B 是圆C 上两个动点,且|AB |=23,则OP →·(OA →+OB →)(O 为坐标原点)的取值范围是( ) A .[3,9] B .[1,11] C .[6,18] D .[2,22]【解析】 设AB 的中点为D ,则OA →+OB →=2OD →,因为|AB |=23,所以|CD |=1,故点D在圆(x -2)2+y 2=1上,所以点D 的坐标为(2+cos α,sin α),故OP →·(OA →+OB →)=2OP →·OD →=2(6+3cos α+4sin α)=2[6+5sin(α+φ)],而2≤2[6+5sin(α+φ)]≤22,则OP →·(OA →+OB →)的取值范围是[2,22].。
数学思想之转化与化归总结在数学中,转化与化归是一种常用的思想方法。
通过转化问题的表达形式或者化简问题的复杂度,我们可以更容易地理解和解决数学问题。
转化与化归涉及到问题的等价转化、代数化简、几何转化、枚举化归等多个方面。
下面将从这几个方面对转化与化归进行总结。
首先,等价转化是一种常见的数学思想之一。
它意味着将一个问题转化为与之等价的另一个问题,以求得更容易解决的问题。
等价转化包括将问题的形式转化为更简单或者更具有可操作性的形式,或者将问题与已知的问题进行对应。
一个经典的例子是将一个复杂的代数方程转化为一个简单的一次方程或者二次方程,从而解决原方程。
在某些情况下,等价转化也可以是不可逆的,这意味着我们只能从简单的问题得到复杂的问题,但是这种转化仍然能够帮助我们更好地理解问题的本质和特点。
其次,代数化简是转化与化归的另一个重要方面。
代数化简是指通过运用代数运算的性质和规则,将一个复杂的代数表达式或者方程化简为更简单的形式。
代数化简的方法包括合并同类项、因式分解、配方法、三角函数的恒等变换等。
代数化简不仅可以减少问题的复杂度,还可以揭示问题的规律和特点,从而更好地解决数学问题。
几何转化是将几何问题转化为代数问题或者相反,通过几何图形的变换和变形,我们可以使得问题的解决更加直观和简单。
几何转化常常涉及到使用待定系数法、相似三角形的性质、勾股定理等几何知识,从而求得问题的解。
几何转化不仅能够帮助我们更好地理解和解决几何问题,还能够提高我们的思维能力和几何直观。
最后,枚举化归是一种将一个复杂的问题化归为若干个简单的情况,通过对每个简单情况的分析和解决,来解决原问题的方法。
枚举化归可以通过列举具体的例子,或者考虑特殊情况来进行。
枚举化归的优点是能够将一个复杂的问题简化为多个简单的情况,从而更好地理解和解决问题。
然而,枚举化归的缺点是可能需要计算大量的情况,耗费时间和精力。
综上所述,转化与化归是数学中一种重要的思想方法。
解题思想数学“化归与转化思想”学生姓名授课日期教师姓名授课时长匈牙利著名数学家罗莎·彼得在他的名著《无穷的玩艺》中,通过一个十分生动而有趣的笑话,来说明数学家是如何用化归的思想方法来解题的。
有人提出了这样一个问题:“假设在你面前有煤气灶,水龙头、水壶和火柴,你想烧开水,应当怎样去做?”对此,某人回答说:“在壶中灌上水,点燃煤气,再把壶放在煤气灶上。
”提问者肯定了这一回答,但是,他又追问道:“如果其他的条件都没有变化,只是水壶中已经有了足够的水,那么你又应该怎样去做?”这时被提问者一定会大声而有把握地回答说:“点燃煤气,再把水壶放上去。
”但是更完善的回答应该是这样的:“只有物理学家才会按照刚才所说的办法去做,而数学家却会回答:‘只须把水壶中的水倒掉,问题就化归为前面所说的问题了’”。
“把水倒掉”,这就是化归,这就是数学家常用的方法。
翻开数学发展的史册,这样的例子不胜枚举,笛卡儿誉其为“万能方法”。
他在《指导思维的法则》一书中指出:第一,将任何种类的问题转化为数学问题;其次,将任何种类的数学问题转化为代数问题;第三,将任何代数问题转化为方程式的求解。
其实所谓化归思想,一般就是指人们将待解决或难以解决的问题通过某种转化过程,归结到一类已经解决或比较容易解决的问题中去,最终求得原问题的解答的一种手段和方法。
化归与转化思想的实质是揭示联系,实现转化。
化归与转化的思想是解决数学问题的根本思想,实质是转化矛盾的思想方法,其遵循“运动——转化——解决”的基本思想。
数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,都是转化思想的体现。
这种思想方法可分为①多维化归方法,如:换元法、恒等变换法、反证法、构造法、待定系数法、数学归纳法;②二维化归法,如解析法、三角代换法、向量法;③单维化归法,如:复数法、代入法、加减法、判别式法、曲线系数法、坐标变换法。
浅谈化归与转化的数学思想作者:牛少华来源:《学知报·教师版》2012年第49期我们在学习的过程中常常会遇到一些陌生的问题和复杂的问题,是我们一时间不知所措,但是大家要知道再陌生的数学问题也一定存在最熟悉的理论基础,再复杂的数学问题也都是有简单的命题复合或者演化而成的,如果我们学会了将陌生的数学问题转化为熟悉的问题,把复杂的数学问题转化为简单的数学问题,那么问题就能得以顺利解决。
因此我们总的解题策略是化归,即设法将我们待解决的或未解决的陌生的复杂的问题,通过某种转化,归结到一类已经解决或容易解决的问题中去,最终将问题给予圆满解答的一种手段和方法叫化归法。
化归与转化的思想是解决数学问题的根本思想,解题的过程实际就是转化的过程。
应用化归与转化的思想,运用数学变换的方法去灵活地解决有关的数学问题,是提高思维能力的有效保证。
下面介绍一些常用的转化方法,及化归与类比思想解题的应用。
(一)使用正与反的思想转化:有些数学问题,如果直接从正面入手求解难度较大,致使思想受阻,我们可以从反面着手去解决。
如函数与反函数的有关问题,对立事件的概率、间接法求解排列组合问题、证明命题的唯一性、无理性,或所给的命题以否定形式出现(如:不存在、不相交等),并伴有“至少”“不都”“都不”“没有”等指示性词语时,均可考虑用正与反的思想来实现转化。
正与反的思想是数学解题中逆向思维的直接体现。
例1 已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中,至少有一个方程有实根,求实数a的取值范围。
分析:此题若采用正面讨论,则必须分成“有且只有一个方程有实根”,“有两个方程有实根”和“三个方程全部有实根”三种不同情况来讨论,求解过程将会非常复杂。
所以,应采用补集和反证法的思想来求。
解:若方程没有一个有实根,则有16a2-4(3-4a)<0(a-1)2-4a2<04a2+8a<0解之得:-■<a<-1∴满足三个方程至少有一个方程有实根的a的解集是{a/a≥-1,或a≤-■}。
4 转化与化归思想主线—基础—方法—应用—例题—注意—总结知识清单:知识1 转化与化归思想概述知识2 转化与化归的原则知识1 转化与化归思想概述所谓化归思想就是通过转化,使所要解决的问题由难变易或变为已经解决的问题,以有利于解决的一种数学思想。
化归思想常常以变换题目的结构形状、变更问题、从反面探究结论等方式出现,前面所介绍的函数思想、方程思想、数形结合、分类讨论等都是重要的化归方法。
知识2 转化与化归的原则(1)目标简化原则将复杂的问题向简单的问题转化。
(2)和谐统一性原则即化归应朝着使待解决问题在表现形式上趋于和谐,在量、形关系上趋于统一的方向进行,使问题的条件和结论更均匀和恰当。
(3)具体化原则即化归方向应由抽象到具体。
(4)低层次原则即将高维空间问题化归成低维空间问题。
(5)正难则反原则即当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。
方法清单:方法1 直接转化法方法2 换元转化法方法3 数形结合法转化方法4 构造法转化方法5 坐标法转化方法6 补集法转化方法7 空间与平面间的转化方法8 几何条件转化为向量关系的方法方法9 变更主元的转化法方法10一般式转化为标准式方法1 直接转化法把原问题转化为基本定理、基本公式或基本图形问题。
例1函数y=1+a x(0<a<1)的反函数的图象大致是()方法2 换元转化法运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题。
例2 设20≤≤x ,求函数523421+⋅-=-x x y 的最大值和最小值。
方法3 数形结合法转化研究原问题中数量关系(解析式)与空间形式(图形)的关系,通过互相变化获得转化途径。
例3 已知1,0,0=+≥≥b a b a ,求证225)2()2(22≥+++b a 方法4 构造法转化 “构造”一个合适的数学模型,把问题变为易于解决的问题。
高三数学思想、方法、策略专题第三讲 转化与化归思想一.知识探究:等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。
通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。
1.转化有等价转化与非等价转化。
等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。
非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能带来思维的闪光点,找到解决问题的突破口。
2.常见的转化方法(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题;(2)换元法:运用“换元”把非标准形式的方程、不等式、函数转化为容易解决的基本问题;(3)参数法:引进参数,使原问题的变换具有灵活性,易于转化;(4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题;(5)坐标法:以坐标系为工具,用代数方法解决解析几何问题,是转化方法的一种重要途径;(6)类比法:运用类比推理,猜测问题的结论,易于确定转化的途径;(7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题;(8)一般化方法:若原问题是某个一般化形式问题的特殊形式且有较难解决,可将问题通过一般化的途径进行转化;(9)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的;(10)补集法:(正难则反)若过正面问题难以解决,可将问题的结果看作集合A ,而把包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集A C U 获得原问题的解决。
3.化归与转化应遵循的基本原则:(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决;(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据;(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律;(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决;(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。
转化与化归思想[思想方法解读] 转化与化归思想,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法.一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.转化与化归思想是实现具有相互关联的两个知识板块进行相互转化的重要依据,如函数与不等式、函数与方程、数与形、式与数、角与边、空间与平面、实际问题与数学问题的互化等,消去法、换元法、数形结合法等都体现了等价转化思想,我们也经常在函数、方程、不等式之间进行等价转化,在复习过程中应注意相近主干知识之间的互化,注重知识的综合性.转化与化归思想的原则(1)熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知的问题,以便于我们运用熟知的知识、经验和问题来解决.(2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.(3)和谐统一原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律.(4)正难则反原则:当问题正面讨论遇到困难时,应想到问题的反面,设法从问题的反面去探讨,使问题获得解决.常考题型精析题型一 正难则反的转化例1 已知集合A ={x ∈R |x 2-4mx +2m +6=0},B ={x ∈R |x <0},若A ∩B ≠∅,求实数m 的取值范围.解 设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},即U ={m |m ≤-1或m ≥32}. 若方程x 2-4mx +2m +6=0的两根x 1,x 2均为非负,则⎩⎪⎨⎪⎧ m ∈U ,x 1+x 2=4m ≥0,⇒m ≥32,x 1x 2=2m +6≥0所以,使A ∩B ≠∅的实数m 的取值范围为{m |m ≤-1}.点评 本题中,A ∩B ≠∅,所以A 是方程x 2-4mx +2m +6=0①的实数解组成的非空集合,并且方程①的根有三种情况:(1)两负根;(2)一负根和一零根;(3)一负根和一正根.分别求解比较麻烦,我们可以从问题的反面考虑,采取“正难则反”的解题策略,即先由Δ≥0,求出全集U ,然后求①的两根均为非负时m 的取值范围,最后利用“补集思想”求解,这就是正难则反这种转化思想的应用,也称为“补集思想”.变式训练1 若对于任意t ∈[1,2],函数g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是__________.答案 ⎝⎛⎭⎫-373,-5 解析 g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t,3)上总为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x-3x 在x ∈(t,3)上恒成立, 所以m +4≥2t-3t 恒成立,则m +4≥-1,即m ≥-5; 由②得m +4≤2x-3x 在x ∈(t,3)上恒成立, 则m +4≤23-9,即m ≤-373. 所以,函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5. 题型二 函数、方程、不等式之间的转化例2 已知函数f (x )=13x 3+⎝⎛⎭⎫a 2-43x 2+⎝⎛⎭⎫43-23a x (0<a <1,x ∈R ).若对于任意的三个实数x 1,x 2,x 3∈[1,2],都有f (x 1)+f (x 2)>f (x 3)恒成立,求实数a 的取值范围.解 因为f ′(x )=x 2+⎝⎛⎭⎫a -83x +⎝⎛⎭⎫43-23a =⎝⎛⎭⎫x -23(x +a -2),所以令f ′(x )=0, 解得x 1=23,x 2=2-a . 由0<a <1,知1<2-a <2.所以令f ′(x )>0,得x <23,或x >2-a ; 令f ′(x )<0,得23<x <2-a , 所以函数f (x )在(1,2-a )上单调递减,在(2-a,2)上单调递增.所以函数f (x )在[1,2]上的最小值为f (2-a )=a 6(2-a )2,最大值为max{f (1),f (2)}=max ⎩⎨⎧⎭⎬⎫13-a 6,23a .因为当0<a ≤25时,13-a 6≥23a ; 当25<a <1时,23a >13-a 6, 由对任意x 1,x 2,x 3∈[1,2],都有f (x 1)+f (x 2)>f (x 3)恒成立,得2f (x )min >f (x )max (x ∈[1,2]).所以当0<a ≤25时,必有2×a 6(2-a )2>13-a 6, 结合0<a ≤25可解得1-22<a ≤25; 当25<a <1时,必有2×a 6(2-a )2>23a , 结合25<a <1可解得25<a <2- 2. 综上,知所求实数a 的取值范围是1-22<a <2- 2. 点评 解决方程、不等式的问题需要函数帮助,解决函数的问题需要方程、不等式的帮助,因此借助于函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变量的范围.变式训练2 (2015·课标全国Ⅰ)设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )零点的个数;(2)证明:当a >0时,f (x )≥2a +a ln 2a. (1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -a x(x >0). 当a ≤0时,f ′(x )>0,f ′(x )没有零点.当a >0时,因为e 2x 单调递增,-a x单调递增, 所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0,故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1),可设f ′(x )在(0,+∞)的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x =x 0时,f (x )取得最小值,最小值为f (x 0).由于022e x -a x 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a .故当a >0时,f (x )≥2a +a ln 2a. 题型三 主与次的转化例3 已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________.答案 ⎝⎛⎭⎫-23,1 解析 由题意,知g (x )=3x 2-ax +3a -5,令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1.对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,∴⎩⎪⎨⎪⎧ φ(1)<0,φ(-1)<0, 即⎩⎪⎨⎪⎧3x 2-x -2<0,3x 2+x -8<0, 解得-23<x <1. 故当x ∈⎝⎛⎭⎫-23,1时,对满足-1≤a ≤1的一切a 的值,都有g (x )<0. 点评 主与次的转化法合情合理的转化是数学问题能否“明朗化”的关键所在,通过变换主元,起到了化繁为简的作用.在不等式中出现两个字母:x 及a ,关键在于该把哪个字母看成变量,哪个看成常数.显然可将a 视作自变量,则上述问题即可转化为在[-1,1]内关于a 的一次函数小于0恒成立的问题.变式训练3 设f (x )是定义在R 上的单调递增函数,若f (1-ax -x 2)≤f (2-a )对任意a ∈[-1,1]恒成立,则x 的取值范围为______________.答案 (-∞,-1]∪[0,+∞)解析 ∵f (x )是R 上的增函数,∴1-ax -x 2≤2-a ,a ∈[-1,1].(*)(*)式可化为(x -1)a +x 2+1≥0,对a ∈[-1,1]恒成立.令g (a )=(x -1)a +x 2+1.则⎩⎪⎨⎪⎧g (-1)=x 2-x +2≥0,g (1)=x 2+x ≥0, 解得x ≥0或x ≤-1,即实数x 的取值范围是(-∞,-1]∪[0,+∞).题型四 以换元为手段的转化与化归例4 是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间[0,π2]上的最大值是1?若存在,则求出对应的a 的值;若不存在,则说明理由.解 y =sin 2x +a cos x +58a -32=1-cos 2x +a cos x +58a -32=-(cos x -a 2)2+a 24+58a -12.∵0≤x ≤π2,∴0≤cos x ≤1,令cos x =t , 则y =-(t -a 2)2+a 24+58a -12,0≤t ≤1. 当a 2>1,即a >2时,函数y =-(t -a 2)2+a 24+58a -12在t ∈[0,1]上单调递增, ∴t =1时,函数有最大值y max =a +58a -32=1, 解得a =2013<2(舍去); 当0≤a 2≤1,即0≤a ≤2时, t =a 2函数有最大值,y max =a 24+58a -12=1, 解得a =32或a =-4(舍去); 当a 2<0,即a <0时, 函数y =-(t -a 2)2+a 24+58a -12在t ∈[0,1]上单调递减, ∴t =0时,函数有最大值y max =58a -12=1, 解得a =125>0(舍去), 综上所述,存在实数a =32使得函数有最大值. 点评 换元有整体代换、特值代换、三角换元等情况.本题是关于三角函数最值的存在性问题,通过换元,设cos x =t ,转化为关于t 的二次函数问题,把三角函数的最值问题转化为二次函数y =-(t -a 2)2+a 24+58a -12,0≤t ≤1的最值问题,然后分类讨论解决问题.变式训练4 若关于x 的方程9x +(4+a )·3x +4=0有解,则实数a 的取值范围是____________. 答案 (-∞,-8]解析 设t =3x ,则原命题等价于关于t 的方程t 2+(4+a )t +4=0有正解,分离变量a ,得a +4=-⎝⎛⎭⎫t +4t , ∵t >0,∴-⎝⎛⎭⎫t +4t ≤-4, ∴a ≤-8,即实数a 的取值范围是(-∞,-8].高考题型精练1.已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( )A .a =b <cB .a =b >cC .a <b <cD .a >b >c答案 B 解析 ∵a =log 23+log 23=log 233,b =log 29-log 23=log 233,∴a =b .又∵函数y =log a x (a >1)为增函数,∴a =log 233>log 22=1,c =log 32<log 33=1,∴a =b >c .2.下列关于函数f (x )=(2x -x 2)e x 的判断正确的是( )①f (x )>0的解集是{x |0<x <2};②f (-2)是极小值,f (2)是极大值;③f (x )既没有最小值,也没有最大值.A .①②③B .②C .①③D .③答案 A解析 若f (x )=(2x -x 2)e x >0,则0<x <2,①正确;∵f ′(x )=-e x (x +2)(x -2),∴f (x )在(-∞,-2)和(2,+∞)上单调递减,在(-2,2)上单调递增.∴f (-2)是极小值,f (2)是极大值,②正确;易知③也正确.3.(2014·湖南)若0<x 1<x 2<1,则( ) 21121212212121A.e e ln ln B.e e lnC e eD e e x x x x x x x x x x x x x x ->--<><.. 答案 C解析 设f (x )=e x -ln x (0<x <1),则f ′(x )=e x -1x =x e x -1x . 令f ′(x )=0,得x e x -1=0.根据函数y =e x 与y =1x的图象可知两函数图象交点x 0∈(0,1),因此函数f (x )在(0,1)上不是单调函数,故A ,B 选项不正确.设g (x )=e x x (0<x <1),则g ′(x )=e x(x -1)x 2. 又0<x <1,∴g ′(x )<0.∴函数g (x )在(0,1)上是减函数.又0<x 1<x 2<1,∴g (x 1)>g (x 2),1221e e .x x x x ∴>4.设a ,b ∈R ,a 2+2b 2=6,则a +2b 的最小值为( )A .-2 2B .-533C .-2 3D .-72答案 C解析 由a 2+2b 2=6,得a 26+b 23=1. 所以可设⎩⎨⎧a =6cos θ,b =3sin θ.a +2b =6cos θ+6sin θ=12⎝⎛⎭⎫22cos θ+22sin θ =12sin ⎝⎛⎭⎫θ+π4. 因为-1≤sin ⎝⎛⎭⎫θ+π4≤1,所以a +2b ≥-2 3. 5.过双曲线x 2a 2-y 2b2=1上任意一点P ,引与实轴平行的直线,交两渐近线于R 、Q 两点,则PR →·PQ →的值为( )A .a 2B .b 2C .2abD .a 2+b 2答案 A解析 当直线RQ 与x 轴重合时,|PR →|=|PQ →|=a ,故选A.6.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为( )A.⎣⎡⎦⎤-1,-12 B .[-1,0] C .[0,1]D.⎣⎡⎦⎤12,1 答案 A解析 设P (x 0,y 0),倾斜角为α,0≤tan α≤1,f (x )=x 2+2x +3,f ′(x )=2x +2,0≤2x 0+2≤1,-1≤x 0≤-12,故选A.7.P 为双曲线x 29-y 216=1的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和圆(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值为( )A .6B .7C .8D .9答案 D解析 设双曲线的左、右焦点分别为F 1、F 2,则其分别为已知两圆的圆心,由已知|PF 1|-|PF 2|=2×3=6.要使|PM |-|PN |最大,需PM ,PN 分别过F 1、F 2点即可.∴(|PM |-|PN |)max =(|PF 1|+2)-(|PF 2|-1)=|PF 1|-|PF 2|+3=9.8.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则( )A .a <-1B .a >-1C .a >-1eD .a <-1e 答案 A解析 ∵y =e x +ax ,∴y ′=e x +a .∵函数y =e x +ax 有大于零的极值点,则方程y ′=e x +a =0有大于零的解,∵x >0时,-e x <-1,∴a =-e x <-1.9.已知等差数列{a n }的公差d ≠0,且a 1、a 3、a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10的值是________. 答案 1316 解析 由题意知,只要满足a 1、a 3、a 9成等比数列的条件,{a n }取何种等差数列与所求代数式的值是没有关系的.因此,可把抽象数列化归为具体数列.比如,可选取数列a n =n (n ∈N *),则a 1+a 3+a 9a 2+a 4+a 10=1+3+92+4+10=1316. 10.已知一个几何体的三视图如图所示,如果点P ,Q 在正视图中所示位置:P 为所在线段中点,Q 为顶点,则在几何体侧面上,从P 点到Q 点的最短路径的长为________.答案 a 1+π2解析 由三视图,知此几何体是一个圆锥和一个圆柱的组合体,分别沿P 点与Q 点所在母线剪开圆柱侧面并展开铺平,如图所示.则PQ =AP 2+AQ 2=a 2+(πa )2=a 1+π2.所以P ,Q 两点在侧面上的最短路径的长为a 1+π2.11.f (x )=13x 3-x ,x 1,x 2∈[-1,1]时,求证:|f (x 1)-f (x 2)|≤43. 证明 ∵f ′(x )=x 2-1,当x ∈[-1,1]时,f ′(x )≤0,∴f (x )在[-1,1]上递减.故f (x )在[-1,1]上的最大值为f (-1)=23, 最小值为f (1)=-23, 即f (x )在[-1,1]上的值域为[-23,23]. 所以x 1,x 2∈[-1,1]时,|f (x 1)|≤23,|f (x 2)|≤23, 即有|f (x 1)-f (x 2)|≤|f (x 1)|+|f (x 2)|≤23+23=43. 即|f (x 1)-f (x 2)|≤43. 12.已知函数f (x )=eln x ,g (x )=1ef (x )-(x +1).(e =2.718……) (1)求函数g (x )的极大值;(2)求证:1+12+13+ (1)>ln(n +1)(n ∈N *). (1)解 ∵g (x )=1ef (x )-(x +1)=ln x -(x +1),∴g ′(x )=1x-1(x >0). 令g ′(x )>0,解得0<x <1;令g ′(x )<0,解得x >1.∴函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,∴g (x )极大值=g (1)=-2.(2)证明 由(1)知x =1是函数g (x )的极大值点,也是最大值点,∴g (x )≤g (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立), 令t =x -1,得t ≥ln(t +1)(t >-1),取t =1n(n ∈N *)时, 则1n >ln ⎝⎛⎭⎫1+1n =ln ⎝⎛⎭⎫n +1n ,∴1>ln 2,12>ln 32,13>ln 43,…,1n >ln ⎝⎛⎭⎫n +1n , 叠加得1+12+13+…+1n >ln(2·32·43·…·n +1n)=ln(n +1). 即1+12+13+…+1n >ln(n +1).。
思想方法第4讲转化与化归思想第4讲转化与化归思想思想概述转化与化归思想方法适用于在研究、解决数学问题时,思维受阻或试图寻求简单方法或从一种情形转化到另一种情形,也就是转化到另一种情形使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.方法一特殊与一般的转化一般问题特殊化,使问题处理变得直接、简单,也可以通过一般问题的特殊情形找到一般思路;特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果;对于某些选择题、填空题,可以把题中变化的量用特殊值代替,得到问题答案.例1(1)(2020·青岛模拟)“蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆,若椭圆C:+=1(a>0)的离心率为,则椭圆C的蒙日圆的方程为()A.x2+y2=9B.x2+y2=7C.x2+y2=5D.x2+y2=4答案B解析因为椭圆C:+=1(a>0)的离心率为,所以=,解得a=3,所以椭圆C的方程为+=1,所以椭圆的上顶点A(0,),右顶点B(2,0),所以经过A,B两点的切线方程分别为y=,x=2,所以两条切线的交点坐标为(2,),又过A,B的切线互相垂直,由题意知交点必在一个与椭圆C同心的圆上,可得圆的半径r==,所以椭圆C的蒙日圆方程为x2+y2=7.(2)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等差数列,则等于()A.B.C.D.思路分析求→考虑正三角形ABC的情况答案A解析令a=b=c,则△ABC为等边三角形,且cosA=cosC=,代入所求式子,得==.一般问题特殊化,使问题处理变得直接、简单,特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果.方法二命题的等价转化将题目已知条件或结论进行转化,使深奥的问题浅显化、繁杂的问题简单化,让题目得以解决.一般包括数与形的转化、正与反的转化、常量与变量的转化、图形形体及位置的转化.例2(1)由命题“存在x0∈R,使-m≤0”是假命题,得m的取值范围是(-∞,a),则实数a的值是()A.(-∞,1)B.(-∞,2)C.1D.2思路分析命题:存在x0∈R,使-m≤0是假命题→任意x∈R,e|x-1|-m>0是真命题→m可知它的否定形式“任意x∈R,e|x-1|-m>0”是真命题,可得m的取值范围是(-∞,1),而(-∞,a)与(-∞,1)为同一区间,故a=1.(2)若对于任意t∈[1,2],函数g(x)=x3+x2-2x在区间(t,3)上总不为单调函数,则实数m的取值范围是________.思路分析gx在t,3上总不为单调函数→先看gx在t,3上单调的条件→补集法求m的取值范围答案解析g′(x)=3x2+(m+4)x-2,若g(x)在区间(t,3)上为单调函数,则①g′(x)≥0在(t,3)上恒成立,或②g′(x)≤0在(t,3)上恒成立.由①得3x2+(m+4)x-2≥0,即m+4≥-3x在x∈(t,3)上恒成立,所以m+4≥-3t恒成立,则m+4≥-1,即m≥-5;由②得m+4≤-3x在x∈(t,3)上恒成立,则m+4≤-9,即m≤-.所以使函数g(x)在区间(t,3)上总不为单调函数的m的取值范围为-“补集法”;含两个变量的问题可以变换主元.方法三函数、方程、不等式之间的转化函数与方程、不等式紧密联系,通过研究函数y=f(x)的图象性质可以确定方程f(x)=0,不等式f(x)>0和f(x)<0的解集.例3(2020·全国Ⅱ)若2x-2y<3-x-3-y,则()A.ln(y-x+1)>0B.ln(y-x+1)<0C.ln|x-y|>0D.ln|x-y|<0答案A解析∵2x-2y<3-x-3-y,∴2x-3-x<2y-3-y.∵y=2x-3-x=2x -x在R上单调递增,∴x1,∴ln(y-x+1)>ln1=0.例4已知函数f(x)=elnx,g(x)=f(x)-(x+1).(e=2.718……)(1)求函数g(x)的极大值;(2)求证:1+++…+>ln(n+1)(n∈N).思路分析gx的极值→lnx明结论(1)解∵g(x)=f(x)-(x+1)=lnx-(x+1),∴g′(x)=-1(x>0).令g′(x)>0,解得0<1;令g′(x)<0,解得x>1.∴函数g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴g(x)极大值=g(1)=-2.(2)证明由(1)知x=1是函数g(x)的极大值点,也是最大值点,∴g(x)≤g(1)=-2,即lnx-(x+1)≤-2?lnx≤x-1(当且仅当x=1时等号成立),令t=x-1,得t≥ln(t+1)(t>-1).取t=(n∈N)时,则>ln=ln,∴1>ln2,>ln,>ln,…,>ln,∴叠加得1+++…+>ln=ln(n+1).即1+++…+>ln(n+1)(n∈N).借助函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值值域问题,从而求出参变量的范围.高考高中资料无水印无广告不加密word版群559164877;高考数学高中数学探究群562298495。
浅谈转换与化归思想
转化思想是数学中的一种基本却很重要的思想。
深究起来,转化两字中包含着截然不同的两种思想,即转换和化归。
这两者其实表达了不同的思想方法,可以说是思维方式与操作方法的区别。
一、 转换思想
(1)转换思想的内涵
转换思想是指解决问题时策略、方法、指导思想的跳跃性变化,能跳出现有领域的局限,联系相关领域,并用相关领域的思维方式来解决现有领域内的问题。
要做到这一点,对思维能力的要求相对更高,必须对各个领域分别都有透彻的了解,更必须对各领域之间的联系有较多的研究,在关键时刻才能随心所欲地运用。
(2)转换思想在同一学科中的应用
转换思想可以是在同一学科的不同知识模块之间的变换,在解决问题时改变解题方向。
象数学学科中,数与式的互相转换、数与形的互相转换、文字语言与符号语言的互相转换。
比如,函数、方程、不等式是代数中的三大重要问题,而它们之间完全可以用三个知识模块的不同方法解决其他模块的各类问题。
不等式恒成立问题可以转换到用函数图象解决,或者是二次方程根的分布,也可以转换到二次函数与x 轴的交点问题。
再比如,数列问题用函数观点来解释,那更是我们数学课堂中一再强调的问题了。
看这样一个问题: 已知:11122=-+-a b b a ,求证:122=+b a 。
[分析] 这是一个纯粹的代数证明问题,条件的变形是比较艰难的,所以希望把条件变形从而得到结论这条思路也有点
令人望而生畏。
再仔细观察本题的条件、结论中所出现的形式,稍加联系,我们完全可以想到:21a -、21b -、12
2=+b a 这些特殊形式在另一知识模块——三角函数中经常出现,它们呈现出完全类似的规律性。
[解答]由题意1≤a 、1≤b ,则可设αsin =a ,αcos =b ,πα<≤0 11122=-+-a b b a 即为1sin 1cos cos 1sin 22=-+-αααα
化简得1cos cos sin sin =+αααα
所以0sin ≥=αa ,0cos ≥=αb
则 1cos sin 2222=+=+ααb a
[小结] 本题的解决了是发现了不同知识模块中的类似规律,加以利用得到新的思路,本题的题设和结论中都没有出现
三角函数的形式,最终却必须引进三角函数加以解决,思维已经具有跳跃性,对一般学生来说解决起来还是比较棘手的。
转换思想对思维要求确实很高,但这一点还是能够做到的。
因为各学科都有对知识模块的介绍,同时也有对各知识模块之间横向纵向的对比联系的研究。
典型的例子就是数与形之间的思维转换,因为学生已经在初中老师的指导下
对代数与几何分别有了研究,高中时不但分别进行了深化,更把两门学科合而为一,更多地注重两者之间的对比联系的研究。
高中的《平面解析几何》的实质就是用“解析法”即“代数的方法”解决几何问题,已经体现了几何到代数的转换,比如介绍某些代数形式的几何表示(绝对值、不等式、方程的几何意义),引入几何图形中圆锥曲线(圆、椭圆、抛物线)的方程,都是为培养思维在数与形之间的跳跃作了准备。
再比如物理学科中有“电场”与“磁场”的分别研究,也有对“电磁场”的综合研究。
所以学生在同学科内部的思维转换应该能够做到游刃有余。
(3)转换思想在不同学科中的应用
转换思想也可以是在同一学习领域的不同学科之间进行跳跃性变换,解决问题时采用不同的思维方式。
比如解决数学问题时,可以在代数与几何之间的互相转换,另外,物理中的行程问题、化学中的浓度问题都可以转换到数学模型来解决。
化学中典型的浓度问题:
a 克糖溶于水中形成
b 克糖水,其浓度为
b
a ;若加入m 克溶质糖,虽然溶质溶液的质量同时增加,但可以得到加糖后的浓度m
b m a ++必然要大于原来溶液的浓度b a 。
这个结论完全可以由数学学科中《不等式》部分的知识加以证明: 根据实际情况:0>>a b ,0>m ,
)
()()(m b b m a b m b b am ab bm ab b a m b m a +-=+--+=-++, 因为 0>>a b ,0>m , 所以0)()()(>+-=+--+=-++m b b m a b m b b am ab bm ab b a m b m a 即b
a m
b m a >++ 同样,物理中的匀加速运动:
物体初始速度为0v 米/秒,加速度为a 米/秒2,则经过t 秒后的即时速度为202
1at t v v t +=。
这公式稍加变形就是数学中的函数t v t a v t 02
)21(+=,当0=a 时,它是一次函数,图象为一条直线,当0≠a 时,它是二次函数,图象为一条抛物线,完全可以脱离物理,用研究函数的方法来研究物体的即时速度t v 什么时刻最大,是怎样变化的。
可以说,转换思想最重要的作用应该就是在不同学科之间的跳跃性思维,这也是目前高中学生比较薄弱的环节,比如数学、物理、化学,虽然学生们分别学习了三门学科,但对它们的联系却缺少研究,所以学科渗透类问题都是比较令学生头疼的,也是应用题总显得那么高深莫测的原因,更使理论与实际应用脱离,学不能致用。
由此,高中新课程改革中把课程整合放在了很重要的地位。
二、 化归思想 (1)化归思想的内涵
化归思想相对转换来说,是在解决问题时改变问题的形式,用一些技巧性的处理方法和手段把问题变得更显化明了、更熟悉常见、更和谐统一,但并没有改变问题所属的领域。
化归思想包括三要素:化归的对象、化归的原则、化归的方法。
所以掌握化归思想必须:抓住化归的对象也就是当前需要解决的问题;化归时应遵循简单化、熟悉化、和谐化的基本原则;中学常用的化归方法有①恒等变换法:包括分解法、配方法、代定系数法等;②映射反演法:包括换元法、对数法、坐标法、仿射法等。
(2)实施化归的关键
为了有效地实施化归,我们首先必须实现问题的“规范化”,即掌握一些“常规性问题”。
这里“常规性问题”就是指我们课堂上所说的具有确定的解题方法和解题程序的问题,或者可以说是模式型问题。
然后再把其他问题“规范化”,一般我们采用的化归方向是:化未知为已知、化难为易、化繁为简、化一般为特殊、化抽象为具体、正难则化反、化新知识到旧知识、化不熟悉到熟悉等等。
1.在《三角函数》中,对于角α有六个三角函数αsin 、αcos 、αtan 、αcot 、αsec 、αcsc 。
但我们研究其中众多的公式时并不需要同时研究六个,只需要研究αsin 、αcos 、αtan 三个就可以,其余三个可以利用它们之间的倒数关系进行化归;在解题时的“切割化弦”思想也是把后四个函数都化为αsin 、αcos 来解决。
2.在《立体几何》中,点、线、面之间的复杂关系是让人很头疼的 ,我们也采用了化归的思想使得需要考虑的问题更少更简单。
下面是立体几何中常用几种的化归方法。
方法一:位置关系互化。
正方体 ABCD-A 1B 1C 1D 1是我们研究的典型空间图形之一,它内部各种面对角线、体对角线与各表面、对角面形成的线线距离、线面距离、面面距离我们都作了深入研究,所以涉及到正方体中的各种距离问题我们就尽量向上述距离问题化归。
方法二:化高维到低维。
例:如右图,直三棱柱ABC-A 1B 1C 1,∠BCA=900
,点
D 1、F 1分别是棱A 1B 1、A 1C 1的中点,若BC=CA=CC 1,
求异面直线BD 1与AF 1所成的角。
[分析]本题中的直线BD 1与AF 1是三维空间内的异面直线,常用的化归方法就是把直线经过平移变为二维空间内两条相交直线,即在平面内求两直线所成角。
作法:如右图,沿平面BCB 1C 1补出一个与ABC-A 1B 1C 1完全全等的图形,最终构成一个正方体
ABCE-A 1B 1C 1E 1,取B 1E 1的中点G 1,连接BG 1,则AF 1∥BG 1。
所以,异面直线BD 1与AF 1所成的角即为平面BD 1G 1内两条相交直线BD 1与BG 1所成角∠D 1BG 1,
然后在△D 1BG 1中求此角。
这是把三维空间内的问题降维化归到二维平面内的问题来解决,是立体几何中常用的化归思想。
当然,我们既然总是说“转化”,那就意味着转换与化归在本质区别的同时也是紧密联系的,既有宏观上学科之间的转化,也有微观上学科内部各模块之间的转化。
化归在各个学科内部,在各模块内部都有体现和运用,在模块内部应用更是有多向性、层次性、重复性,是操作细节方面的问题,但却为思维跳跃性的转换提供了基础和经验,因此不能割裂看待。