《过程控制》讲义-2new
- 格式:ppt
- 大小:1.15 MB
- 文档页数:63
对象特性测试实验对象特性是指对象在输入的作用下,其输出的变量(即被控变量)随时间变化的特性。
对象特性测试实验的目的:通过实验掌握单、双容对象特性曲线的测量方法,根据曲线和先验知识确定对象模型结构和模型参数。
测量时应注意的问题:液位对象是自衡对象,单个水槽是一阶对象,上水槽与下水槽可以组成二阶对象,下水箱形状为长方体,其横截面积为:。
对象参数的求取:一、传递函数的求取1、一阶对象在0.632倍的稳态值处求取时间常数T0。
2、一阶加纯滞后的对象对于有纯滞后的一阶对象,如图2所示,当阶跃响应曲线在t=0时,斜率为0;随着t 的增加,其斜率逐渐增大;当到达拐点后斜率又慢慢减小,可见该曲线的形状为S 形,可用一阶惯性加时延环节来近似。
确定K 0、T 0和τ的方法如下:00/)]0()([1)(x y y K s T K s W o -∞=+=/)]0()([01)(0x y y K e s T K S W so -∞=+=-τ在阶跃响应的拐点(即斜率的最大处)作一切线并与时间坐标轴交与C 点,则OC 段的值即为纯滞后时间τ,而与CB 段的值即为时间常数T0。
3、二阶或高阶对象二阶过程的阶跃响应曲线,其传递函数可表示为式中的K 0、T 1、T 2需从阶跃响应曲线上求出。
先在阶跃响应曲线上取(1) y (t )稳态值的渐近线y (∞);(2) y (t1)=0.4 y (∞)时曲线上的点y1和相应的时间t1; (3) y (t2)=0.8 y (∞)时曲线上的点y2和相应的时间t2; 然后,利用如下近似公式计算T 1、T 2。
(4)(5) 对于二阶过程,0.32<t1/t2<0.46。
当t1/t2=0.32时,为一阶环节(此时,时间常数T0=(t1+t2)2.12);当t1/t2=0.46时,过程的传递函数W (s )=K 0/(T 0S+1)(T 0S+1)(此时,T1=T2=T0=(t1+t2)/2×2.18);当t1/t2>0.46时,应用高于二阶环节来近似。
过程控制教学大纲一、课程简介过程控制是自动化领域中的重要组成部分,广泛应用于化工、石油、电力、冶金等工业生产过程中。
本课程旨在让学生掌握过程控制的基本原理和方法,学会分析和设计过程控制系统,提高解决实际问题的能力。
二、课程目标1、掌握过程控制的基本概念、原理和常用控制算法;2、了解过程控制系统的组成、特点和分类;3、掌握过程控制系统的设计和调试方法;4、学会对过程控制系统进行性能评估和优化;5、培养解决实际问题的能力,提高综合素质。
三、课程内容1、过程控制概述:过程控制的基本概念、发展历程和应用领域;2、过程控制系统组成:工艺流程、自动化仪表、控制系统和执行机构等;3、过程控制系统设计:控制方案设计、控制系统选型、控制系统集成和调试等;4、过程控制算法:PID控制算法、模糊控制算法、神经网络控制算法等;5、过程控制系统性能评估与优化:性能指标评估、系统优化和改进措施等;6、典型过程控制系统案例分析:化工、石油、电力、冶金等行业的典型过程控制系统案例分析。
四、课程安排本课程共分为理论教学和实践教学两个部分。
理论教学部分包括以上六个方面的内容,实践教学部分包括实验、课程设计和综合实践等环节。
具体安排如下:1、第一讲:过程控制概述(2学时);2、第二讲:过程控制系统组成(4学时);3、第三讲:过程控制系统设计(4学时);4、第四讲:过程控制算法(4学时);5、第五讲:过程控制系统性能评估与优化(2学时);6、第六讲:典型过程控制系统案例分析(2学时);7、第七讲:实验环节(4学时);8、第八讲:课程设计和综合实践环节(8学时)。
五、教学方法本课程采用多媒体教学、案例分析和实验相结合的教学方法。
通过多媒体教学,使学生对过程控制的基本概念和原理有更直观的认识;通过案例分析,使学生了解实际生产过程中遇到的问题及解决方法;通过实验环节,使学生能够亲手操作和体验过程控制系统的运行与调试。
六、考核方式本课程采用平时成绩和期末考试相结合的考核方式。
《过程控制技术基础知识概述》一、引言过程控制技术在现代工业生产中起着至关重要的作用,它能够确保生产过程的稳定、高效运行,提高产品质量,降低生产成本。
随着科技的不断进步,过程控制技术也在不断发展和创新,从传统的模拟控制到现代的数字化、智能化控制,其应用范围越来越广泛。
本文将对过程控制技术的基础知识进行全面的阐述与分析,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。
二、基本概念1. 过程控制的定义过程控制是指对生产过程中的物理量(如温度、压力、流量、液位等)进行自动控制,使其在一定的范围内保持稳定,以满足生产工艺的要求。
2. 控制系统的组成过程控制系统通常由被控对象、传感器、变送器、控制器和执行器等部分组成。
被控对象是指需要进行控制的生产过程或设备;传感器用于检测被控对象的物理量,并将其转换为电信号;变送器将传感器输出的电信号转换为标准信号,以便传输和处理;控制器根据给定值和测量值的偏差,按照一定的控制规律计算出控制信号;执行器根据控制信号对被控对象进行控制,如调节阀门开度、改变电机转速等。
3. 控制方式过程控制的方式主要有开环控制和闭环控制两种。
开环控制是指控制信号只根据给定值进行计算,不考虑被控对象的实际输出;闭环控制则是将被控对象的实际输出反馈到输入端,与给定值进行比较,根据偏差进行控制。
闭环控制具有较高的控制精度和稳定性,但系统结构相对复杂。
三、核心理论1. 反馈控制理论反馈控制是过程控制的核心理论之一,它基于被控对象的输出反馈,通过调整控制信号来减小给定值与实际输出之间的偏差。
反馈控制可以分为比例控制、积分控制和微分控制三种基本控制方式,分别对应着对偏差的比例、积分和微分响应。
通过合理组合这三种控制方式,可以实现不同的控制性能要求。
2. 现代控制理论现代控制理论是在经典控制理论的基础上发展起来的,它采用状态空间法对控制系统进行描述和分析。
现代控制理论可以处理多输入多输出系统、非线性系统和时变系统等复杂控制问题,具有更高的控制精度和鲁棒性。
《过程控制》课程笔记第一章概论一、过程控制系统组成与分类1. 过程控制系统的基本组成过程控制系统主要由被控对象、控制器、执行器、检测仪表四个部分组成。
(1)被控对象:指生产过程中的各种设备、机器、容器等,它们是生产过程中需要控制的主要对象。
被控对象具有各种不同的特性,如线性、非线性、时变性等。
(2)控制器:控制器是过程控制系统的核心部分,它根据给定的控制策略,对检测仪表的信号进行处理,生成控制信号,驱动执行器动作,从而实现对被控对象的控制。
控制器的设计和选择直接影响控制效果。
(3)执行器:执行器是控制器与被控对象之间的桥梁,它接收控制器的信号,调节阀门的开度或者调节电机转速,从而实现对被控对象的控制。
执行器的响应速度和精度对控制系统的性能有很大影响。
(4)检测仪表:检测仪表用于实时测量被控对象的各项参数,如温度、压力、流量等,并将这些参数转换为电信号,传输给控制器。
检测仪表的准确性和灵敏度对控制系统的性能同样重要。
2. 过程控制系统的分类根据控制系统的结构特点,过程控制系统可以分为两大类:开环控制系统和闭环控制系统。
(1)开环控制系统:开环控制系统没有反馈环节,控制器根据给定的控制策略,直接生成控制信号,驱动执行器动作。
开环控制系统的优点是结构简单,成本低,但缺点是控制精度较低,容易受到外部干扰。
(2)闭环控制系统:闭环控制系统具有反馈环节,控制器根据检测仪表的信号,实时调整控制策略,生成控制信号,驱动执行器动作。
闭环控制系统的优点是控制精度高,抗干扰能力强,但缺点是结构复杂,成本较高。
二、过程控制系统性能指标1. 稳态误差:稳态误差是指系统在稳态时,输出值与设定值之间的差值。
稳态误差越小,表示系统的控制精度越高。
稳态误差可以通过调整控制器的参数来减小。
2. 动态性能:动态性能是指系统在过渡过程中,输出值随时间的变化规律。
动态性能指标包括上升时间、调整时间、超调量等。
动态性能的好坏直接影响到系统的响应速度和稳定性。