省煤器结构比较
- 格式:doc
- 大小:748.50 KB
- 文档页数:6
省煤器结构省煤器是现代锅炉的一个必备部件,其作用利用锅炉尾部烟气的热量加热给水以降低排烟温度。
应用省煤器后可提高锅炉热效率。
一、省煤器的结构1.铸铁式省煤器铸铁式省煤器由一系列铸铁外肋管和铸铁连接弯头构成。
省煤器管作卧式串联布置,给水由下而上流动,为了避免性脆的铸铁管因蒸汽骤凝发生水击而破裂,省煤器出口水温应比饱和温度至少低30度。
铸铁式省煤器的安全性较差,连接弯头多,易漏汇,在其连接系统上要有烟气旁通及直接向锅筒供水的给水旁路以便在锅炉起动,停炉或低负荷运行时能将省煤器退出运行并能在运行中抢修。
铸铁式省煤器鳍片管现已标准化生产,优点为壁厚,耐腐蚀,可用于给水未经除氧的工业锅炉及烟气外部腐蚀严重区域。
但易漏汇,笨重和易堵灰。
应安装压缩空气吹灰器,不宜用饱和蒸汽吹灰。
2.钢管式省煤器钢管式省煤器由一系列并联蛇形管和集箱构成。
管子作水平*列布置,一般布置在炉墙外,集箱和管子在墙外焊连接。
在大型锅炉中,自集箱引出的蛇形管为数众多。
为避免管子穿墙时漏风过多,可采用集箱在炉墙外与少量穿墙连接管连接,连接管再在墙内和众多蛇形管连接。
省煤器管中工质一般由下向上流动,以利于排除空气,避免产生局部氧气腐蚀,在沸腾式省煤器中可避免发生汽塞现象。
在超临界压力锅炉中,由于水质好且不会发生汽泡,所以省煤器也可布置成工质为自上而下的流动方式。
钢管式省煤器可制成沸腾式或非沸腾式省煤器,省煤器内有蒸汽产生,锅筒水可进入省煤器。
二、省煤器的磨损与腐蚀锅炉中的烟气,当燃用固体燃料时,常带有大量灰粒。
当灰粒随烟气流过对流受热面管子时,由于灰粒的冲击和切削作用会对受热面管子产生磨损。
当燃用大量发热量低而灰分高的燃料时更易发生磨损。
当燃用含硫燃料时,烟气中的三氧化硫在受热面壁温低于烟气露点时会发生受热面腐蚀。
磨损和腐蚀对锅炉寿命和安全运行危害较大。
省煤器及其同类结构的受热面的管子在同一烟道截面和同一管子圆周上的磨损程度都不相同。
此外,对磨损严重的省煤器管段或弯头处可采用防磨罩方法来减轻磨损。
锅炉省煤器讲解一.省煤器的作用和类型省煤器是利用锅炉尾部的烟气热量来加热给水的一种热交换装置,在现代电站锅炉中,随着蒸汽参数和容量的提高,为了有效地利用锅炉尾部低温烟气的热量,降低排烟温度,提高锅炉的效率,只依靠增加蒸发受热面的方法,不但不经济,而且受到很大限制。
因为蒸发受热面中工质温度等于工质在工作压力下的饱和温度,烟气向蒸发受热面中的工质传热,就必须保持一定的温差,故烟温必须高于工质温度。
可见,蒸发受热面绝不能将烟气冷却到低于或达到工质饱和温度。
省煤器中的工质是给水,给水的温度比饱和温度低得多。
故而传热温差很大。
其次,水在省煤器中为强制流动,工质流速高,因此与蒸发受热面相比,在同样的烟气温度条件下,其传热效果好得多,也就是说,在吸收同样热量的情况下,可以节省金属材料。
为此,电厂中用管径较小,管壁较薄,传热温差较大,价格较低的省煤器来代替部分造价较高的蒸发受热面。
另外,采用省煤器可使进入汽包的给水温度得到提高,减小汽包壁温与给水温度之差,从而减小汽包所产生的热应力。
因此,省煤器的作用不仅在于省煤,实际上已经成为现代锅炉中不可缺少的一个组成部件。
接照省煤器出口工质的状态可将其分为沸腾式和非沸腾式两种。
如出口水温低于饱和温度,叫非沸腾式省煤器。
如果水被加热到饱和温度并产生部分蒸汽,就叫做沸腾式省煤器。
对于中压锅炉,由于水的汽化潜热大,因而蒸发吸热量大,为不使炉膛出口烟温过低,有时就采用沸腾式省煤器,以减少炉膛内蒸发吸热量。
沸腾式省煤器中生成的蒸汽量一般不应超过20%,以免省煤器中流动阻力过大和产生汽水分层。
随着工作压力的提高,水的汽化潜热减小,预热热增大,省煤器内工质几乎总是处于非沸腾状态。
我厂采用的是非沸腾式,禁止省煤器在运行中产生蒸汽。
省煤器按其所用材料不同可分为铸铁式和钢管式两种.铸铁式耐磨损和腐蚀,但不能承受高压,目前只用在中压以下的小型锅护上。
钢管式省煤器可用于任何压力,容量及任何形状的烟道中,与铸铁式相比,具有体积小,重量轻,价格低的优点,因而大型锅炉均采用钢管式省煤器。
省煤器一.什么是省煤器省煤器就是在锅炉尾部烟道中加热锅炉给水的受热面,给水在进入锅炉前先经过它,用以吸收烟气的热量,降低了烟气的排烟温度,节省了能源,提高了效率,所以称之为省煤器。
(省煤器一词源于燃煤锅炉,但对其他燃料系统也习惯称省煤器)二.省煤器分类1.按给水被加热的程度:可分为沸腾式(进入锅筒给水温度即为锅筒压力下的饱和温度)和非沸腾式(进入锅筒给水温度接近锅筒压力下的饱和温度)两种。
2.按制造材料分:有铸铁和钢管省煤器两种。
非沸腾式省煤器多采用铸铁制成的,但也有用钢管制成的,而沸腾式省煤器只能用钢管制成。
铸铁省煤器多应用于压力≤2.5MPa的锅炉。
如压力超过2.5MPa时,应当采用钢管制成的省煤器。
3.按装置的形式分:有立式及卧式两种。
4.按排烟与给水的相对流向分:有顺流式、逆流式和混合式三种。
5.按结构形式分:光管省煤器和翅片式省煤器。
翅片式省煤器包括:H型省煤器(用得较多)和螺旋翅片省煤器。
三.省煤器作用1. 提高给水温度,减小水冷壁压力,提高锅炉蒸发量;2.吸收低温烟气的热量,降低排烟温度,提高锅炉热效率,节省燃料;3.给水温度提高了,进入汽包就会减小温差造成的热应力,改善了锅炉的工作条件,延长锅炉使用寿命;4.由于给水进入汽包之前先在省煤器加热,因此减少了给水在受热面的吸热,可以用省煤器来代替部分造价较高的蒸发受热面。
四.省煤器布置特点(1)逆流布置,增大传热温差;(2)水由下而上(下面开口为进水管,上为出水管),便于排出气体,避免腐蚀;烟气自上而下,吹灰作用。
五.省煤器再循环的作用在锅炉(汽包锅炉)的启动过程中,由于其汽水管道的循环没有建立,即锅炉给水处于停滞状态,此时省煤器内的水处于不流动的状态,随着锅炉燃烧的加强,烟气温度的提高,省煤器内的水容易产生汽化,使省煤器的局部处于超温状态。
为了避免这个情况的出现,从汽包的集中下水管再接一管道到省煤器的入口,作为再循环管道,使省煤器内的水处于流动状态.避免其汽化。
第八章省煤器和空气预热器第一节省煤器一、省煤器的作用及种类1、省煤器的作用省煤器的作用是利用锅炉尾部烟气的热量加热锅炉给水。
省煤器对锅炉的作用:(1)节省燃料:在现代锅炉中,燃料燃烧生成的高温烟气,将热量传递给水冷壁、过热器和再热器后,烟气温度还很高,如不设法利用,将造成很大的热损失。
在锅炉尾部装设省煤器,可降低烟气温度,减少排烟热损失,因而节省燃料。
(2)改善汽包的工作条件:由于采用省煤器,提高了进入汽包的给水温度,减少了汽包壁与给水之间的温度差而引起的热应力,从而改善了汽包的工作条件,延长了使用寿命。
(3)降低锅炉造价:由于水的加热是在省煤器中进行的,用省煤器这样的低温材料代替价格昂贵的高温水冷壁材料,从而可降低锅炉造价。
二、省煤器的类型及结构特点1、按材料分类省煤器按使用材料可分为钢管省煤器和铸铁省煤器。
目前大中容量锅炉广泛采用钢管省煤器,其优点是:强度高,能承受冲击,工作可靠,传热性能好,重量轻,体积小,价格低廉;缺点是:耐腐蚀性差,但现代锅炉给水都经严格处理,管内腐蚀已彻底得到解决。
2、按出口参数分类省煤器按出口水温可分为沸腾式省煤器和非沸腾式省煤器。
3、按结构形式分类省煤器按结构形式分为光管式、鳍片式、膜片管式(简称膜式)和螺旋肋片管式四种,其结构如图8—1所示。
(a)(b)(c)(d)图8—1省煤器按结构形式(a)光管;(b)鳍片管;(c)膜片管;(d)螺旋肋片管图8—2钢管式省煤器的结构l—蛇形管;2—进口联箱;3—出口联箱;4—支架;5—支承架;6—锅炉钢架;7—炉墙;8—进水管4、按管子排列方式分类省煤器按蛇形管的排列方式分为错列和顺列两种,如图8—1(a)(d)为顺列、(b)(c)为错列。
错列布置传热效果好,结构紧凑,并能减少积灰,但磨损比顺列布置严重、吹灰困难;顺列布置容易对管子进行吹灰、磨损轻,但积灰严重。
三、省煤器的布置方式省煤器按蛇形管在烟道中的布置方式分为纵向布置和横向布置两种,如图8—3所示。
省煤器(d e)作用:1.吸收低温烟气(de)热量,以降低排烟温度,提高锅炉效率,节省燃料;2.由于给水在进入蒸发受热面之前,先在省煤器内加热,这样就减少了水在蒸发受热面内(de)吸热量,以廉价(de)省煤器受热面代替部分贵重(de)蒸发受热面.3.对于汽包锅炉,提高了进入汽包(de)给水温度,减少了给水与汽包壁之间(de)温差,从而使汽包热应力降低,延长汽包寿命.省煤器(de)类型及结构特点:目前广泛使用(de)是钢管省煤器.1. 按出口参数:沸腾式省煤器和非沸腾式省煤器.沸腾式:出口水温达到饱和温度,并且还有部分水蒸发汽化(de)省煤器.汽化水量一般不超过给水量(de)20%.非沸腾式:出口水温低于该压力下(de)沸点,即未达到饱和状态,一般低于沸点20~25℃.机组容量↑,蒸发吸热量比例↓,∴中压锅炉:沸腾式;高压以上锅炉:非沸腾式.2. 按结构形式:光管式、鳍片式、膜式、螺旋肋片管式.3. 按管子排列方式:错列:积灰少,换热强,磨损大顺列:积灰多,换热弱,磨损小省煤器(de)布置方式:省煤器在尾部烟道中多为卧式布置,水在蛇形管内自下而上流动,烟气在管外自上而下横向冲刷管壁,以实现烟气与给水之间(de)逆向流动换热.有利于停炉期间排除积水,减轻停炉期间(de)腐蚀;水在管内自下而上流动有利于排除空气,可避免引起局部(de)氧腐蚀;烟气在管外自上而下流动有利于吹灰;水和烟气逆向流动可加大传热平均温差,提高对流换热.省煤器按蛇形管在烟道中(de)布置方式分为垂直于锅炉前墙或平行于锅炉前墙两种.尾部烟道宽度大,深度小.垂直于前墙:管子短,支吊简单,全部管子局部磨损.平行于前墙:管子长,支吊复杂,部分管子磨损.省煤器(de)支吊方式:省煤器(de)支吊方式有支承结构与悬吊结构两种.中小型锅炉多采用支承结构,大型锅炉多采用悬吊结构.空预器(de)作用:吸收低温烟气(de)热量加热燃烧所需空气,以降低排烟温度,提高锅炉效率;空气被预热有利于燃料(de)破碎和研磨,可作为制粉系统(de)干燥剂和输送介质;空气被预热强化燃料(de)着火和燃烧,减少不完全燃烧热损失,提高锅炉效率;空气被预热能提高炉膛内烟气温度,强化炉内辐射换热.空预器(de)类型:按照换热方式可分为传热式和蓄热式两大类.传热式:热量连续通过受热面由烟气传给空气,且烟气和空气各有自己(de)通路.代表:管式空预器.蓄热式:烟气和空气交替通过受热面.当烟气流过受热面时,热量由烟气传给受热面金属,并被积蓄起来;当空气流过受热面时,热量被受热面传给空气.代表:回转式空预器.回转式空气预热器利用烟气和空气逆向交替通过同一蓄热板受热面,完成热量(de)交换.回转式空预器分受热面回转(也称容克式)和风罩回转(也称罗特米勒式)两种,受热面回转式空预器有二分仓和三分仓两种,风罩回转式有单流道和双流道两种.回转式空预器与管式相比结构紧凑,外形小,重量轻,受热面壁温高不易腐蚀.但结构复杂,蓄热板间易积灰,漏风量较大.大型电站锅炉多采用回转式空预器.受热面回转式空预器:按进风仓(de)数量,容克式空预器可分为二分仓和三分仓.二分仓空预器分为烟气流通区、空气流通区和密封区.若被加热(de)空气需要不同温度,则采用三分仓空预器,空气流通区分为一次风和二次风两个通道.风罩回转式空预器:烟气从上向下流动,空气从下向上流动,受热面静止不动,通过上下同步(de)风罩旋转来改变空气和烟气流过受热面(de)位置,使烟气和空气交替流过受热面.无论是受热面回转式空预器还是风罩回转式空预器,都存在漏风严重(de)问题.漏风可分为携带漏风和间隙漏风.携带漏风是指受热面或风罩回转时,会将残留在传热元件间隙中(de)空气携带入烟气中,或烟气携带入空气中.由于转子回转速度很低,且波形板间空间有限,因此携带漏风量很小,一般不超过总风量1%.间隙漏风是由于转动部件与静止部件间存在一定(de)间隙,空气与烟气之间(de)较大压差使得有较多(de)空气通过间隙泄漏到烟气中.间隙漏风量较大,一般占总风量8~10%,若密封不好可达20~30%,严重影响锅炉(de)经济安全性.空预器漏风(de)影响:送入炉膛(de)风量不足,甚至造成锅炉出力下降;不完全燃烧热损失↑,锅炉效率↓;送引风机电耗↑;排烟热损失↑,锅炉热效率↓.耐火层用耐火砖砌筑,绝热层和密封层用粘土砖(红砖或青砖)砌筑(de)炉墙为重型炉墙,见图2—107.为了降低炉墙外表温度,减少散热损失,耐火砖与粘土砖之间可留有空气夹层.这种炉墙重量大,一般由地面承受重量,密封性能差,大多用在没有水冷壁管或水冷壁管稀少(de)小型锅炉上.耐火层用耐火砖砌筑,绝热层用保温砖和苏维利特板(石棉镁板),密封层用薄钢板(de)炉墙称为轻型炉墙.其重量较重型炉墙显着减轻.炉墙(de)重量由钢架支承,密封性能较好,采用光管水冷壁(de)大中型锅炉(de)炉墙大多为轻型炉墙.敷管炉墙(de)耐火层用耐火混凝土与水冷壁管浇注在一起,水冷壁管牛埋在耐火混凝土内.绝热层由保温混凝土和硅藻土板两层组成,密封层采用密封涂料.敷管炉墙不但简化了炉墙(de)结构,减轻了炉墙(de)重量,节省了金属,而且使施工进度加快.但敷管炉墙(de)刚性较差,运行时易产生振动,水冷壁管损坏更换时比较困难.当锅炉采用膜式水冷壁时,由于膜式水冷壁(de)背火侧温度一般不超过400℃,故可省去耐火层而直接由绝热层和密封层组成炉墙.风机是将机械能转变为流体(de)势能和动能(de)动力设备.风机(de)作用:供给燃料燃烧所需要(de)空气;将烟气及飞灰排出炉外;克服(de)流动阻力.风机型式:离心式和轴流式.离心式风机具有较悠久(de)发展历史,具有结构简单、运行可靠、效率较高、制造成本较低、噪音小等优点.但随着锅炉单机容量(de)增长,离心风机(de)容量受到叶轮材料强度(de)限制,不能随锅炉容量(de)增加而相应增大,而轴流式风机具有容量大,且结构紧凑、体积小、重量轻、耗电低、低负荷时效率高等优点.轴流风机与离心风机相比有以下主要特点:(1)轴流风机如制造成动叶片或静叶片可调节,则调节效率高并可使风机在高效率区域内工作.因此,运行费用降低.轴流风机效率最高90%,机翼型叶片离心风机效率%,设计负荷时(de)效率相差不大.低负荷时,动叶或可调轴流式风机(de)效率要比具有入口导向装置调节(de)离心风机高许多.(2)轴流风机对风道系统风量变化(de)适应性优于离心风机.如风道系统(de)阻力计算不很准确,实际阻力大于计算阻力,或遇到煤种变化所需风量、风压不同,使机组达不到额定出力.轴流风机可以采用动(静)叶片调节关小或开大动叶(de)角度来适应风量、风压(de)变化,而对风机(de)效率影响却很小.(3)轴流风机在重量、飞轮效应值等方面比离心风机好.轴流风机允许采用较高(de)转速和流量系数,所以,在相同(de)风量、风压参数下轴流风机(de)转子较轻,即飞轮效应值较小,使得轴流风机(de)启动力矩大大地小于离心风机(de)启动力矩.一般轴流式送、引风机(de)启动力矩只有离心式(de)~%.(4)轴流风机(de)转子结构要比离心风机(de)复杂,旋转部件多,制造精度要求高,叶片材料(de)质量要求也高.轴流风机运行可靠性比离心风机稍差.但是动(静)叶可调轴流式风机由于均从国外引进技术,从设计、结构、材料和制造工艺上加以改进提高,使目前轴流风机(de)运行可靠性可与离心风机相媲美.(5)若轴流风机与离心风机(de)性能相同,则轴流风机噪音强度比离心式风机高.因为轴流风机(de)叶片数往往比离心风机多两倍以上,转速也比离心风机高.然而,对于性能相同(de)两种风机,把噪音消减到允许(de)噪音标准-85分贝,在消音器上所花费(de)投资相差不大.OFA是消旋风,减少四角切圆偏差,降低NOX,减少炉膛出口烟温偏差.SOFA是燃尽风能降低NOX,减少炉膛出口烟温偏差,降低飞灰,减少CO生成.V型是浓淡分离,在燃烧器出口形成回流区,卷吸高温烟气,稳定和强化燃烧(de).大概是这样(de),应该是上锅四角切圆锅炉引进(de)技术流派才有这些很多层(de)燃尽风,不过燃尽风这玩意层数多了,对消除烟温偏差确实很8错,OFA叫燃尽风,SOFA叫分离燃尽风,600MW以上上锅(de)炉型除了这两个,还有个COFA叫紧凑燃尽风.搞那么多层燃尽风,目(de)就是所谓分级配风,消除NOx(de)生成.不过实战中,对消除烟温偏差效果更好.上锅四角切圆燃烧(de)这些个OFA,SOFA,COFA燃尽风,目(de)跟前后墙对冲旋流燃烧器技术流派(de)燃尽风其实目(de)都差不多,就是拉开于主燃烧器区域(de)距离,使主燃烧区在微缺氧(de)环境下(即还原性气氛)燃烧,抑制热力型NOx生成,但是又要照顾到飞灰可燃物,就在燃尽风这里再补充进去一部分风.判断锅炉结渣情况方法:(1)观察炉膛出口烟温,折焰角烟气温度,上述温度是结渣情况最直接(de)反映.(2)通过观察捞渣机上是否有大渣、炉底是否有落渣(de)声音是判断有无结渣(de)间接(de)方法.(3)通过燃烧器层观察孔可以观察燃烧器喷口附近是否结渣.(4)通过炉膛观察孔可以观察锅炉水冷壁和屏式过热器区域是否结渣.(5)注意监视水冷壁及屏式过热器壁温温差,温差大于50X:(经验数值),就有可能存在局部结渣现象.(6)燃烧稳定(de)情况下注意监视壁温有无突升(de)现象,如果发现局部壁温突升,说明炉膛掉大焦.(7)如果炉膛负压不正常波动、引风机电流不正常晃动,有可能是落焦引起(de).(8)空气预热器出口排烟温度不正常升高,是锅炉受热面结渣或积灰引起(de).(9)主汽温、再热汽温、壁温异常升高,减温水流量异常升高,可能是结渣引起(de).(10)停炉检修时对燃烧器和受热面进行检查,如果发现某处结渣,对以后(de)重点检查监视是最好(de)第一手资料.。
H型省煤器的结构设计与强度分析1. 引言在燃煤锅炉中,省煤器是一种重要的设备,用于提高锅炉热效率,减少燃煤消耗。
本文将重点讨论H型省煤器的结构设计与强度分析。
2. H型省煤器的结构H型省煤器是一种多管道、多层次的结构设计。
它由煤气进口、煤气出口、烟气进口、烟气出口以及大量组装在支承管道上的省煤管组成。
2.1 煤气进口H型省煤器的煤气进口位于煤气侧顶部,通常与煤气加热器相连。
它的设计应考虑到煤气的流量、压力和温度,以保证煤气的均匀分布,避免煤气流动中的阻力损失。
2.2 煤气出口H型省煤器的煤气出口位于煤气侧底部,通常与旁边的锅炉烟道相连。
出口设计应考虑到煤气的排放速度和温度,以减少煤气垂直流动的压力损失。
2.3 烟气进口烟气进口位于烟气侧顶部,通常与锅炉的烟道相连。
进口设计应考虑到烟气的流量、温度和湿度,以保证烟气在省煤器中的均匀分布,避免烟气的渗透损失。
2.4 烟气出口烟气出口位于烟气侧底部,通常与烟气冷凝器相连。
它的设计应考虑到烟气的排放速度和温度,以减少烟气流动中的压力损失。
2.5 省煤管H型省煤器中的省煤管通常具有对流屏障和尾端受热面。
省煤管的设计应考虑到管壁的厚度、材料的强度和热传导性能,以提高传热效率和避免安全隐患。
3. 强度分析对于H型省煤器的强度分析,我们需要考虑以下几个方面:3.1 热应力分析在煤气侧和烟气侧的温度差异的作用下,省煤器的管壁会受到热应力的影响。
我们需要进行热应力计算,以确保管道的强度和稳定性。
3.2 结构强度分析H型省煤器承受着大量煤气和烟气的流动冲击,因此结构的强度分析是至关重要的。
我们需考虑各部位的应力分布、材料的选择和焊接工艺,以保证结构的安全性和可靠性。
3.3 波动分析省煤器工作时煤气和烟气呈周期性波动,这会导致应力集中和疲劳破坏。
我们需要进行波动分析,以评估省煤器在工作周期内的强度和耐久性。
4. 结论H型省煤器的结构设计与强度分析是确保该设备稳定运行和有效降低煤炭消耗的关键。
注:以基管32X4的管子,烟气横向冲涮受热面来计算:
一、面积计算:1米的光管受热面积:F=3.14X0.032X1=0.1平米
1米的膜式管受热面积:F=3.14X0.032X1+0.03X1X2-0.004X2=0.062平米
(注:扁钢选择30X4)
1米的扁钢缠绕翅片管受热面积:F=3.14X0.032X1+3.14X(0.044X0.044-0.032X0.032)÷4÷0.866X28=0.033平米
(注:扁钢选择12X4,与管子轴线夹角60度)
1米的整体型翅片管受热面积:F=0.0312平米
分析:由以上计算可知,受热面积大小依次为:膜式>扁钢缠绕>整体型翅片管>光管比例为6.2:3.3:3.12:1,但综合传热效果依次为:
整体型翅片管>扁钢缠绕>膜式>光管。
比例为3.8:2:1.5:1,原因是因为,传热是有温度梯度的,而整体型翅片管是的结构是与温度梯度相符合,不会造成温度集中。
这也正是整体型一次挤压成型专有技术特长所在。
温度集中会造成受热热应力集中,热应力集中点强度下降,膨胀不均,(扁钢容易开裂就是这样形成的)
二、耐磨特性:耐磨特性依次为:整体型翅片管>扁钢缠绕>膜式>光管。
原因分析:烟气中含有灰分,灰分对管束进行冲刷,并在管子背面形成卡门涡流,而对光管而言,相对中心径向60度是冲刷最严重的点,这就是为什么第一排管子这个点最先爆管。
但不同的是,整体型翅片管及扁钢缠绕对烟气有个导流作用,灰份对受热面的冲涮就降低多了。
整体型翅片管又具有整体性能,不会开裂不会温度集中强度下降,因而抗冲涮性能是取强的。
三、寿命:寿命是与受热面的耐磨特性一致的。
四、性能持续性:在受热面积一定的呢况下,(扁钢开裂造成受热面积减少)积灰是造成性能下降的主要原因。
积灰是因为灰的流速在某一点降低甚至为零,灰就积聚,而卡门涡流就是积灰的主要原因。
卡门涡流发生在管子的背面径向60~120度区域,而积灰就在此区域,整体型的翅片是梯状结构,一方面对灰的导流,另一方面消除了卡门涡流,还符合温度梯度。
因些不积灰。
长时间运行后对性能影响也不大。
方案比较:
75t/h中温中压锅炉,现运行为膜式,总重42吨
如果用光管,总重量:~48吨
如果用扁钢缠绕翅片管,总重量约:36吨
如果用整体型翅片管,总重量:32.6吨,
按7年计算,整体型翅片管进行一次大修,进行更换一次,而其它结构形式要进行二次更换,一次安装维修费用按20W计算。
费用如下:
小修停炉检修每次费用m万元,大修每次n万元
费用如下
光管:A+21m+2n
膜式:B+21m+2n
扁钢缠绕:C+35m+2n
整体型:D+7m+n
由上面工式可看出,设备运行维护费是关键,成本费基本一致。
因此选用好的产品对长期的效益来说是合适的选择,是对的选择。
用事实说话才是硬道理,我们有了许多已经走在前面,他们已经尝到
甜头,例如,山东华鲁恒升3X280t/h高温高压,山东东营华泰3X260t/h 等等,另还有陕西榆林2X240t/h改造,还有其它山西山维,径洛电厂,鲁丽电厂等等近十来家用户,通过与已经运行四年以上的用户的合作,现在他们都是成了我们产品的广告。
希望心连心成为我们的下一个广告。
另:原有省煤器烟气侧阻力在500Pa左右,引风机压头H=3500Pa,流量Q=120000m3/h则运行工况时功率P=3500X120000÷3600÷0.66=176767W=178KW
而通过改造:省煤器烟气侧阻力在200Pa, 引风机压头H=3200Pa,流量Q=120000m3/h则运行工况时功率P=3200X120000÷3600÷0.66=161616W=162KW
引风机功率下降16KW
按锅炉每年运行8000小时计算,通过改造,每年耗电节省16X8000=128000KW.h,按电价0.50元计算,则每年省电64000元。
改造方案对比
省煤器重量减轻,减少了钢架的载荷,安全性能加强。
下图为改造省煤器总图。