四川省广元市实验中学2013-2014学年高一下学期期中考试数学(理)(A卷)试题 Word版含答案
- 格式:doc
- 大小:487.00 KB
- 文档页数:8
四川省广元市2013-2014学年高二下学期期末考试物理试卷一、第I卷共7小题,每小题6分.每题给出的四个选项中,有的只有一个选项、有的有多个选项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分.3.(6分)(2010•新安县模拟)如图所示是一火警报警器的部分电路示意图.其中R3为用半导体热敏材料制成的传感器.值班室的显示器为电路中的电流表,a、b之间接报警器.当传感器R3所在处出现火情时,显示器的电流I、报警器两端的电压U的变化情况是()4.(6分)如图所示的电路中,三个灯泡L1、L2、L3的电阻关系为R1<R2<R3,电感L 的电阻可忽略,D为理想二极管.电键K从闭合状态突然断开时,下列判断正确的是()5.(6分)在一个LC振荡电路中,线圈的自感系数为L,电容器电容为C,从电容器上电压达到最大值Um开始计时,则以下说法中不正确的是()ππ时间内,电路中的平均电流是T=2π,计算平均电流.T=2πt==,,所以平均电流为,故6.(6分)如图所示,为一半圆形的玻璃砖,C为AB的中点a、b两束不同频率的单色可见细光束垂直AB边从空气射入玻璃砖.且两束光在AB面上入射点到C点的距离相等,两束光折射后相交于图中的P点,以下判断正确的是()7.(6分)如图所示,一个匝数为N=100匝的线圈以固定转速50转/秒在匀强磁场中旋转,其产生的交流电通过一匝数比为n1:n2=10:1的变压器给阻值R=20Ω的电阻供电,已知交流电压表的示数为20V,从图示位置开始计时,则下列说法正确的是()200==Wb=二、第II卷共4题8.(17分)(1)某同学用圆柱形玻璃砖做测定玻璃折射率的实验,先在白纸上放好圆柱形玻璃砖,在玻璃砖的一侧插上两枚大头针P1和P2,然后在圆柱形玻璃砖另一侧观察,调整视线使P1的像被P2的像挡住,接着在眼睛所在一侧相继又插上两枚大头针P3、P4,使P3挡住P1、P2的像,使P4挡住P3和P1、P2的像,在纸上标出的大头针位置和圆柱形玻璃砖的边界如图所示.①在图1上画出所需的光路;②为了测量出玻璃砖折射率,需要测量的物理量有∠i和∠r(要求同时在图上标出这些物理量);③写出计算折射率的公式n=.(2)某同学在做“利用单摆测重力加速度”的实验中,先测得摆线长为98.06cm;用50分度的游标卡尺(测量值可准确到0.02mm)测得摆球的直径读数如图2所示;然后用秒表记录了单摆振动n=50次所用的时间为t=99.9s.①单摆摆长L=99.060cm,用以上直接测量的物理量表示重力加速度的计算式为g=(用符号表示,不代入具体数据).②如果他测得的g值偏小,可能的原因是B(填选项前的字母标号)A.测摆线长时摆线拉得过紧B.摆线上端未牢固地系于悬点,振动中出现松动,使摆线长度增加了C.开始计时,秒表过迟按下D.实验中误将49次全振动数为50次③为了提高测量精度,某同学多次改变摆长L的值并测得相应的周期T值,并把测得的七组数据标示在以L为横坐标、T2为纵坐标的坐标纸上,即图中用“”表示的点.作出T2与L的关系图线如图3所示.若图线的斜率为k,则根据图线求出的重力加速度的表达式为g=,代入数据计算结果g=10.3m/s2.(结果保留三位有效数字)n=n=.T==;;,根据实验原理确定所要测9.(15分)如图所示,变压器原线圈n1=800匝,副线圈n2=200匝,灯泡A标有“10V 2W”,电动机D的线圈电阻为1Ω.将交变电流u=100sin(100πt)V加到理想变压器原线圈两端,灯泡恰能正常发光,.求:(1)副线圈端电压(有效值);(2)电动机D的电功率.U=根据理想变压器的变压比公式U2=10.(17分)在某介质中形成一列简谐波,波向右传播,在0.1s时刻刚好传到B点,波形如图中实线所示,且再经过0.6s,P点也开始起振,求:①该列波的周期T;②从t=0时刻起到P点第一次达到波峰时止,O点对平衡位置的位移y0及其所经过的路程s0各为多少?③若该列波的传播速度大小为20m/s,且波形中由实线变成虚线需要经历0.525s时间,则该列波的传播方向如何?解得:点第一次到达波峰为止,经历的时间t=11.(19分)如图所示,让一正方形单匝铜线框随水平绝缘传送带通过一固定匀强磁场区域(磁场方向垂直于传送带平面向下).已知磁场边界MN、PQ与传送带运动方向垂直,MN 与PQ间的距离为d,磁场的磁感应强度为B,线框质量为m,电阻为R,边长为L(L<d);传送带以恒定速度v0向右运动,线框与传送带间的动摩擦因数为μ,重力加速度为g,线框在进入磁场前与传送带的速度相同,且右侧边平行于MN进入磁场,当线框的右侧边经过边界PQ时又恰好与传送带的速度相同.设传送带足够长,且线框在传送带上始终保持右侧边平行于磁场边界.求:(1)线框的右侧边刚进入磁场时所受安培力的大小;(2)线框在进入磁场的过程中,加速度的最大值以及速度的最小值;(3)从线框右侧边刚进入磁场到整个线框穿出磁场后又相对传送带静止的过程中,传送带对线框做的功?感应电流:右侧边所受安培力:,)线框的右侧边刚进入磁场时所受安培力的大小为)线框在进入磁场的过程中,加速度的最大值为第11 页共11 页。
四川省广元市实验中学2013-2014学年高一下学期半期考试政治试题(A卷)(考试时间:40分钟满分一、选择题(每小题4分,共60分。
)1、2013年7月1日起,安徽、江苏、四川和辽宁四省上调最低工资标准。
截至目前,全国已有20个省区先后上调了最低工资标准。
这样做的根本原因是()A.我国是人民民主专政的社会主义国家B.我国只有民主,没有专政C.我国是公民当家作主的国家D.人民民主具有广泛性2、十二届全国人大在代表结构上有一些新的变化。
比如:与上一届相比,来自一线的工人、农民代表增加了155人,提高了差不多5个百分点;妇女代表增加了62人,提高了2个百分点;但党政领导干部的代表人数有所减少,大概减少7个百分点。
这表明我国()A.人民民主具有真实性 B.社会主义民主具有全民性C.民主主体具有广泛性D.我国只存在民主,没有专政3、现年64岁的四川省政协主席李崇禧,曾被举报不正常“拉票”、在整顿四川矿产资源时牟取非法利益。
在2013年12月28日被中纪委带走调查。
李崇禧是2012年中共十八大之后第三个落马的正省部级干部。
这充分体现了我国公民在法律面前一律平等原则,这种平等是指我国公民平等地()①享有权利②履行义务③适用法律④制定法律A.①②③B.②③④C.①②④D.①②③④4、下列能体现我国公民的基本民主权利的是( )A.2013年3月11日,全国政协十二届一次会议选举俞正声为全国政协主席B.2014年4月,西藏将举行第七届村民委员会换届选举C.2011年5月24日,广元市六届人大一次会议选举马华为市人民政府市长D.2008年1月21日,四川籍农民工胡小燕被广东省人大选举为全国人大代表,成为全国人大首位农民工代表。
5、近年来,在县(区)、乡两级人大代表同步进行换届选举中,不少县(区)组织人大代表候选人与选民见面,让每位候选人“登台亮相”,发表“竞选演说”。
可见,县(区)人大代表的选举方式( )A.是直接选举和差额选举,有助于选民了解候选人,提高选举积极性B.是直接选举和等额选举,有助于选民规范选举,提高选举有效性C.是间接选举和差额选举,有利于充分考虑候选人的综合素质D.是间接选举和等额选举,有利于充分考虑当选者结构的合理性6、近年来,每当召开“两会”时,国内网站纷纷开设“两会直通车”、“网上大会堂”等论坛,网民热论国是。
广元市实验中学高2012级2014年春半期考试历史学科试题考试时间:50分钟总分:100分命题人:唐以荣一、选择题(12题,每题4分,共48分)1.下列最能完整反映梭伦改革特点的是A. 坚决打击了奴隶主贵族的利益B. 满足了广大平民阶层的利益C. 试图在中庸、公平、平等的基础上建立和谐社会D. 没有满足各个阶层的利益2.北魏孝文帝改革措施中大大加快了各民族人民融合进程的是A.推行均田制 B.实行三长制 C.整顿吏治 D.实行汉制和移风易俗3.世人对秦国人有着“薄恩礼,好生分”的印象,这与商鞅变法哪一措施有关A.奖励军功 B.奖励耕种 C.焚烧诗书 D.什伍连坐和告奸制度4.导致王安石变法失败的最主要原因是A. 触动了大地主、大官僚的利益而遭到反对B. 用人不当危害百姓,人民反对C. 政令不畅,一些地方官员不执行新法D. 保守派司马光当政,坚决反对新政5.商鞅变法推行“重农抑商”政策造成的后果和影响不包括:A.巩固了封建小农经济 B.打击了奴隶主贵族势力C.增强了统一战争物质力量 D.根除了土地兼并现象6.16世纪西欧宗教改革的意义有①沉重打击了欧洲封建统治的支柱天主教会②为欧洲资本主义的发展扫清了道路③为欧洲走向现代社会创造了条件④促进了各国文化教育的发展A.①②③④ B.①②④ C.②③④ D.①②③7.俄国亚历山大二世在废除农奴制改革前说:“与其等农民自下而上起来解放自己,不如自上而下解放农民。
”这表明其改革的目的是A.给农民以自由的权利B.发展资本主义经济C.维护封建生产方式D.维护君主专制制度8.俄国1861年改革有利于资本主义的发展,但列宁说它也是“对农民进行的残酷掠夺”,这主要是指:A、农民须用钱购买商品B、农民被迫出卖劳动力C、农民必须高价赎买份地D、农民成为商品9.日本的君主立宪制同英国的君主立宪制在形式上是相同的,但在实质上有极大差异。
下列有关表述,不正确的是A.前者君主权力至高无上,后者君主权力受宪法制约B.前者天皇凌驾于议会之上,后者议会权力超过国王C.前者是封建政治体制,后者是资产阶级民主政治D.前者内阁大臣对天皇负责,后者内阁大臣对议会负责10.下列说法中不正确的是A.穆罕默德·阿里改革前,埃及存在着土耳其、英国和马木路克三股外来势力B.日本倒幕派联合外来势力推翻了幕府统治C.戊戌变法是在中华民族面临亡国灭种的形势下展开的D.西方列强集中力量侵略中国,客观上为日本的明治维新提供了一个相对有利的国际环境11.“譬如:废八股,改策论,这使众多的士子在毫无准备的情况下失去了奋斗前程,他们自然走向变法的对立面……再比如裁并衙门,由于没有任何善后措施,使一部分官员和他们的家属一夜之间便失去生计所托,不可避免地会造成混乱。
广元市2024年初中学业水平考试暨高中阶段学校招生考试数学说明:1.全卷满分150分,考试时间120分钟.2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共三个大题26个小题.3.考生必须在答题卡上答题,写在试卷上的答案无效.选择题必须使用2B 铅笔填涂答案,非选择题必须使用0.5毫米黑色墨迹签字笔答题.4.考试结束,将答题卡和试卷一并交回.第Ⅰ卷选择题(共30分)一、选择题(每小题给出的四个选项中,只有一个符合题意.每小题3分,共30分)1.将1-在数轴上对应的点向右平移2个单位,则此时该点对应的数是()A .1- B.1 C.3- D.3【答案】B【解析】【分析】本题考查了数轴上的动点问题,正确理解有理数所表示的点左右移动后得到的点所表示的数是解题的关键.将1-在数轴上对应的点向右平移2个单位,在数轴上找到这个点,即得这个点所表示的数.【详解】根据题意:数轴上1-所对应的点向右平移2个单位,则此时该点对应的数是1.故选B .2.下列计算正确的是()A.336a a a += B.632a a a ÷= C.()222ab a b +=+ D.()2224ab a b =【答案】D【解析】【分析】本题考查了合并同类项,同底数幂的除法,完全平方公式,积的乘方运算,正确的计算是解题的关键.根据合并同类项,同底数幂的除法,完全平方公式,积的乘方运算法则逐项分析判断即可求解.【详解】解:A .3332a a a +=,故该选项不正确,不符合题意;B .633a a a ÷=,故该选项不正确,不符合题意;C .()222=2a b a ab b +++,故该选项不正确,不符合题意;D .()2224ab a b =,故该选项正确,符合题意.故选:D .3.一个几何体如图水平放置,它的俯视图是()A. B. C. D.【答案】C【解析】【分析】本题主要考查了组合体的三视图,解题的关键是根据从上面看到的图形是几何体的俯视图即可解答.【详解】解:从上面看,如图所示:故选:C .4.在“五·四”文艺晚会节目评选中,某班选送的节目得分如下:91,96,95,92,94,95,95,分析这组数据,下列说法错误的是()A.中位数是95B.方差是3C.众数是95D.平均数是94【答案】B【解析】【分析】此题考查了平均数,中位数,众数,方差的定义及计算,根据各定义及计算公式分别判断,正确掌握各定义及计算方法是解题的关键【详解】解:将数据从小到大排列为91,92,94,95,95,95,96,共7个数据,居中的一个数据是95,∴中位数是95,故A 选项正确;这组数据中出现次数最多的数据是95,故众数是95,故C 选项正确;这组数据的平均数是()191929495959596947++++++=,故D 选项正确;这组数据的方差为()()()()()2222212091949294949495943969477⎡⎤-+-+-+-⨯+-=⎣⎦,故B 选项错误;故选:B 5.如图,已知四边形ABCD 是O 的内接四边形,E 为AD 延长线上一点,128AOC ∠=︒,则CDE ∠等于()A .64︒ B.60︒ C.54︒ D.52︒【答案】A【解析】【分析】本题考查了圆周角定理,圆内接四边形的性质,熟练掌握以上知识点是解题的关键.根据同弧所对的圆心角等于圆周角的2倍可求得ABC ∠的度数,再根据圆内接四边形对角互补,可推出CDE ABC ∠=∠,即可得到答案.【详解】解:ABC ∠ 是圆周角,与圆心角AOC ∠对相同的弧,且128AOC ∠=︒,111286422ABC AOC ∴∠=∠=⨯︒=︒,又 四边形ABCD 是O 的内接四边形,180ABC ADC ∴∠+∠=︒,又180CDE ADC ∠+∠=︒ ,64CDE ABC ∴∠=∠=︒,故选:A .6.如果单项式23m x y -与单项式422n x y -的和仍是一个单项式,则在平面直角坐标系中点(),m n 在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】本题主要考查同类项和确定点的坐标,根据同类项的性质求出,m n 的值,再确定点(),m n 的位置即可【详解】解:∵单项式23m x y -与单项式422n x y -的和仍是一个单项式,∴单项式23m x y -与单项式422n x y -是同类项,∴24,23m n =-=,解得,2,1m n ==-,∴点(),m n 在第四象限,故选:D7.如图,将ABC 绕点A 顺时针旋转90︒得到ADE V ,点B ,C 的对应点分别为点D ,E ,连接CE ,点D 恰好落在线段CE 上,若3CD =,1BC =,则AD 的长为()A. B. C.2 D.【答案】A【解析】【分析】此题考查了旋转的性质,等腰直角三角形的判定和性质,勾股定理,由旋转得AC AE =,90CAE ∠=︒,1DE BC ==,推出ACE △是等腰直角三角形,4CE =,过点A 作AH CE ⊥于点H ,得到1HD =,利用勾股定理求出AD 的长.【详解】解:由旋转得ABC ADE △△≌,90CAE ∠=︒,∴AC AE =,90CAE ∠=︒,1DE BC ==,∴ACE △是等腰直角三角形,314CE CD DE =+=+=,过点A 作AH CE ⊥于点H ,∴122AH CE CH HE ====,∴211HD HE DE =-=-=,∴AD ===,故选:A .8.我市把提升城市园林绿化水平作为推进城市更新行动的有效抓手,从2023年开始通过拆违建绿、见缝插绿等方式在全域打造多个小而美的“口袋公园”.现需要购买A 、B 两种绿植,已知A 种绿植单价是B 种绿植单价的3倍,用6750元购买的A 种绿植比用3000元购买的B 种绿植少50株.设B 种绿植单价是x 元,则可列方程是()A.67503000503x x -= B.30006750503x x -=C.67503000503x x += D.30006750503x x +=【答案】C【解析】【分析】本题主要考查了分式方程的应用,设B 种绿植单价是x 元,则A 种绿植单价是3x 元,根据用6750元购买的A 种绿植比用3000元购买的B 种绿植少50株,列出方程即可.【详解】解:设B 种绿植单价是x 元,则A 种绿植单价是3x 元,根据题意得:67503000503x x+=,故选:C .9.如图①,在ABC 中,90ACB ∠=︒,点P 从点A 出发沿A →C →B 以1cm /s 的速度匀速运动至点B ,图②是点P 运动时,ABP 的面积()2cmy 随时间x (s )变化的函数图象,则该三角形的斜边AB 的长为()A.5B.7C.D.【答案】A【解析】【分析】本题考查根据函数图象获取信息,完全平方公式,勾股定理,由图象可知,ABP 面积最大值为6,此时当点P 运动到点C ,得到162AC BC ⋅=,由图象可知7AC BC +=,根据勾股定理,结合完全平方公式即可求解.【详解】解:由图象可知,ABP 面积最大值为6由题意可得,当点P 运动到点C 时,ABP 的面积最大,∴162AC BC ⋅=,即12AC BC ⋅=,由图象可知,当7x =时,0y =,此时点P 运动到点B ,∴7AC BC +=,∵90C ∠=︒,∴()222222721225AB AC BC AC BC AC BC =+=+-⋅=-⨯=,∴5AB =.故选:A10.如图,已知抛物线2y ax bx c =++过点()0,2C -与x 轴交点的横坐标分别为1x ,2x ,且110x -<<,223x <<,则下列结论:①<0a b c -+;②方程220ax bx c +++=有两个不相等的实数根;③0a b +>;④23a >;⑤2244b ac a ->.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】本题考查的是二次函数的图象与性质,熟练的利用数形结合的方法解题是关键;由当=1x -时,0y a b c =-+>,可判断①,由函数的最小值2y <-,可判断②,由抛物线的对称轴为直线2b x a=-,且13222b a <-<,可判断③,由1x =时,0y a b c =-+>,当3x =时,930y a b c =++>,可判断④,由根与系数的关系可判断⑤;【详解】解:① 抛物线开口向上,110x -<<,223x <<,∴当=1x -时,0y a b c =-+>,故①不符合题意;②∵抛物线2y ax bx c =++过点()0,2C -,∴函数的最小值2y <-,∴22ax bx c ++=-有两个不相等的实数根;∴方程220ax bx c +++=有两个不相等的实数根;故②符合题意;③∵110x -<<,223x <<,∴抛物线的对称轴为直线2bx a =-,且13222ba <-<,∴13ba <-<,而0a >,∴3a b a -<<-,∴0a b +<,故③不符合题意;④∵抛物线2y ax bx c =++过点()0,2C -,∴2c =-,∵1x =时,0y a b c =-+>,即3330a b c -+>,当3x =时,930y a b c =++>,∴1240a c +>,∴128a >,∴23a >,故④符合题意;⑤∵110x -<<,223x <<,∴212x x ->,由根与系数的关系可得:12bx x a +=-,12c x x a =,∴2224144b acb ca a a-⎛⎫=⨯-- ⎪⎝⎭()2121214x x x x =+-()21212144x x x x ⎡⎤=+-⎣⎦()212114144x x =->⨯=∴22414b ac a->,∴2244b ac a ->,故⑤符合题意;故选:C .第Ⅱ卷非选择题(共120分)二、填空题(把正确答案直接写在答题卡对应题目的横线上,每小题4分,共24分)11.分解因式:2(1)4a a +-=___________________________________.【答案】2(1)a -##2(1)a -+【解析】【分析】首先利用完全平方式展开2(1)a +,然后合并同类项,再利用完全平方公式进行分解即可.【详解】2222(1)412421(1)a a a a a a a a +-=++-=-+=-.故答案为:2(1)a -.【点睛】此题主要考查了公式法分解因式,关键是掌握完全平方公式:222)2(a ab b a b ±+=±.12.2023年10月诺贝尔物理学奖授予三位“追光”科学家,以表彰他们“为研究物质中的电子动力学而产生阿秒光脉冲的实验方法”.什么是阿秒?1阿秒是1810-秒,也就是十亿分之一秒的十亿分之一.目前世界上最短的单个阿秒光学脉冲是43阿秒.将43阿秒用科学记数法表示为______秒.【答案】174.310-⨯【解析】【分析】本题考查了用科学记数法表示较小的数,一般形式为10n a -⨯,解题的关键是熟知110a ≤<.根据题意可知,43阿秒184310-=⨯秒,再根据科学记数法的表示方法表示出来即可.【详解】解:根据题意1阿秒是1810-秒可知,43阿秒18174310 4.310--=⨯=⨯秒,故答案为:174.310-⨯.13.点F 是正五边形ABCDE 边DE 的中点,连接BF 并延长与CD 延长线交于点G ,则BGC ∠的度数为______.【答案】18︒##18度【解析】【分析】连接BD ,BE ,根据正多边形的性质可证()SAS ABE CBD ≌,得到BE BD =,进而得到BG 是DE 的垂直平分线,即90DFG ∠=︒,根据多边形的内角和公式可求出每个内角的度数,进而得到72FDG ∠=︒,再根据三角形的内角和定理即可解答.【详解】解:连接BD ,BE ,∵五边形ABCDE 是正五边形,∴AB BC CD AE ===,A C∠=∠∴()SAS ABE CBD ≌,∴BE BD =,∵点F 是DE 的中点,∴BG 是DE 的垂直平分线,∴90DFG ∠=︒,∵在正五边形ABCDE 中,()521801085CDE -⨯︒∠==︒,∴18072FDG CDE ∠=︒-∠=︒,∴180180907218G DFG FDG ∠=︒-∠-∠=︒-︒-︒=︒.故答案为:18︒【点睛】本题考查正多边形的性质,内角,全等三角形的判定及性质,垂直平分线的判定,三角形的内角和定理,正确作出辅助线,综合运用相关知识是解题的关键.14.若点(),Q x y 满足111x y xy+=,则称点Q 为“美好点”,写出一个“美好点”的坐标______.【答案】()2,1-(答案不唯一)【解析】【分析】此题考查了解分式方程,先将方程两边同时乘以xy 后去分母,令x 代入一个数值,得到y 的值,以此为点的坐标即可,正确解分式方程是解题的关键【详解】解:等式两边都乘以xy ,得1x y +=,令2x =,则1y =-,∴“美好点”的坐标为()21-,,故答案为()21-,(答案不唯一)15.已知y =与()0k y x x=>的图象交于点()2,A m ,点B 为y 轴上一点,将OAB 沿OA 翻折,使点B 恰好落在()0k y x x =>上点C 处,则B 点坐标为______.【答案】()0,4【解析】【分析】本题考查了反比例函数的几何综合,折叠性质,解直角三角形的性质,勾股定理,正确掌握相关性质内容是解题的关键.先得出(2,A 以及()430y x x=>,根据解直角三角形得130∠=︒,根据折叠性质,330∠=︒,然后根据勾股定理进行列式,即4OB OC ==.【详解】解:如图所示:过点A 作AH y ⊥轴,过点C 作CD x ⊥轴,∵3y x =与()0ky x x =>的图象交于点()2,A m ,∴把()2,A m 代入3y x =,得出3223m ==,∴(2,3A ,把(2,3A 代入()0ky x x =>,解得233k =⨯=,∴()430y x x =>,设43C m m ⎛⎫⎪ ⎪⎝⎭,,在23Rt tan 1323AHAHO OH ∠=== ,,∴130∠=︒,∵点B 为y 轴上一点,将OAB 沿OA 翻折,∴2130∠=∠=︒,OC OB =,∴3901230∠=︒-∠-∠=︒,则433tan 33CDm OD m =∠==,解得3m =,∴()23C ,,∴()222324OB OC ==+=,∴点B 的坐标为()04,,故答案为:()04,.16.如图,在ABC 中,5AB =,tan 2C ∠=,则5AC BC +的最大值为______.【答案】【解析】【分析】过点B 作BD AC ⊥,垂足为D ,如图所示,利用三角函数定义得到5AC BC AC DC +=+,延长DC 到E ,使EC CD x ==,连接BE ,如图所示,从而确定5AC BC AC DC AC CE AE +=+=+=,45E ∠=︒,再由辅助圆-定弦定角模型得到点E 在O 上运动,AE 是O 的弦,求5AC BC +的最大值就是求弦AE 的最大值,即AE 是直径时,取到最大值,由圆周角定理及勾股定理求解即可得到答案.【详解】解:过点B 作BD AC ⊥,垂足为D ,如图所示:tan 2C ∠=,∴在Rt BCD 中,设DC x =,则2BD x =,由勾股定理可得BC =,55DC BC ∴==,即55BC DC =,∴5AC BC AC DC +=+,延长DC 到E ,使EC CD x ==,连接BE ,如图所示:∴55AC BC AC DC AC CE AE +=+=+=, BD DE ⊥,2DE x BD ==,BDE ∴ 是等腰直角三角形,则45E ∠=︒,在ABE 中,5AB =,45E ∠=︒,由辅助圆-定弦定角模型,作ABE 的外接圆,如图所示:∴由圆周角定理可知,点E 在O 上运动,AE 是O 的弦,求55AC BC +的最大值就是求弦AE 的最大值,根据圆的性质可知,当弦AE 过圆心O ,即AE 是直径时,弦最大,如图所示:AE 是O 的直径,∴90ABE ∠=︒,45E ∠=︒ ,∴ABE 是等腰直角三角形,5AB = ,∴5BE AB ==,则由勾股定理可得AE ==55AC BC +的最大值为故答案为:【点睛】本题考查动点最值问题,涉及解三角形、勾股定理、等腰直角三角形的判定与性质、圆的性质、圆周角定理、动点最值问题-定弦定角模型等知识,熟练掌握动点最值问题-定弦定角模型的解法是解决问题的关键.三、解答题(要求写出必要的解答步骤或证明过程.共96分)17.计算:()2012024π2tan 602-⎛⎫-++︒- ⎪⎝⎭.【答案】1-【解析】【分析】此题考查了实数的混合运算,特殊的三角函数值,零次幂及负指数幂计算,正确掌握各计算法则是解题的关键.【详解】解:原式124341=+=-=-.18.先化简,再求值:22222a a b a b a b a ab b a b--÷---++,其中a ,b 满足20b a -=.【答案】b a b +,23【解析】【分析】本题考查了分式的化简求值,熟练掌握分式的化简求值是解题的关键.先将分式的分子分母因式分解,然后将除法转化为乘法计算,再计算分式的加减得到b a b +,最后将20b a -=化为2b a =,代入b a b +即得答案.【详解】原式2()()()a a b a b a b a b a b a b+--=÷---+2()()()a a b a b a b a b a b a b--=⨯--+-+a a b a b a b -=-++b a b=+20b a -= ,2b a ∴=,∴原式2223a a a ==+.19.如图,已知矩形ABCD .(1)尺规作图:作对角线AC 的垂直平分线,交CD 于点E ,交AB 于点F ;(不写作法,保留作图痕迹)(2)连接AE CF 、.求证:四边形AFCE 是菱形.【答案】(1)见解析;(2)见解析.【解析】【分析】本题主要考查矩形的性质,垂直平分线的画法及性质,三角形全等的判定与性质,菱形的判定.(1)根据垂直平分线的画法即可求解;(2)由直线EF 是线段AC 的垂直平分线.得到EA EC =,FA FC =,90COE AOF ∠=∠=︒,OA OC =,根据矩形的性质可证()ASA COE AOF ≌,可得EC FA =,即可得到EA EC FA FC ===,即可求证.【小问1详解】解:如图1所示,直线EF 为所求;【小问2详解】证明:如图2,设EF 与AC 的交点为O ,由(1)可知,直线EF 是线段AC 的垂直平分线.∴EA EC =,FA FC =,90COE AOF ∠=∠=︒,OA OC =,又∵四边形ABCD 是矩形,∴CD AB ∥,∴ECO FAO ∠=∠,∴()ASA COE AOF ≌,∴EC FA =,∴EA EC FA FC ===,∴四边形AFCE 是菱形.20.广元市开展“蜀道少年”选拔活动,旨在让更多的青少年关注蜀道、了解蜀道、热爱蜀道、宣传蜀道,进一步挖掘和传承古蜀道文化、普及蜀道知识.为此某校开展了“蜀道文化知识竞赛”活动,并从全校学生中抽取了若干学生的竞赛成绩进行整理、描述和分析(竞赛成绩用x 表示,总分为100分,共分成五个等级:A :90100x ≤≤;B :8090x ≤<;C :7080x ≤<;D :6070x ≤<;E :5060x ≤<).并绘制了如下尚不完整的统计图.抽取学生成绩等级人数统计表等级A B C D E 人数m 2730126其中扇形图中C 等级区域所对应的扇形的圆心角的度数是120︒.(1)样本容量为______,m =______;(2)全校1200名学生中,请估计A 等级的人数;(3)全校有5名学生得满分,七年级1人,八年级2人,九年级2人,从这5名学生中任意选择两人在国旗下分享自己与蜀道的故事,请你用画树状图或列表的方法,求这两人来自同一个年级的概率.【答案】(1)90,15;(2)200;(3)15.【解析】【分析】(1)利用C 等级的人数及其扇形圆心角度数求出总人数,用总人数减去其他等级的人数即可得到m 的值;(2)用总人数1200乘以抽样调查中的A 等级的比例即可得到A 等级的人数;(3)列树状图求解即可.【小问1详解】解:样本容量为1203090360÷=,90273012615m =----=,故答案为:90,15【小问2详解】151********⨯=(名)答:全校1200名学生中,估计A 等级的人数有200名.【小问3详解】设七年级学生为A ,八年级学生为1B ,2B ,九年级学生为1C ,2C 画树状图如下:由树状图可知一共有20种等可能的结果,其中两人来自同一个年级的结果有4种,∴P (选择的两人来自同一个年级)41205==.【点睛】此题考查了扇形统计图与统计表,列树状图求概率,利用个体比例求总体中的数量,正确理解统计图表得到相关信息是解题的关键.21.小明从科普读物中了解到,光从真空射入介质发生折射时,入射角α的正弦值与折射角β的正弦值的比值sin sin αβ叫做介质的“绝对折射率”,简称“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.(1)若光从真空射入某介质,入射角为α,折射角为β,且7cos 4α=,30β=︒,求该介质的折射率;(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A ,B ,C ,D 分别是长方体棱的中点,若光线经真空从矩形2121A D D A 对角线交点O 处射入,其折射光线恰好从点C 处射出.如图②,已知60α=︒,10cm CD =,求截面ABCD 的面积.【答案】(1)32;(2)21002cm .【解析】【分析】本题主要考查了解直角三角形的应用,勾股定理等知识,(1)根据7cos 4α=,设7b =,则4=c x ,利用勾股定理求出22(4)(7)3a x x x =-=,进而可得33sin 44a x c x α===,问题即可得解;(2)根据折射率与(1)的材料相同,可得折射率为32,根据sin sin 603sin sin 2αββ︒==,可得3sin 3β=,则有3sin sin 3OCD β∠==,在Rt ODC △中,设3OD x =,3OC x =,问题随之得解.【小问1详解】∵7cos 4α=,∴如图,设7b x =,则4=c x ,由勾股定理得,22(4)(7)3a x x x =-=,∴33sin 44a xc x α===,又∵30β=︒,∴1sin sin 302β=︒=,∴折射率为:3sin 341sin 22αβ==.【小问2详解】根据折射率与(1)的材料相同,可得折射率为32,∵60α=︒,∴sin sin 603sin sin 2αββ︒==,∴3sin 3β=.∵四边形ABCD 是矩形,点O 是AD 中点,∴2AD OD =,90D Ð=°,又∵OCD β∠=,∴3sin sin 3OCD β∠==,在Rt ODC △中,设3OD x =,3OC x =,由勾股定理得,22(3)(3)6CD x x x =-=,∴31tan 62OD xCD x β===又∵10cm CD =,∴10OD =,∴OD =,∴=AD ,∴截面ABCD 的面积为:210=.22.近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如下表:价格/类别短款长款进货价(元/件)8090销售价(元/件)100120(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?【答案】(1)长款服装购进30件,短款服装购进20件;(2)当购进120件短款服装,80件长款服装时有最大利润,最大利润是4800元.【解析】【分析】本题考查了二元一次方程的实际应用,一元一次不等式的实际应用,列出正确的等量关系和不等关系是解题的关键.(1)设购进服装x 件,购进长款服装y 件,根据“用4300元购进长、短两款服装共50件,”列二元一次方程组计算求解;(2)设第二次购进m 件短款服装,则购进()200m -件长款服装,根据“第二次进货总价不高于16800元”列不等式计算求解,然后结合一次函数的性质分析求最值.【小问1详解】解:设购进短款服装x 件,购进长款服装y 件,由题意可得5080904300x y x y +=⎧⎨+=⎩,解得2030x y =⎧⎨=⎩,答:长款服装购进30件,短款服装购进20件.【小问2详解】解:设第二次购进m 件短款服装,则购进()200m -件长款服装,由题意可得()809020016800m m +-≤,解得:120m ≥,设利润为w 元,则()()()1008012090200106000w m m m =-+--=-+,∵100-<,∴w 随m 的增大而减小,∴当120m =时,∴1012060004800w =-⨯+=最大(元).答:当购进120件短款服装,80件长款服装时有最大利润,最大利润是4800元.23.如图,已知反比例函数1k y x =和一次函数2y mx n =+的图象相交于点()3,A a -,3,22B a ⎛⎫+- ⎪⎝⎭两点,O 为坐标原点,连接OA ,OB .(1)求1k y x=与2y mx n =+的解析式;(2)当12y y >时,请结合图象直接写出自变量x 的取值范围;(3)求AOB 的面积.【答案】(1)19y x =-;2213y x =-+(2)30x -<<或92x >(3)154【解析】【分析】(1)根据题意可得3322a a ⎛⎫-=-+⎪⎝⎭,即有3a =,问题随之得解;(2)12y y >表示反比例函数1k y x =的图象在一次函数2y mx n =+的图象上方时,对应的自变量的取值范围,据此数形结合作答即可;(3)若AB 与y 轴相交于点C ,可得()0,1C ,则1OC =,根据()12AOB AOC BOC B A S S S OC x x =+=- ,问题即可得解.【小问1详解】由题知3322a a ⎛⎫-=-+⎪⎝⎭,∴3a =,∴()3,3A -,9,22B ⎛⎫-⎪⎝⎭,∴19y x=-,把()3,3A -,9,22B ⎛⎫- ⎪⎝⎭代入2y mx n =+得33922m n m n -+=⎧⎪⎨+=-⎪⎩,∴231m n ⎧=-⎪⎨⎪=⎩,∴2213y x =-+;【小问2详解】由图象可知自变量x 的取值范围为30x -<<或92x >【小问3详解】若AB 与y 轴相交于点C ,当0x =时,22113y x =-+=,∴()0,1C ,即:1OC =,∴()11915132224AOB AOC BOC B A S S S OC x x ⎛⎫=+=-=⨯⨯+= ⎪⎝⎭ .24.如图,在ABC 中,AC BC =,90ACB ∠=︒,O 经过A 、C 两点,交AB 于点D ,CO 的延长线交AB 于点F ,DE CF ∥交BC 于点E .(1)求证:DE 为O 的切线;(2)若4AC =,tan 2CFD ∠=,求O 的半径.【答案】(1)证明见解析;(2)2103r =.【解析】【分析】(1)连接OD ,根据等腰三角形的性质可得290COD CAB ∠=∠=︒,再根据DE CF ,可得18090EDO COD ∠=︒-∠=︒,问题得证;(2)过点C 作CH AB ⊥于点H ,根据等腰直角三角形的性质有CH AH ==,结合tan 2CFD ∠=,可得2CH FH =,即FH =,利用勾股定理可得CF .在Rt FOD △中,根据tan 2OD CFD OF∠==,设半径为r 2=,问题得解.【小问1详解】证明:连接OD .∵AC BC =,90ACB ∠=︒,∴ACB △为等腰直角三角形,∴45CAB ∠=︒,∴290COD CAB ∠=∠=︒,∵DE CF ,∴180COD EDO ∠+∠=︒,∴18090EDO COD ∠=︒-∠=︒,∴DE 为O 的切线.【小问2详解】过点C 作CH AB ⊥于点H ,∵ACB △为等腰直角三角形,4AC =,∴42AB =,∴22CH AH ==,∵tan 2CFD ∠=,∴2CH FH =,∴2FH =,∵222CF CH FH =+,∴10CF =.在Rt FOD △中,∵tan 2ODCFD OF ∠==,设半径为r 210r =-,∴2103r =.【点睛】本题考查了切线的判定,圆周角定理,正切,勾股定理等知识以及等腰三角形的性质等知识,问题难度不大,正确作出合理的辅助线,是解答本题的关键.25.数学实验,能增加学习数学的乐趣,还能经历知识“再创造”的过程,更是培养动手能力,创新能力的一种手段.小强在学习《相似》一章中对“直角三角形斜边上作高”这一基本图形(如图1)产生了如下问题,请同学们帮他解决.在ABC 中,点D 为边AB 上一点,连接CD .(1)初步探究如图2,若ACD B ∠=∠,求证:2AC AD AB =⋅;(2)尝试应用如图3,在(1)的条件下,若点D 为AB 中点,4BC =,求CD 的长;(3)创新提升如图4,点E 为CD 中点,连接BE ,若30CDB CBD ∠=∠=︒,ACD EBD ∠=∠,27AC =BE 的长.【答案】(1)证明见解析(2)2CD =(321【解析】【分析】(1)根据题意,由ACD B ∠=∠,A A ∠=∠,利用两个三角形相似的判定定理即可得到ACD ABC △△∽,再由相似性质即可得证;(2)设AD BD m ==,由(1)中相似,代值求解得到AC =,从而根据ACD 与ABC 的相似比为AD AC =(3)过点C 作EB 的平行线交AB 的延长线于点H ,如图1所示,设CE DE a ==,过点B 作BF EC ⊥于点F ,如图2所示,利用含30︒的直角三角形性质及勾股定理即可得到相关角度与线段长,再由三角形相似的判定与性质得到AD AC CD AC AH CH ====,代值求解即可得到答案.【小问1详解】证明:∵ACD B ∠=∠,A A ∠=∠,∴ACD ABC △△∽,∴AC ADAB AC =,∴2AC AD AB =⋅;【小问2详解】解:∵点D 为AB 中点,∴设AD BD m ==,由(1)知ACD ABC △△∽,∴2222AC AD AB m m m =⋅=⋅=,∴AC =,∴ACD 与ABC 的相似比为AD AC =∴CD BC =,∵4BC =∴CD =;【小问3详解】解:过点C 作EB 的平行线交AB 的延长线于点H ,过C 作CY AB ⊥,如图1所示:∵点E 为CD 中点,∴设CE DE a ==,∵30CDB CBD ∠=∠=︒,∴2CB CD a ==,120DCB ∠=︒,在Rt BCY △中,12CY CD a ==,则由勾股定理可得3BD a =,过点B 作BF EC ⊥于点F ,如图2所示:∴60FCB ∠=︒,∴30CBF ∠=︒,∴12CF BC =,∴CF a =,3BF a =,∴2EF a =,∴7BE a =,∵CH BE ∥,点E 为CD 中点,∴227CH BE a ==,243DH DB a ==,EBD H ∠=∠,又∵ACD EBD ∠=∠,∴ACD H ∠=∠,ACD AHC ∽△△,∴21277AD ACCDAC AH CH a ====,又∵27AC =∴2AD =,14AH =,∴12DH =,即12=,∴a =∴BE ==【点睛】本题考查几何综合,涉及相似三角形的判定与性质、含30︒的直角三角形性质、勾股定理等知识,熟练掌握三角形相似的判定与性质是解决问题的关键.26.在平面直角坐标系xOy 中,已知抛物线F :2y x bx c =-++经过点()3,1A --,与y 轴交于点()0,2B .(1)求抛物线的函数表达式;(2)在直线AB 上方抛物线上有一动点C ,连接OC 交AB 于点D ,求CD OD的最大值及此时点C 的坐标;(3)作抛物线F 关于直线1y =-上一点的对称图象F ',抛物线F 与F '只有一个公共点E (点E 在y 轴右侧),G 为直线AB 上一点,H 为抛物线F '对称轴上一点,若以B ,E ,G ,H 为顶点的四边形是平行四边形,求G 点坐标.【答案】(1)222y x x -=-+;(2)最大值为98,C 的坐标为311,24⎛⎫- ⎪⎝⎭;(3)点G 的坐标为()2,0-,()2,4,()4,6.【解析】【分析】(1)本题考查了待定系数法解抛物线分析式,根据题意将点A B 、坐标分别代入抛物线解析式,解方程即可;(2)根据题意证明CDM ODB ∽△△,再设AB 的解析式为y mx n =+,求出AB 的解析式,再设()2,22C t t t --+,则(),2M t t +,再表示出CD OD利用最值即可得到本题答案;(3)根据题意求出()1,1E -,再分情况讨论当BE 为对角线时,当BE 为边时继而得到本题答案.【小问1详解】解:()3,1A --,()0,2B 代入2y x bx c =-++,得:9312b c c --+=-⎧⎨=⎩,解得:22b c =-⎧⎨=⎩,∴抛物线的函数表达式为222y x x -=-+.【小问2详解】解:如图1,过点C 作x 轴的垂线交AB 于点M .∴CM y ∥轴,∴CDM ODB ∽△△,∴2CD CM CMOD OB ==,设AB 的解析式为y mx n =+,把()3,1A --,()0,2B 代入解析式得312m n n -+=-⎧⎨=⎩,解得:12m n =⎧⎨=⎩,∴2y x =+.设()2,22C t t t --+,则(),2M t t +,∴2239324CM t t t ⎛⎫=--=-++ ⎪⎝⎭,∵30t -<<,10-<,∴当32t =-时,CM 最大,最大值为94CM =.∴CD OD 的最大值为98,此时点C 的坐标为311,24⎛⎫- ⎪⎝⎭.【小问3详解】解:由中心对称可知,抛物线F 与F '的公共点E 为直线1y =-与抛物线F 的右交点,∴2221x x --+=-,∴13x =-(舍),21x =,∴()1,1E -.∵抛物线F :222y x x -=-+的顶点坐标为()1,3-,∴抛物线F '的顶点坐标为()3,5-,∴抛物线F '的对称轴为直线3x =.如图2,当BE 为对角线时,由题知3E G H B x x x x -=-=,∴2G x =-,∴()2,0G -.如图3,当BE 为边时,由题知1H G E B x x x x -=-=,。
广元市实验中学高2012级2014年春半期考试化学学科试题考试时间 50分钟总分 100分命题人奂新明审题人梁树超可能用到的原子量:H—1 C—12 S—32 O—16 Cu—64 Fe—56 Zn—65Ca—40 N—14 F—19 Al-27第Ⅰ卷选择题(共42分)选择题(每题只有一个选项符合题意,每小题6分,共42分)1、下列“化学与生活”的说法不正确...的是( )A.硫酸钡可用于钡餐透视B.盐卤可用于制豆腐C.明矾可用于水的消毒、杀菌D.醋可用于除去暖水瓶中的水垢2、下列有机物的命名正确的是3、已知:2Zn(s)+O2(g)=2ZnO(s)△H=-701.0kJ·mol-1 2Hg(l)+O2(g)=2HgO (s)△H=-181.6kJ·mol-1则反应Zn(s)+ HgO(s)=ZnO(s)+ Hg(l)的△H为A. +519.4kJ·mol-1B. +259.7 kJ·mol-1C. -259.7 kJ·mol-1D. -519.4kJ·mol-14、一定条件下,某反应达到平衡,其平衡常数K=[c(CO2).c(NO)]/[c(NO2).c(CO)]恒容时升高温度,混合气体的颜色加深,下列说法不正确...的是A.该反应的焓变为负值 B.化学方程式为NO2(g)+CO(g)CO2(g)+NO(g)C.降温,正反应速率减小 D.恒温时,增大压强颜色加深,平衡逆向移动5.在密闭容器中,一定量的混合气体发生反应:xA(g)+yB(g)=zC(g),达到平衡时测A浓度为0.50mol/L,保持温度不变,将容器扩大到原来两倍。
再达平衡时测得A的浓度为0.30 mol/L,下列不正确的A.x+y>zB.平衡向正反应方向移动C.B转化率减小D.的体积分数下降6.某有机物的结构简式为则此有机物可发生反应的类型有( )①取代反应②加成反应③消去反应④水解反应⑤氧化反应⑥加聚反应A.①②③⑤⑥ B.②③④⑤⑥ C.①②④⑤⑥ D.①②③④⑤⑥7、在容积可变的密闭容器中,2mo1N2和8mo1H2在一定条件下发生反应,达到平衡时,H2的转化率为25%,则平衡时的氮气的体积分数接近于A.5% B.10% C.15% D.20%第Ⅱ卷非选择题(共58分)8、(16分)X、Y、Z、L、M五种元素的原子序数依次增大。
绵阳中学高2024级高一上期期中测试数学试题第I 卷(选择题)一、单选题(每小题5分,共计40分)1.已知命题,命题的否定是()A.B.C.. D.2.已知集合,若,则实数的值不可以为()A.2 B.1 C.0 D.3.下列函数既是奇函数又在单调递增的是()A. B.C. D.4.已知,若的解集为,则函数的大致图象是( )A. B.C. D.5.已知函数在区间上的值域是,则区间可能是()A. B. C. D.6.“函数的定义域为”是“”的( )2:,210p x x ∀∈+>R p 2,210x x ∀∈+R …2,210x x ∃∈+>R 2,210x x ∃∈+<R 2,210x x ∃∈+R …{}()(){}2320,220A x x x B x x ax =-+==--=∣∣A B A ⋃=a 1-()0,∞+1y x =31y x=1y x x =-1y x x=+()2f x ax x c =--()0f x >()2,1-()y f x =-222y x x =-+[],a b []1,2[],a b []1,0-30,2⎡⎤⎢⎥⎣⎦[]1,3[]1,1-()211f x ax ax =-+R 04a <<A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知且,不等式恒成立,则正实数的取值范围是( )A.B.C. D.8.已知函数是定义在的单调函数,且对于任意的,都有,若关于的方程恰有两个实数根,则实数的取值范围为( )A. B. C. D.二、多选题(每小题6分,共计18分)9.对于任意实数,下列四个命题中为假命题的是( )A.若,则B.若,则C.若,则D.若,则10.已知为正实数,且,则( )A.的最大值为4B.的最小值为18C.的最小值为4D.11.定义在上的偶函数满足:,且对于任意,,若函数,则下列说法正确的是()A.在上单调递增B.0,0a b >>1ab =11422m a b a b++≥+m 2m ≥4m ≥6m ≥8m ≥()f x [)0,∞+[)0,x ∞∈+()2f f x ⎡=⎣x ()2f x x k +=+k 92,4⎡⎫⎪⎢⎣⎭51,4⎡⎫⎪⎢⎣⎭133,4⎡⎫⎪⎢⎣⎭13,4∞⎛⎫- ⎪⎝⎭,,,a b c d ,0a b c >≠ac bc>22ac bc >a b>0a b <<22a ab b >>0,a bcd >>>ac bd>,a b 8ab a b ++=ab 22(1)(1)a b +++a b +1111a b +++R ()f x ()22f =120x x >>()()21122122x f x x f x x x ->-()()2f xg x x -=()g x ()0,∞+()()34g g -<C.在上单调递减D.若正数满足,则第II 卷(非选择题)三、填空题(每小题5分,共计15分)12.函数__________.13.函数,若,则14.已知函数的定义域为的图象关于直线对称,且,若,则__________.四、解答题(共计77分)15.(13分)已知定义在上的函数满足:.(1)求函数的表达式;(2)若不等式在上恒成立,求实数的取值范围.16.(15分)设集合.(1)若,求实数的值;(2)若“”是“”的必要条件,求实数的取值范围.17.(15分)如图,正方形的边长为分别是和边上的点沿折叠使与线段上的点重合(不在端点处),折叠后与交于点.若(1)证明:的周长为定值.(2)求的面积S 的最大值.()f x ()2,∞+m ()()24202m f m f m -+->()2,m ∞∈+()12f x x =+()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩()()2f a f a =+()2__________.f a =()(),f x g x (),y f x =R 1x =()()()()110,45f x g x f x g x -+=--=()21f =()()12g g +=R ()()2223f x f x x x +-=-+()f x ()21f x ax ≥-[]1,3a {}(){}222320,2150A x x x B x x a x a =-+==+++-=∣∣{}2A B ⋂=a x A ∈x B ∈a ABCD 1,,E F AD BC EF C AB M M ,A B CD AD G ,BM x BF y==AMG AMG18.(17分)已知函数是定义在上的奇函数,且.(1)求函数的解析式;(2)判断在上的单调性,并用单调性定义证明;(3)解不等式.19.(17分)若函数的定义域为,集合,若存在正实数,使得任意,都有,且,则称在集合上具有性质.(1)已知函数,判断在区间上是否具有性质,并说明理由;(2)已知函数,且在区间上具有性质,求正整数的最小值;(3)如果是定义域为的奇函数,当时,,且在上具有性质,求实数的取值范围.()21ax b f x x-=+[]1,1-()11f =-()f x ()f x []1,1-()()()210f t f t f -+>()f x D M D ⊆t x M ∈x t D +∈()()f x t f x +>()f x M ()P t 2()f x x =()f x [1,0]-(1)P 3()f x x x =-()f x [0,1]()P n n ()f x R 0x ≥()()f x x a a a =--∈R ()f x R (6)P a数学参考答案题号12345678910答案D D C C B B D C AD ABC题号11答案ABD 填空题12.13.414.【详解】因为的图象关于直线对称,则①,又,即,结合①得②,因为,则,结合②得,则,令,得,令,得,由,得,由,得,则,所以.15.【详解】(1)将的替换为得联立()(],22,1∞--⋃-()y f x =1x =()()11f x f x -=+()()110f x g x -+=()()110f x g x -=-()()110g x f x ++=()()45f x g x --=()()135f x g x +--=()()35g x g x +-=1x =()()125g g +-=2x =()()125g g -+=()()110f x g x -+=()()2110f g +-=()()45f x g x --=()()225f g --=()()125g g -+-=()()125g g +=()()2223f x f x x x +-=-+x x -()()2223f x f x x x -+=++()()()()22223223f x f x x x f x f x x x ⎧+-=-+⎪⎨-+=++⎪⎩解得(2)不等式为,化简得,要使其在上恒成立,则,,当且仅当取等,所以.16.【详解】(1)由,所以或,故集合.因为,所以,将代入中的方程,得,解得或,当时,,满足条件;当时,,满足条件,综上,实数的值为或(2)因为“”是“”的必要条件,所以对于集合.当,即时,,此时;当,即时,,此时;当,即时,要想有,须有,此时:,该方程组无解.综上,实数的取值范围是.17.【详解】(1)设,则,由勾股定理可得,即,由题意,,()21213f x x x =++()21f x ax ≥-2121213x x ax ++≥-116x a x ≤++[]1,3min116x a x ⎛⎫≤++ ⎪⎝⎭11116x x ++≥=x =1a ≤+()()2320120x x x x -+=⇒--=1x =2x ={}1,2A ={}2A B ⋂=2B ∈2x =B 2430a a ++=1a =-3a =-1a =-{}{}2402,2B x x =-==-∣3a =-{}{}24402B x x x =-+==∣a 1-3-x A ∈x B ∈B A⊆()()22,Δ4(1)4583B a a a =+--=+Δ0<3a <-B =∅B A ⊆Δ0=3a =-{}2B =B A ⊆Δ0>3a >-B A ⊆{}1,2B A ==()221352a a ⎧+=-⎨-=⎩a (],3∞--,,01BM x BF y x ==<<1CF MF y ==-222(1)x y y +=-212x y -=90GMF DCF ∠∠==即,可知,设的周长分别为,则又因为,所以,的周长为定值,且定值为2.(2)设的面积为,则,因为,所以,.因为,则,因为,所以,当且仅当,即时,等号成立,满足故的面积的最大值为.18.【详解】(1)函数是定义在上的奇函数,,解得,,而,解得,.(2)函数在上为减函数;90AMG BMF ∠∠+= Rt Rt AMG BFM ∽,AMG BFM 1,p p 11p AM x p BF y -==111p x y y x =++-=+()2111112x x x p p x y y y---==⋅+==AMG BFM 1S 22122(1)S AM x S BF y-==112S xy =()2221221(1)(1)(1)211x x x x x x x S S y y x x ----====-+()()()211121311x x x x x⎡⎤⎡⎤-++-⎣⎦⎣⎦==-+-+++10x +>201x>+211x x ++≥=+3S ≤-211x x+=+1x =-()0,1x ∈AMG 3-()21ax b f x x-=+[]1,1-()()22;11ax b ax b f x f x x x ----=-=-++0b =()21ax f x x ∴=+()11f =-2a =-()[]22,1,11x f x x x -∴=∈-+()221x f x x -=+[]1,1-证明如下:任意且,则因为,所以,又因为,所以,所以,即,所以函数在上为减函数.(3)由题意,,又,所以,即解不等式,所以,所以,解得,所以该不等式的解集为.19.【详解】(1),当时,,故在区间[―1,0]上不具有性质;(2)函数的定义域为,对任意,则,在区间上具有性质,则,即,因为是正整数,化简可得:对任意恒成立,设,其对称轴为,则在区间上是严格增函数,所以,,解得,故正整数的最小值为2;[]12,1,1x x ∈-12x x <()()()()()()121212122222121221221111x x x x x x f x f x x x x x ------=-=++++12x x <120x x -<[]12,1,1x x ∈-1210x x ->()()120f x f x ->()()12f x f x >()()12f x f x >[]1,1-()()()210f t f tf -+>()00f =()()210f t f t -+>()()21f t f t >--()()21f t f t >-22111111t t t t ⎧-≤≤⎪-≤-≤⎨⎪<-⎩0t≤<()()221(1)21f x f x x x x +-=+-=+0.8x =-()()10.60f x f x +-=-<()f x ()1P ()3f x x x =-R []0,1x ∈x n +∈R ()f x [0,1]()P n ()()f x n f x +>33()()x n x n x x +-+>-n 223310x nx n ++->[]0,1x ∈22()331g x x nx n =++-02n x =-<()g x [0,1]2min ()(0)10g x g n ==->1n >n(3)法一:由是定义域为上的奇函数,则,解得,若,,有恒成立,所以符合题意,若,当时,,所以有,若在上具有性质,则对任意恒成立,在上单调递减,则,x 不能同在区间内,,又当时,,当时,,若时,今,则,故,不合题意;,解得,下证:当时,恒成立,若,则,当时,则,,所以成立;当时,则,可得,,即成立;当时,则,即成立;综上所述:当时,对任意x ∈R 均有成立,()f x R (0)0f a a =-=0a ≥0a =()f x x =6x x +>0a >0x <()()()f x f x x a a x a a =--=----=-++()2,,2,x a x a f x x a x a x a x a +<-⎧⎪=--≤≤⎨⎪->⎩()f x R (6)P (6)()f x f x +>x ∈R ()f x [,]a a -6x +[,]a a -6()2a a a ∴>--= [2,0]x a ∈-()0f x ≥[0,2]x a ∈()0f x ≤264a a <≤2x a =-6[0,2]x a +∈(6)()f x f x +≤46a ∴<302a <<302a <<()()6f x f x +>302a <<46a <6x a +≤-()662f x x a +=++()2f x x a =+()()6f x f x +>6a x a -<+<63x a a <-<-()()66f x x a +=-+>-()2f x x a a =+<-()()6f x f x +>6x a +>()()()6622f x x a x a f x +=+->+≥()()6f x f x +>302a ≤<()()6f x f x +>故实数的取值范围为.法二:由是定义域为上的奇函数,则,解得.作出函数图像:由题意得:,解得,若,,有恒成立,所以符合题意,若,则,当时,则,,所以成立;当时,则,可得,,即成立;当时,则,即成立;综上所述:当时,对任意x ∈R 均有成立,故实数的取值范围为.a 30,2⎡⎫⎪⎢⎣⎭()f x R (0)0f a a =-=0a ≥2(2)46a a a --=<302a ≤<0a =()f x x =6x x +>302a <<46a <6x a +≤-()662f x x a +=++()2f x x a =+()()6f x f x +>6a x a -<+<63x a a <-<-()()66f x x a +=-+>-()2f x x a a =+<-()()6f x f x +>6x a +>()()()6622f x x a x a f x +=+->+≥()()6f x f x +>302a ≤<()()6f x f x +>a 30,2⎡⎫⎪⎢⎣⎭。
四川省广元市实验中学2024-2025学年高一上学期10月月考英语试题一、阅读理解China is famous for its food culture. There are many stories waiting for us to find out about.HotpotChinese people had hotpot as early as the Shang Dynasty (16th century — 11th century BC). At that time, people boiled foods in bronze pots. The pot had two parts — one was the pot to cook food in soup, and the other part was to hold firewood. People in the Han Dynasty (206 BC — AD 220) divided pots into several parts to enjoy different flavors.Yuan Mei was a poet and foodie in the Qing Dynasty (1644 — 1911). He mentioned huoguo, the Chinese name for hotpot, in a book about all kinds of food. At that time, hotpot was very popular. People put all kinds of meat and vegetables into the hotpot. It’s said that Emperor Qianlong of the Qing Dynasty loved hotpot. He had it for almost every meal. He once held a big hotpot feast and invited more than 5,000 people to enjoy 1,550 hotpots!Dongpo porkSu Dongpo (Su Shi) was a poet who lived during the Song Dynasty (960 — 1279). He was the first to make this dish. When he was a local official in Huangzhou, Hubei, he fell in love with cooking pork. In his article Ode to Pork, Su described exactly how to cook it.According to folk stories the dish became well-known when Su went to Hangzhou, Zhejiang, to take office. One day, there was a terrible flood (水灾) and Su went out to help people. He worked very hard and everyone praised him. They heard that he loved eating pork, so they gave him a lot of it. But Su wanted to give it back. He cooked the pork in his own special way. Then he gave the dish to every family in the city and every worker on the street. Very soon the dish became famous in Hangzhou and got the name “Dongpo pork”.ChopsticksFor Chinese people, chopsticks are not just simple tools to pick up food. They come with their own special rules and traditions.Generally, people should not make noise with chopsticks. Playing with chopsticks is seen asbad manners, just as playing with forks and knives in a Western country would be rude. Also, some people believe that chopsticks should not be left standing upright in a bowl. Doing it at the dinner table is believed to bring bad luck. You should not tap chopsticks on the edge of the bowl either, as beggars do this to ask for food. Parents might get angry if children do this as they don’t want their children to be as poor as beggars in the future.1.Hotpot was first described as “huoguo” in ________.A.Shang Dynasty B.Qing Dynasty C.Han Dynasty D.Song Dynasty 2.“Dongpo Pork” became famous when ________.A.Su was a local official in Huangzhou B.Su’s article Ode to Pork came outC.Su fell in love with cooking D.Su gave the dish to every family in the city 3.Which of the following is NOT seen as bad manners?A.Make noise with chopsticks.B.Chopsticks are left standing upright in a bowl.C.Tap chopsticks on the edge of the bowl.D.Use the chopsticks with the left hand. 4.The writer writes this passage to ________.A.show Chinese table manners B.introduce some famous Chinese dishesC.show the development of Chinese eating habits D.introduce the stories of Chinese food cultureWhen I was a little girl, I remember that when my dad was repairing something, he would ask me to hold the hammer, so we would have time for a conversation with each other. I never saw my dad drinking or taking a night out. All he did after work was taking care of his family.I grew up and left home for college and since then, my dad had been calling me every Sunday morning. And when I bought a house several years later, my dad painted it by himself in the fierce summer heat. All he asked was to talk to him, but I was to busy in those days.Four years ago, my dad visited me. He spent many hours putting together a swing for my daughter. He asked me to have a talk with him, but I had to prepare for a trip that weekend.One Sunday morning we had a telephone talk as usual. I noticed that my dad had forgotten some things that we discussed lately. I was in a hurry, so our conversation was short. Several hours later that day I received a call. My father was in the hospital. Immediately I bought a plane ticket and on my way I was thinking about all the occasions I missed to have a talk with my dad. By thetime I arrived at the hospital, my father had passed away. Now it was he who did not have time for a conversation with me. I realized how little I knew about my dad, his deepest thoughts and his dreams.After his death I learned much more about him and even more about myself. All he ever wanted was my time. And now he has all my attention every single day.5.When the author was a little girl, she .A.liked playing on the swingB.often talked with her fatherC.was good at repairing thingsD.learned to take care of her family6.When at college, the author .A.received a call from her father every Sunday morningB.phoned her father every Sunday morningC.asked her father to call her every SundayD.asked her father to talk with her7.Why did the author fail to have a talk with her father four years ago?A.She had got tired of talking with him.B.She was busy painting her house.C.Her daughter asked her to play.D.She was busy planning a trip.8.When did the author begin to regret missing the talks with her father?A.After her father's sudden death.B.Many years after her father's death.C.On her way to the hospital to see her father.D.As soon as she got the news that her father was ill.Ghaffar Pourazar, a British man, has learned the necessary skills to perform Beijing Opera and he has become popular with his lively performance of the Monkey King, a traditional character from the Chinese classic story Journey to the West.In 1993, he happened to watch Beijing Opera performed in London by professionals fromJingju Theatre Company of Beijing. Ghaffar fell in love with the beautiful voices, colorful costumes, excellent shows and so on. So after a year, he arrived in China alone and became a student of Beijing Opera.At the age of 32, he had to learn with teenage students every day, starting from the most basic training of the legs and waist (腰). At that time, he was mostly troubled by the dialogue in Beijing Opera. To him, it was the biggest problem. But he tried his best to practice it. 4 years later, he began to learn to perform the Monkey King. He usually arrived at the workroom on hour earlier than the other performers and he also bought books and CDs to understand the character better. Finally, He once won a top international prize for performing the Monkey King.To help more people enjoy Beijing Opera, Ghaffar often teaches the traditional art form in schools in the United States, Britain and other countries. Ghaffar led a group of actors to perform 66 times in a month and a half in the United States. He also led a 48-member team to perform in Malaysia. In the past 10 years, he has performed in more than 400 shows.9.Why did Ghaffar start learning Beijing Opera?A.Because he thought it was a necessary skill.B.Because Journey to the West is his favorite.C.Because he loved Beijing Opera after watching one.D.Because he wanted to be an actor and made lots of money.10.Which of the following word can best describe Ghaffar according to Paragraph 3?A.Careless.B.Creative.C.Hard-working.D.Warm-hearted. 11.What is the correct order of the following events according to the text?a. He got basic training with teenage students.b. He watched a Beijing Opera performance in London.c. He bought books and CDs about the Monkey King.d. He won an international prize for performing the Monkey King.A.b-c-a-d B.b-d-a-c C.b-a-c-d D.b-a-d-c12.What can we know about Ghaffar according to the last paragraph?A.He performed Beijing Opera by himself.B.He likes to teach his children to speak Chinese.C.He led a 66-member team to perform in Malaysia.D.He did a lot to spread Beijing Opera to other countries.After bikes and umbrellas are made sharable across China, some companies started eyeing the fitness market, so shared gym rooms have hit the streets in Beijing.Unlike common gyms that provide large, open spaces for many members to share at the same time, the newly built shared gym rooms are small, stand-alonerooms for a person to use, often set up near living communities.Every four-square-meter room provides a treadmill (跑步机), an air cleaner, a mirror, a television and an air conditioner, and users can let down the curtains for privacy. When exercising, users can listen to music, watch movies and check emails by connecting to the Internet by the screen fixed on the treadmill. But there’s no shower.Similar to using a shared bike, users can locate a shared gym room by a smartphone app, book a room in advance and then need to scan a QR code for use. A refundable deposit (保证金) of 99 yuan is required, and users are charged 1 yuan every 5 minutes.The shared gym rooms are created by Misspao, a Beijing-based technology company founded in July. Within several months since it was founded, the company has already raised over 100 million yuan. However, the idea of the shared fitness experience is not totally nascent. Last December, the company VRUN set up shared treadmills in office and apartment buildings.The sharing economy is still becoming popular in China. According to Yicai Global, confident people are pouring millions into sharing start-ups. In March, the State Information Center published a report which predicts that the total value of China’s sharing economy will see a yearly growth of 40% in the coming years, and it is expected to make a great contribution to the country’s GDP.13.What do people need to do to use the shared gym room?A.Let down curtains for privacy.B.Pay 100 yuan first.C.Use a smartphone to book a room ahead of time.D.Have a shower before exercise.14.What does the underlined word “nascent” in paragraph 5 mean?A.Simple.B.Popular.C.Satisfying.D.New.15.What is the author’s purpose of writing the text?A.To advertise a technology company.B.To introduce shared gym rooms.C.To support the shared gym rooms.D.To predict the future of shared gym rooms.Why is Chinese a Good Language to LearnIf there’s one language in the world that’s worth learning, it’s the Chinese language. You must be wondering why. 16Gain the job opportunities. With the steady development for decades, China has become the second largest economic power in the world while keeping closely connected with the west.17 It helps a lot if you’re looking to work in a career that involves dealing with Chinese buyers or suppliers.Know about the history and culture. 18 In fact, China has had a significant say in the history of the world. It’s agreed that four great inventions — namely paper-making, printing, gunpowder and the compass — made their way from China to Europe via the famous Silk Road. To really understand the contribution of this part of the world and have a deep insight into the history of Asia, speaking the language can be beneficial.19 Chinese literature, both ancient and modern, comes from an entirely different cultural background than literature written in the West. To really appreciate it, however, you have to read it in the original language. Many works of Chinese literature haven’t been translated into English, so you have no choice but to enjoy them as they stand. If you want to understand modern China, learning the Chinese language is vital.Enjoy the food. In Britain, we’re familiar with Chinese food — or at least, a Westernized version of it. By learning the Chinese language, you’ll start to understand exactly what all of those words on the menu mean. In time, you might feel more comfortable ordering something that’s a little bit less familiar. 20A.Translate the literature.B.Appreciate the literature.C.Here come a few good reasons to learn the language.D.Therefore, the ability to speak Chinese language is pretty valuable.E.China is home to the history and culture that runs for thousands of years.F.You might even develop an appreciation for Chinese cuisine for its varieties.G.Chinese culture has had a great influence on the world for thousands of years.二、完形填空“None of us get out of life alive, so be brave and be thankful for all the opportunities you have.” Those were 21 words said by 18-year-old Jake Bailey, a cancer patient.Bailey was in the leading position of the students’ union. The young man had planned to 22 at his high school’s end-of-year ceremony (典礼) on schedule. 23 , just the week before, he received shocking 24 . After several weeks of not feeling well, tests showed that he had a fast-growing form of cancer. Doctors said, without treatment, he would only have weeks to live, so they didn’t 25 him to take part in the event. But Bailey put on his school uniform along with his 26 face and left his hospital bed to give the inspiring speech to his 27 . Without doubt, his appearance 28 everyone at the ceremony. Sitting in the wheelchair, he began to 29 his ideas. He expressed that a strong-willed person would not easily 30 , no matter how hard life was.At the speech, Bailey encouraged his schoolmates to 31 their time. “The future is truly in our hands. 32 about having impractical long-term dreams. Let’s be devoted to short-term goals,” He continued. “We don’t know where we might end up, or when we will end up, so work with pride on what is 33 us.”When the senior 34 his speech with the school’s motto, “Altiora Peto,” which means “I fight for higher things”, the entire room burst into cheers. 35 , Bailey’s message was heard loud and clear. Bailey then closed his eyes and mouthed the words “Thank you”.21.A.upset B.extra C.inspiring D.amazing 22.A.speak B.chat C.sing D.debate 23.A.So B.Instead C.Besides D.However 24.A.fault B.attack C.news D.pain25.A.persuade B.allow C.warn D.organize 26.A.determined B.frightened C.satisfied D.surprised 27.A.friends B.families C.schoolmates D.roommates 28.A.amused B.shocked C.affected D.frightened 29.A.explain B.form C.share D.change 30.A.turn up B.give in C.break up D.cut down 31.A.gain B.spare C.spend D.treasure 32.A.Forget B.Talk C.Care D.Dream33.A.in place of B.in front of C.in charge of D.in search of 34.A.replaced B.ended C.began D.decorated 35.A.Finally B.Actually C.Obviously D.Entirely三、语法填空阅读下面材料,在空白处填入适当的内容或括号内单词的正确形式。
广元市实验中学高2012级2014年春半期考试语文试题(时间:150分钟总分:150分命题人:何剑元)第I卷(单项选择题,共30分)一、(12分,每题3分)1.下列各组词语中加点字的读音,完全正确的一组是()A.吝啬.(sè)自诩.(yǚ)糟粕.(pò)残羹冷炙.(zhì)B.蹩.进(bié)赋予.(yǔ)讣.告(bù)休戚.相关(qì)C.推衍.(yǎn)粗糙.(cāo)要挟.(xiá)冠冕.堂皇(miǎn)D.教诲.(huì)幼稚.(zhì)一刹.那(chà)半身不遂.(suí)2.下列各组词语中,没有错别字的一组是()A.枯燥称颂稍纵即失咄咄逼人B.惋惜崛起归根结底唉声叹气C.踉跄找碴坐收鱼利秘而不宣D.嬉笑犀利世外桃源惹事生非3.下列各句中加点成语的运用不恰当的一项是()A.美军此次大规模清剿,不仅扫荡了阿富汗南部地区的恐怖分子,还能牵制巴基斯坦境内部分塔利班武装,可谓一箭双雕....。
B.他最近的状态一直不佳,接连几次考试都不理想,屡试不爽....,心情糟透了。
C.随着2012年俄罗斯总统大选的临近,梅普之间关系变得非常微妙,两人各怀心事,貌合神离....。
D.滨州大乐透1069万元巨奖得主西装革履正襟危坐....在体彩中心接待室里等待领奖。
不像其他大奖得主都是亲戚朋友全程陪同领奖,此先生只身一人前来。
4.下列各句中没有语病的的一项是()A.其实,反对派从今年早些时候就开始在网上举行有关“让普京下台”的请愿活动,称他们把目标对准普京的原因在于他是“只为一小撮官员和寡头服务,将整个国家引向死胡同的”政治体制的关键人物。
B.据英国《泰晤士报》10月25日报道,为竞选美国加利福尼亚州州长一职,全球最大的电子商务网站eBay前任总裁、共和党人梅格·惠特曼已经投入约1.4亿多美元巨资,创下美国历史上除总统竞选外最高竞选费用。
一、2024-2025学年四川省成都市高一上学期期中考试数学检测试题单选题1. 已知集合A ={1 ,2,3,4,5},{},|15B x x =<<,则A ∩B 的元素个数为( )A. 2B. 3C. 4D. 5【答案】B【解析】【分析】直接根据集合的交集运算求解即可.【详解】因为集合A ={1 ,2,3,4,5},{}|15B x x =<<所以{}2,3,4A B =I ,即A ∩B 的元素个数为3个.故选:B2. 函数221y x mx =++在[2,+∞)单调递增,则实数m 的取值范围是( )A. [2,)-+¥B. [2,+∞)C. (,2)-¥D. (,2]-¥【答案】A【解析】【分析】直接由抛物线对称轴和区间端点比较大小即可.【详解】函数221y x mx =++为开口向上的抛物线,对称轴为x m=-函数221y x mx =++在[2,+∞)单调递增,则2m -£,解得2m ³-.故选:A.3. 若函数的定义域为{}22M x x =-££,值域为{}02N y y =££,则函数的图像可能是()A. B.的C. D.【答案】B【解析】【分析】根据函数的定义域与值域,结合函数的性质判断即可.【详解】对A,该函数的定义域为{}20x x-££,故A错误;对B,该函数的定义域为{}22M x x=-££,值域为{}02N y y=££,故B正确;对C,当()2,2xÎ-时,每一个x值都有两个y值与之对应,故该图像不是函数的图像,故C错误;对D,该函数的值域不是为{}02N y y=££,故D错误.故选:B.4. 已知函数()af x x=,则“1a>”是“()f x在()0,¥+上单调递增”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】由幂函数的单调性结合充分必要条件的定义判断.【详解】当0a>时,函数()af x x=在()0,¥+上单调递增,则1a>时,一定有()f x在()0,¥+上单调递增;()f x在()0,¥+上单调递增,不一定满足1a>,故“1a>”是“()f x在()0,¥+上单调递增”的充分不必要条件.故选:A.5. 已知0,0x y>>,且121yx+=,则12xy+的最小值为()A. 2B. 4C. 6D. 8【答案】D【解析】【分析】利用不等式的乘“1”法即可求解.【详解】由于0,0x y >>,故11112224448x y x xy y x y xy æöæö+=++=++³+=ç÷ç÷èøèø,当且仅当14,121,xy xy y xì=ïïíï+=ïî即2,14x y =ìïí=ïî时,等号成立,故12x y +的最小值为8.故选:D6. 已知定义域为R 的函数()f x 不是偶函数,则( )A. ()(),0x f x f x "Î-+¹R B. ()(),0x f x f x "Î--¹R C. ()()000,0x f x f x $Î-+¹R D. ()()000,0x f x f x $Î--¹R 【答案】D【解析】【分析】根据偶函数的概念得()(),0x f x f x "Î--=R 是假命题,再写其否定形式即可得答案.【详解】定义域为R 的函数()f x 是偶函数()(),0x f x f x Û"Î--=R ,所以()f x 不是偶函数()()000,0x f x f x Û$Î--¹R .故选:D .7. 若函数()22f x ax bx c=++的部分图象如图所示,则()1f =( ) A. 23- B. 112- C. 16- D. 13-【答案】D【解析】【分析】利用函数图象求得函数定义域,利用函数值可得出其解析式,代入计算即求得函数值.【详解】根据函数图象可知2x =和4x =不在函数()f x的定义域内,因此2x =和4x =是方程20ax bx c ++=的两根,因此可得()()()224f x a x x =--,又易知()31f =,所以可得2a =-;即()()()124f x x x =---,所以()113f =-.故选:D8. 奇函数()f x 在(),0-¥上单调递增,若()10f -=,则不等式()0xf x <的解集是( ).A. ()()101,∪,-¥- B. ()()11,∪,-¥-+¥C. ()()1001,∪,- D. ()()101,∪,-+¥【答案】C【解析】【分析】由()f x 奇偶性,单调性结合题意可得答案.【详解】因奇函数()f x 在(),0¥-上单调递增,()10f -=则()f x 在()0,¥+上单调递增,f (1)=0.得()()()01,01,f x x È¥>ÞÎ-+;()()()0,10,1f x x ¥È<ÞÎ--.则()()000x xf x f x <ì<Þí>î或()()()01,00,10x x f x È>ìÞÎ-í<î.故选:C二、多选题9. 下列关于集合的说法不正确的有( )A. {0}=ÆB. 任何集合都是它自身的真子集C. 若{1,}{2,}a b =(其中,a b ÎR ),则3a b +=D. 集合{}2y y x =∣与{}2(,)x y y x =∣是同一个集合【答案】ABD【解析】【分析】根据集合的定义,真子集的定义,集合相等的定义判断各选项.【详解】{0}中含有一个元素,不是空集,A 错;任何集合都是它自身的子集,不是真子集,B 错;由集合相等的定义得2,1a b ==,3a b +=,C 正确;集合{}2yy x =∣中元素是实数,集合{}2(,)x y y x =∣中元素是有序实数对,不是同一集合,D 错,故选:ABD .10. 已知二次函数()2223y m x mx m =-++-的图象与x 轴有两个交点()()12,0,,0x x ,则下面说法正确的是( )A. 该二次函数的图象一定过定点()1,5--;B. 若该函数图象开口向下,则m 的取值范围为:625m <<;C. 当2m >,且12x ££时,y 的最大值为45m -;D. 当2m >,且该函数图象与x 轴两交点的横坐标12,x x 满足1232,10x x -<<--<<时,m 的取值范围为:21114m <<【答案】ABD【解析】【分析】代入1x =-,解得5y =-,即可求解A ,根据判别式即可求解B ,利用二次函数的单调性即可求解C ,利用二次函数的图象性质即可列不等式求解.【详解】由()2223y m x mx m =-++-可得()22123y m x x =+--,当1x =-时,5y =-,故二次函数的图象一定过定点()1,5--,A 正确,若该函数图象开口向下,且与x 轴有两个不同交点,则()()220Δ44230m m m m -<ìí=--->î,解得:625m <<,故B 正确,当2m >,函数开口向上,对称轴为02m x m =-<-,故函数在12x ££时,单调递增,当2x =时,911y m =-,故y 的最大值为911m -;C 错误,当2m >,则开口向上,又1232,10x x -<<--<<时,则3,4210x y m =-=->,且2,110x y m =-=-<,且1,50x y =-=-<,且0,30x y m ==->,解得21114m <<,m 的取值范围为:21114m <<,D 正确,故选:ABD 11. 已知幂函数()()293m f x m x =-的图象过点1,n m æö-ç÷èø,则( )A. 23m =-B. ()f x 为偶函数C. n =D. 不等式()()13f a f a +>-的解集为(),1-¥【答案】AB【解析】【分析】利用幂函数的定义结合过点1,n m æö-ç÷èø,可求,m n 判断AC ;进而可得函数的奇偶性判断B ;解不等式可求解集判断D.【详解】因为函数()()293m f x m x =-为幂函数,所以2931m -=,解得23m =±,当23m =时,幂函数()23f x x =的图象不可能过点3,2n æö-ç÷èø,故23m ¹,当23m =-,幂函数()23f x x -=的图象过点3,2n æöç÷èø,则2332n -=,解得3232n -æö=±=ç÷èøA 正确,C 错误;()23f x x -=的定义域为{|0}x x ¹,且()2233()()f x x x f x ---=-==,故()f x 为偶函数,故B 正确;函数()23f x x -=在(0,)+¥上单调递减,由()()13f a f a +>-,可得()()13f a f a +>-,所以1310a a a ì+<-ïí+¹ïî,解得1a <且1a ¹-,故D 错误.故选:AB.三、填空题12. 满足关系{2}{2,4,6}A ÍÍ的集合A 有____________个.【答案】4【解析】【分析】由题意可得集合A 为{}2,4,6的子集,且A 中必包含元素2,写出满足条件的集合,即可得答案.【详解】即集合A 为{}2,4,6的子集,且A 中必包含元素2,又因为{2,4,6}的含元素2的子集为:{}2,{}2,4,{}2,6,{2,4,6}共4个.故答案为:4.13. 已知()f x 满足()()()2f x y f x f y +=++,且()22f =,则()3f =______.【答案】4【解析】【分析】令1x y ==得()10f =,再令1x =,2y = 即可求解.【详解】令1x y ==得()()()21122f f f =++=,所以()10f =,令1x =,2y =得()()()31224f f f =++=.故答案为:4.14. 已知函数()()()22223124,,4f x x ax ag x x x a a =-+-=-+-ÎR ,若[]10,1x "Î,[]20,1x $Î,使得不等式()()12f x g x >成立,实数a 的取值范围是__________.【答案】(),6-¥【解析】【分析】由题意将问题转化为()(),min max f x g x >[]0,1x Î,成立,利用二次函数的性质求解即可.【详解】若对任意[]10,1x Î,存在[]20,1x Î,使得不等式()()12f x g x >成立,即只需满足[]min min ()(),0,1f x g x x >Î,()22314g x x x a =-+-,对称轴()1,2x g x =在10,2éö÷êëø递减,在,1,12æùçúèû递增,()2min 18,2g x g a æö==-ç÷èø()[]2224,0,1f x x ax a x =-+-Î,对称轴4a x =,①04a £即0a £时,()f x 在[0,1]递增,()22min min ()04()8f x f a g x a ==->=-恒成立;②014a <<即04a <<时,()f x 在0,4a éö÷êëø递减,在,14a æùçúèû递增,22min min 7()4,()848a f x f a g x a æö==-=-ç÷èø,所以227488a a ->-,故04a <<;③14a ³即4a ³时,()f x 在[0,1]递减,()22min min ()12,()8f x f a a g x a ==--=-,所以2228a a a -->-,解得46a £<,综上(),6a ¥Î-.故答案为:(),6¥-【点睛】方法点睛:本题首先需要读懂题意,进行转化;其次需要分类讨论,结合二次函数的性质最后进行总结,即可求出结果.四、解答题15. 设全集R U =,集合{|23}P x x =-<<,{|31}.Q x a x a =<£+(1)若1a =-,求集合()U P Q I ð;(2)若P Q =ÆI ,求实数a 的取值范围.【答案】(1){|03}x x <<(2)][132,,æö-¥-+¥ç÷èøU 【解析】【分析】(1)先求出U Q ð,再求()U P Q Çð即可;(2)分Q =Æ和Q ¹Æ两种情况求解即可【小问1详解】解:当1a =-时,{|31}{|30}Q x a x a x x =<£+=-<£;{|3U C Q x x =£-或0}x >,又因为{}23P x x =-<<,所以(){|03}.U P Q x x Ç=<<ð【小问2详解】解:由题意知,需分为Q =Æ和Q ¹Æ两种情形进行讨论:当Q =Æ时,即31a a ³+,解得12a ³,此时符合P Q =ÆI ,所以12a ³;当Q ¹Æ时,因为P Q =ÆI ,所以1231a a a +£-ìí<+î或3331a a a ³ìí<+î,解之得3a £-.综上所述, a 的取值范围为][1,3,.2¥¥æö--È+ç÷èø16 已知二次函数()()20f x ax bx c a =++¹满足()()14f x f x x -+=,且()0 1.f =(1)求函数()f x 的解析式;(2)解关于x 的不等式()()2641f x t x t £-+-+.【答案】(1)()2221f x x x =-+(2)答案见解析.【解析】【分析】(1)利用待定系数法计算即可求解析式;(2)根据(1)的结论含参讨论解一元二次不等式即可.【小问1详解】因为()01f =,1c =,所以()21f x ax bx =++,又因为()()14f x f x x -+=,所以()(()22[1)1114a x b x ax bx x ù++++-++=û,所以24ax a b x ++=,所以240a a b =ìí+=î,所以22a b =ìí=-î,即()222 1.f x x x =-+.【小问2详解】由()()2641f x t x t £-+-+,可得不等式()222440x t x t +++£,即()2220x t x t +++£,所以()()20x x t ++£,当2-=-t ,即2t =时,不等式的解集为{|2}x x =-,当2t -<-,即2t >时,不等式的解集为{|2}x t x -££-,当2t ->-,即2t <时,不等式的解集为{|2}x x t -££-,综上所述,当2t =时,不等式的解集为{|2}x x =-,当2t >时,不等式的解集为{|2}x t x -££-,当2t <时,不等式的解集为{|2}.x x t -££-17. 已知函数()221x f x x-=.(1)用单调性的定义证明函数()f x 在()0,¥+上为增函数;(2)是否存在实数l ,使得当()f x 的定义域为11,m n éùêúëû(0m >,0n >)时,函数()f x 的值域为[]2,2m n l l --.若存在.求出l 的取值范围;若不存在说明理由.【答案】(1)证明见详解;(2)存在,()2,+¥.【解析】分析】(1)设()12,0,x x ¥Î+,且12x x <,然后作差、通分、因式分解即可判断()()12f x f x <,得证;(2)根据单调性列不等式组,将问题转化为210x x l -+=存在两个不相等的正根,利用判别式和韦达定理列不等式组求解可得.【小问1详解】()222111x f x x x-==-,设()12,0,x x ¥Î+,且12x x <,【则()()()()22121212122222222212211212111111x x x x x x f x f x x x x x x x x x -+æö--=---=-==ç÷èø,因为120x x <<,所以221212120,0,0x x x x x x <-+>>,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在(0,+∞)上为增函数.【小问2详解】由(1)可知,()f x 在11,m n éùêúëû上单调递增,若存在l 使得()f x 的值域为[]2,2m n l l --,则22112112f m m m f n n n l l ìæö=-=-ç÷ïïèøíæöï=-=-ç÷ïèøî,即221010m m n n l l ì-+=í-+=î,因为0m >,0n >,所以210x x l -+=存在两个不相等的正根,所以21212Δ40100x x x x l l ì=->ï=>íï+=>î,解得2l >,所以存在()2,l ¥Î+使得()f x 的定义域为11,m n éùêúëû时,值域为[]2,2m n l l --.18. 习总书记指出:“绿水青山就是金山银山”.淮安市一乡镇响应号召,因地制宜的将该镇打造成“生态水果特色小镇”.调研过程中发现:某珍稀水果树的单株产量W (单位:千克)与肥料费10x (单位:元)满足如下关系:()252,02()48,251x x W x x x x ì+££ï=í<£ï+î其它成本投入(如培育管理等人工费)为20x (单位:元).已知这种水果的市场售价大约为10元/千克,且供不应求.记该单株水果树获得的利润为()f x (单位:元).(1)求()f x 函数关系式;(2)当投入的肥料费用为多少时,该单株水果树获得的利润最大?最大利润是多少?的【答案】(1)25030100,02()48030,251x x x f x x x x xì-+££ï=í-<£ï+î; (2)当投入肥料费用为30元时,获得的利润最大,最大利润是270元.【解析】【分析】(1)由单株产量W 乘以售价减去肥料费和其它成本投入可得出的函数关系式;(2)利用二次函数的单调性求出当02x ££时,()f x 的最大值,由基本不等式求出当25x <£时,()f x 的最大值,即可得出答案.【小问1详解】(1)由题意可得()()()1020101030f x W x x x W x x=--=-()22105230,025030100,024804830,251030,2511x x x x x x x x x x x x x x ì´+-££ì-+££ïï==íí-<£´-<£ïï+î+î.故()f x 的函数关系式为25030100,02()48030,251x x x f x x x x xì-+££ï=í-<£ï+î.【小问2详解】(2)由(1)22319150,025030100,02102()48030,251651030(1),2511x x x x x f x x x x x x x x ììæö-+££ï-+££ïç÷ïïèø==íí-<£éùïï-++<£+êúïï+ëûîî,当02x ££时,()f x 在30,10éùêúëû上单调递减,在3,210æùçúèû上单调递增,且(0)100(2)240f f =<=,max ()(2)240f x f \==;当25x <£时,16()51030(1)1f x x x éù=-++êú+ëû,16181x x ++³=+Q 当且仅当1611x x=++时,即3x =时等号成立. max ()510308270f x \=-´=.的因为240270<,所以当3x =时,max ()270f x =.当投入的肥料费用为30元时,该单株水果树获得的利润最大,最大利润是270元.19. 已知集合,A B 中的元素均为正整数,且,A B 满足:①对于任意,i j a a A Î,若i j a a ¹,都有i j a a B Î;②对于任意,m k b b B Î,若m k b b <,都有k mb A b Î.(1)已知集合{}1,2,4A =,求B ;(2)已知集合{}()2,4,8,8A t t =>,求t ;(3)若A 中有4个元素,证明:B 中恰有5个元素.【答案】(1){}2,48B =,(2)16t =(3)证明见解析【解析】【分析】(1)根据①可得2,4,8都是B 中的元素,进而证明B 中除2,4,8外没有其他元素即可求解,(2)根据条件①②,即可求解,(3)根据题意可得41a a ,3324421123,,,,a a a a a a a a a a ,4321a a a a 是A 中的元素,进而根据11a =和12a ³可得{}2341111,,,A a a a a =,进而{}3456711111,,,,a a a a a B Í,接下来假设B 中还有其他元素,且该元素为k ,利用k 与31a 的关系得矛盾求解.【小问1详解】由①可得2,4,8都是B 中的元素.下面证明B 中除2,4,8外没有其他元素:假设B 中还有其他元素,分两种情况:第一种情况,B 中最小的元素为1,显然81不是A 中的元素,不符合题意;第二种情况,B 中最小的元素为2,设B 中除2,4,8外的元素为()2k k b b >,因为2k b 是A 中的元素,所以k b 为4或8,而4,8也是B 中的元素,所以B 中除2,4,8外没有其他元素.综上,{}2,4,8B =.【小问2详解】由①可得,8,16,32,2,4,8t t t 都是B 中的元素.显然84,82,162t t t <<<,由(2)可得,422,,8816t t t 是A 中的元素,即,,248t t t 是A 中的元素.因为842t t t t <<<,所以2,4,8842t t t ===,解得16t =.【小问3详解】证明:设{}12341234,,,,A a a a a a a a a =<<<.由①可得,1224,a a a a 都是B 中的元素.显然1224a a a a <,由②可得,2412a a a a 是A 中的元素,即41a a 是A 中的元素.同理可得3324421123,,,,a a a a a a a a a a ,4321a a a a 是A 中的元素.若11a =,则34344122a a a a a a a a =>,所以3412a a a a 不可能是A 中的元素,不符合题意.若12a ³,则32311a a a a a <<,所以321211,a a a a a a ==,即23213121,a a a a a a ===.又因为44443211a a a a a a a <<<<,所以444123321,,a a a a a a a a a ===,即441a a =,所以{}2341111,,,A a a a a =,此时{}3456711111,,,,a a a a a B Í.假设B 中还有其他元素,且该元素为k ,若31k a <,由(2)可得71a A k Î,而7411a a k>,与{}2341111,,,A a a a a =矛盾.若31k a >,因为31k A a Î,所以131,1,2,3,4i k a i a ==,则31,1,2,3,4i k a i +==,即{}45671111,,,k a a a a Î,所以B 中除3456711111,,,,a a a a a 外,没有其他元素.所以{}3456711111,,,,B a a a a a =,即B 中恰有5个元素.【点睛】方法点睛:对于以集合为背景的新定义问题的求解策略:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.3、涉及有交叉集合的元素个数问题往往可采用维恩图法,基于课标要求的,对于集合问题,要熟练基本的概念,数学阅读技能、推理能力,以及数学抽象和逻辑推理能力.。
广元市实验中学高2013级2014年春半期考试数学理科试题(A 卷)考试时间 100 总分 150 命题人 胡春华 审题人 肖勇 .第一卷一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的).1、在ABC ∆中,1=a , 30=A ,60=B ,则b 等于( )A.23B. 21C.3D. 22、已知数列,12,,7,5,3,1-n 则53是它的( )A .第22项B .第23项C .第24项D .第25项3、已知232,21sin ππ<<-=x x ,则角x = ( ) A.65π B.32π C.34π D.67π 4、在一个三角形的三边长之比为7:5:3,则其最大的角是( )A. 2πB. 32π C. 43π D. 65π5、等比数列{}n a 中,5145=a a ,则=111098a a a a ( )A .10B .25C 50D .75 6、数列{}n a 的前n 项和为221n S n =+,则n a =( )A .n a =4n-2B .n a =2n-1C . ⎪⎩⎪⎨⎧≥-==)2(24)1(3n n n a n D . ⎪⎩⎪⎨⎧≥-==)2(24)1(2n n n a n7、 若在三角形ABC 中,已知bc c b a ++=222,则角A 为( )A .60B . 120C .30D .60或1208、在∆ABC 中,若B a b sin 2=,则A 为( )A .30 B .60 C .120或60 D .30或1509、如果54sin ),,2(=∈αππα,则)4cos()4sin(παπα+++等于( ) A .524 B .524- C .523 D .523- 10、下表给出一个“直角三角形数阵”21 41 1 21 4123 43 83 163 ……满足每一列的数成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为),,(*∈≥N j i j i a ij ,则83a 等于( )A.87 B. 21 C. 41D . 1 二、填空题:(本大题共5小题,每小题5分,共25分.把答案填在答题卷上.)11、已知∆ABC 中,∠A 60=︒,a sin sin sin a b cA B C++++=12、若33tan =α,则 αα2cos 2cos =13、设n S 是等差数列}{n a 的前n 项和,若31105=S S ,则=2015S S14、已知等比数列}{n a 是递增数列,n S 是}{n a 的前n 项和,若31,a a 是方程09102=+-x x 的两个根,则=4S15、两个等差数列{}{},,n n b a 满足,327......2121++=++++++n n b b b a a a n n 则55b a=_________三、解答题:(本大题共6小题,满分75分。
解答须写出文字说明、证明过程和演算步骤。
) 16、(本小题满分12分)设}{n a 是公比为正数的等比数列, 21=a ,423+=a a .(1)求}{n a 的通项公式;(2)设}{n b 是首项为1,公差为2的等差数列,求数列}{n n b a +的前n 项和n S .17、(本小题满分12分)如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6, 求AB 的长.18、(本小题满分12分)已知向量)cos 23sin 21,21(x x a +=与),1(y b =共线,设函数)(x f y =(1)求函数)(x f 的最小正周期及值域;(2)已知锐角ABC ∆的三个内角分别为C B A ,,若有,3)3(=-πA f 2,1==AB AC ,求ABC ∆的面积ABDC19、(本小题满分13分)已知在ABC △中,552cos ,10,45===∠C AC B(1)求A sin 和BC 的值 ;(2)设AB 的中点为D ,求中线CD 的长。
20.(本小题满分13分) (本小题满分13分)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的通项公式.(2)令,...2,1,ln 13==+n a b n n ,求数列{}n b 的前n 项和T .21.(本小题满分13分) 已知等差数列}{n a 前三项的和为-3,前三项的积为8 (1)求等差数列}{n a 的通项公式(2)若数列132,,a a a 成等比数列,求数列|}{|n a 的前n 项和理科数学试题A 参考答案第一题答案11 2 1223133514 40 156512三、解答题:(本大题共6小题,满分75分。
解答须写出文字说明、证明过程和演算步骤。
)16、(本小题满分12分)设{a n }是公比为正数的等比数列, 21=a ,423+=a a . (1)求{}n a 的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{}n nb a+的前n 项和n S .解:(1)设q 是等比数列{a n}的公比,则由21=a ,423+=a a 得4222+=q q ,即0222=--q q解得2=q 或1-=q (舍去),∴2=q ,{}na 的通项公式为n n a 2=。
(2)由2题意,122)1(1-=⨯-+=n n b n 所以)()(2121n n n b b b a a a S ++++++=222)121(21)21(221-+=-++--=+n n n n n17、(本小题满分12分)解:在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB =ADsin B ,∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6. 18、(本小题满分12分)已知向量)cos 23sin 21,21(x x a +=与),1(y b =共线,设函数)(x f y =(1)求函数)(x f 的最小正周期及值域;(2)已知锐角ABC ∆的三个内角分别为C B A ,,若有3)3(=-πA f 2,1==AB AC ,求ABC ∆的面积?解:(1) 由题意,得)3sin(2cos 3sin π+=+=x x x y∴π2=T值域是]2,2[-(2))3sin(2cos 3sin π+=+=x x x y3sin 2)3(==-∴A A f π∵锐角ABC ∆的三个内角分别为C B A ,,∴3π=A ∵2,1==AB AC 23=∆S 19、已知在ABC △中,552cos ,10,45===∠C AC B(1)求A sin 和BC 的值 ;(2)设AB 的中点为D ,求中线CD 的长? 解(1)552cos =C 55s i n =∴C 由正弦定理得ABCC AB B AC sin sin sin ==得2=AB 由余弦定理得23=BC10103sin =∴A (2)在BDC ∆中,由余弦定理得13=CD20.(本小题满分12分) 设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的通项公式.(2)令,...2,1,ln 13==+n a b n n 求数列{}n b 的前n 项和T .解:(1)由已知得1231327:(3)(4)3.2a a a a a a ++=⎧⎪⎨+++=⎪⎩,解得22a =.设数列{}n a 的公比为q ,由22a =,可得1322a a qq ==,.又37S =,可知2227q q ++=,即22520q q -+=,解得12122q q ==,. 由题意得12q q >∴=,.11a ∴=.故数列{}n a 的通项为12n n a -=.(2)由于31ln 12n n b a n +==,,,, 由(1)得3312n n a +=3ln 23ln 2nn b n ∴==又 13l n 2n n b b +-={}n b ∴是等差数列.n n b b b T +++= (21)故3(1)ln 22n n n T +=.21.(本小题分15分) 已知等差数列}{n a 前三项的和为-3,前三项的积为8 (1)求等差数列}{n a 的通项公式(2)若数列132,,a a a 成等比数列,求数列|}{|n a 的前n 项和 解(1)设等差数列}{n a 的公差为d ,则d a a d a a 2,1312+=+=由题意得⎩⎨⎧=++-=+8)2)((3331111d a d a a d a解得⎩⎨⎧-==321d a 或⎩⎨⎧=-=341d a53)1(32+-=--=∴n n a n 或73)1(34-=-+-=∴n n a n (2)当53)1(32+-=--=n n a n 时,132,,a a a 不是等比数列当73)1(34-=-+-=n n a n 时,132,,a a a 是等比数列 ⎩⎨⎧≥-=+-=-=∴3,732,1,73|73|||n n n n n a n记|}{|n a 的前n 项和为n S)73()743()733(5||||||432-⨯++-⨯+-⨯+=++++=n a a a S S n n10211232+-=n n 当2=n 时,满足此式 综上=n S ⎪⎩⎪⎨⎧>+-=1,1021123,1,42n n n n。