低低温省煤器烟气工艺系统图
- 格式:pdf
- 大小:213.33 KB
- 文档页数:1
燃机电厂低压省煤器再循环系统智能一键启停功能设计与应用摘要:低压省煤器再循环系统作为汽轮机重要的系统之一,为机组的安全可靠运行提供重要的保障。
在目前自动化水平越来越高的要求下,电厂APS系统的应用被大家广泛注意,其中分系统系统的一键启停功能是APS中的重要组态部分。
如何能够在不需要人工干预的情况下,在机组启动时通过低压省煤器再循环系统运行为机组建立良好的保障是值得我们研究的问题。
本文主要介绍了基于艾默生OVATION 3.5.1控制系统的基础上,通过顺序控制的逻辑设计,对低压省煤器再循环系统一键启停的实施方案,描述了机组在各个状态下低压省煤器再循环系统一键启停的步序和原理,实现低压省煤器再循环系统一键启停的目标。
关键词:低压省煤器再循环系统;一键启停;顺序控制一、低压省煤器再循环系统概述省煤器再循环门的作用是在锅炉启动或停止过程中,中断给水时开启再循环门,利用汽包与省煤器工质比重差来形成自然循环,连续补充省煤器的水量,保护省煤器的安全运行,因为在启动和停炉期间是间断进水的,当不进水时,省煤器中的水是不流动的,在高温烟气的作用下,水会不断蒸发或全部蒸发干,此时管外是高温烟气,管内又无水冷却,则省煤器管会过热而损坏,低省再循环系统就是为了保护锅炉的安全运行的重要系统。
广东粤电新会发电公司机组低省再循环系统配置两台100%容量的低省再循环泵组。
每套低省再循环泵组由一台再循环泵、一台低省再循环泵电机、一台低省再循环进口电动门、管道、阀门及仪表组成。
低压省煤器再循环热工控制设计有系统程序控制,包含了开关量和模拟量的控制,由一套系统顺控、两套单元顺控和一套模拟量调节回路组成。
低省再循环系统顺控控制两套设备,每套低省再循环泵单元顺控各控制2台设备。
低省再循环系统程序控制采用了先进的控制理念和智能构件,设备的电气联锁和热工联锁应用了“缺省自动智能联锁”模块,模拟量自动调节回路采用“三态式切换”和“超驰纠偏”智能构件,在智能构件的支持下,低省再循环系统程序控制能够实现“一键启停”。
新型热管低温省煤器的开发应用谢庆亮(福建龙净环保股份有限公司,福建 龙岩 364000)摘要:燃煤电厂常规管壳式低温省煤器已有大量应用,但其磨损泄漏对机组的安全稳定运行和污染物排放都造成了很大的影响,市场上亟需一种可实现无冷却水泄漏的换热器升级改造方案。
本文从热管式低温省煤器的技术原理出发,分析了其替代原有低温省煤器的技术手段的可行性,并以某660MW机组应用新型热管低温省煤器为例进行了介绍。
运行效果表明,热管低温省煤器是一种可靠的低温省煤器升级改造技术,为其他燃煤电厂烟气余热利用装置的安全运行升级改造提供了借鉴。
关键词:燃煤电厂;低温省煤器;热管;冷却水泄漏中图分类号:X701 文献标志码:A 文章编号:1006-5377(2021)04-0054-05近十年来,燃煤电厂锅炉空预器后的低温省煤器作为一项节能设备,已得到广泛的推广应用。
通过低温省煤器将空预器后的烟温从120℃~150℃降低至90℃左右,可降低烟气中粉尘的比电阻值,稳定提高电除尘器的除尘效率[1],协同脱除烟气中的SO3、Hg等污染物并回收烟气余热,降低机组煤耗。
现有的低温省煤器基本都是管壳式翅片管结构,烟气走壳侧,冷却水走管侧,近十年来的应用实践暴露了两个突出问题:(1)在低温省煤器主要组成设备中,作为核心换热元件的换热管束及翅片,在除尘器前的高浓度粉尘环境下被连续冲刷,换热元件的磨损无法避免,造成换热元件的使用寿命短,虽然采取了多种强化防磨措施,但仍无法从根本上解决磨损问题。
(2)管壳式低温省煤器所有管内的冷却水都是相通的,且冷却水系统多为开式循环系统,一旦某根管因为磨损损坏,管内大量冷却水将源源不断向烟气中泄漏,造成低温省煤器积灰堵塞,严重影响机组的安全运行。
通过调研发现,目前行业内布置于电除尘器前的传统低温省煤器出现泄漏的周期为2~3年。
低温省煤器换热管束泄漏会引发诸多问题:1)换热器堵灰及电除尘器灰斗输灰不畅会影响机组的安全运行;2)换热器局部或全部模块退出运行会导致降温幅度不足,节煤效果大打折扣,电除尘器的除尘效率下降,除尘器后的环保设备的工作环境恶化,影响超低排放效果;3)烟气阻力增大,引风机电耗增加,甚至会导致风机失速[2]。
低温省煤器LTE 技术介绍及应用分析福建紫荆环境工程技术有限公司2014年目录1.低温省煤器系统概述 (1)2.国内外低温省煤器目前的应用情况及安装位置 (1)3.低压省煤器节能理论及计算 (3)4.某工程低温省煤器的初步方案 (6)5.加装低温省煤器需要考虑的问题 (8)6 低温省煤器的特点分析 (9)1.低温省煤器系统概述排烟损失是锅炉运行中最重要的一项热损失,一般约为5%--12%,占锅炉热损失的60%--70%,影响排烟热损失的主要因素是排烟温度,一般情况下,排烟温度每增加10℃,排烟热损失增加0.6%--1%,相应多耗煤1.2%--2.4%。
若以燃用热值2000KJ/KG煤的410t/h高压锅炉为例,则每年多消耗近万吨动力力煤,我国火力发电厂的很多锅炉排烟温度都超过设计值,约比设计值高20—50℃。
所以,降低排烟温度对于节约燃料和降低污染具有重要的实际意义,实践中以降低排烟温度为目的的锅炉技术改造较多。
但由于大多数电厂尾部烟道空间太小,防磨、防腐要求较高,引风机的压头裕量不大等实际情况。
为了降低排烟温度,减少排烟损失,提高电厂的运行经济性,可考虑在烟道上加装低温省煤器。
低温省煤器的具体方案为:凝结水在低温省煤器内吸收排烟热量,降低排烟温度,自身被加热、升高温度后再返回汽轮机低压加热器系统,代替部分低压加热器的作用。
在发电量不变的情况下,可节约机组的能耗。
同时,由于进入脱硫塔的烟温下降,还可以节约脱硫工艺水的消耗量。
2.国内外低温省煤器目前的应用情况及安装位置2.1低温省煤器目前在国内外的应用情况低温省煤器能提高机组效率、节约能源。
目前在国内也已有电厂进行了低温省煤器的安装和改造工作。
山东某发电厂,两台容量100MW发电机组所配锅炉是武汉锅炉厂设计制造的WGZ410/100—10型燃煤锅炉,由于燃用煤种含硫量较高,且锅炉尾部受热面积灰、腐蚀和漏风严重,锅炉排烟温度高达170℃,为了降低排烟温度,提高机组的运行经济性,在尾部加装了低温省煤器。
国电费县发电有限公司发电部低省运行规程批准:赵圣华审定:张洪苏审核: 李纪华杜伟编写:李振2016-11-20国电费县发电有限公司发电部低温省煤器系统运行规程1.1 低温省煤器设备规范1.1.1 低温省煤器及暖风器低温省煤器设计参数:二次风暖风器设计参数1.1.2 低温省煤器增压泵1.2 低温省煤器系统的调节与联锁保护1.2.1 #6低加入口取水电动门:1.2.1.1 开允许条件:1)阀门远方控制允许。
1.2.1.2 关允许条件:1)阀门远方控制允许。
2)低省增压泵A/B均停运。
1.2.2 #8低加入口取水电动调节门:1.2.2.1自动调节:与混水温度做PID调节(混水温度65-75℃,默认70℃)。
1.2.2.2切手动条件(0R):1 ) 设定值与实际值偏差大于20℃。
2)指令反馈偏差大于10%。
3)MFT。
1.2.3 二次风暖风器电动调节门:调节二次风暖风器出口风温自动调节:与二次风暖风器A、二次风暖风器B出口温度做PID调节(温度可调,默认40℃)。
1.2.4 低温省煤器再循环水电动门:1.2.4.1 自动调节开度:与混水温度做PID调节。
1.2.4.2 PID调节的限制条件:#6低加入口水温低于70℃且#8低加取水调节门开度100%。
1.2.4.3 联锁开:#7低加旁路电动门全关位消失,开到100%。
1.2.5 变频低温省煤器增压泵转速控制:1.2.5.1 利用调节变频低省增压泵的转速控制低温省煤器系统的取水流量,调节低温省煤器出口的烟气温度。
与低温省煤器出口烟温做PID调节(出口烟气温度90-130℃,默认95℃)。
1.2.5.2 变频器转速(5-50Hz),速度反馈与指令偏差大于10Hz切手动。
1.2.6 低温省煤器增压水泵:1.2.6.1 联锁启动:运行泵跳闸,备用泵联锁启动。
1.3 固定旋转蒸汽吹灰器的控制低温省煤器系统共设8台固定旋转蒸汽吹灰器,可根据#1-#4低温省煤器的进出口烟气差压,手动选择需要进行吹灰烟道的蒸汽吹灰器,然后进行自动吹灰。
XX热电2×330MW烟气余热利用(低省)改造节能量计算1 非采暖季净节能量计算1.1汽机低加热平衡参数(THA工况)以下计算以THA工况热平衡图为基础。
相关参数请见THA工况热平衡图。
1.2 THA工况非采暖季节煤量计算非采暖季取水方案:烟气余热换热器器水侧从#8低加入口取部分凝结水,经烟气换热器加热后回6号低加入口,为防止管束壁温过低造成严重的低温腐蚀,系统设置有热水再循环,从烟气换热器出口取部分热水与进口冷水混合,混水温度70℃(混水温度可调)。
通过计算,THA工况从8号低加入口取水235t/h,温度37.2℃,经烟气余热换热器加热到106℃后汇入6号低加入口。
水侧设计压力3.5MPa。
根据方案可知,从8号低加入口取出的凝结水会排挤7号、8号低加部分抽汽,由烟气余热换热器的出口水温高于6号低加入口水温,因此会排挤6号低加部分抽汽。
烟气余热利用方案的节能量计算如下:1) 6号低加的排挤抽汽量Gp6Gp6=235000*(445.68-437.9)/(2888.2-459.6)=752.8 kg/h式中235000 kg/h—THA工况从8号低加入口取的凝结水量445.68 kJ/h—烟气余热换热器出口水焓437.9 kJ/h—6号低加入口凝结水焓2888.2 kJ/h—6号低加抽汽焓459.6 kJ/h—6号低加疏水焓2) 7号低加排挤抽汽量Gp7Gp7=[235000*(437.9-350.1)-752.8*(459.6-371.3)]/(2757.7-371.3)=8618.2 kg/h式中350.1 kJ/h—7号低加入口凝结水焓371.3 kJ/h—7号低加疏水焓2757.7 kJ/h—7号低加抽汽焓3) 8号低加排挤抽汽量Gp8Gp8=[235000*(350.1-158.6)-(8618.2+752.8)*(371.3-179.2)]/(2628-179.2)=17642.2 kg/h式中158.6 kJ/h—8号低加入口凝结水焓179.2 kJ/h—8号低加疏水焓2628 kJ/h—8号低加抽汽焓4) 节约蒸汽做功能力kW=[17642.2*2628+8618.2*2757.7+752.8*2888.2)-(17642.2+8618.2+752.8)*2341.6]/3600=2513.97 kW式中2341.6 kJ/kg为THA工况乏汽焓。
山西侯马电厂2X300MW热电联产机组烟气余热利用回收装置改造工程方案建议书山西三合盛节能环保技术股份有限公司2015年04月目录一、公司介绍 (1)1. 公司基本情况 (1)2. 公司专利 (1)3. 公司法人兼董事长 (1)4. 公司的主营业务 (2)二、项目概况 (3)1. 机组基本情况 (3)2. 现在实际使用的典型煤质分析数据 (11)3. 锅炉风烟系统实际运行参数 (11)三、分控相变余热利用系统技术介绍 (12)1. 技术背景 (12)2. 分控相变换热技术简介 (13)专题一:分控相变余热利用系统相关因素影响分析 (15)专题二:分控相变余热利用系统防磨损、防积灰、防腐技术保障措施 (17)专题三:分控相变余热利用系统防泄露的技术保障措施 (19)专题四:分控相变余热利用系统吹灰方式的选择 (21)专题五:分控相变余热利用项目业绩 (22)四、锅炉烟气余热回收方案 (24)1. 总体设计方案 (24)1. 热力系统构成 (27)2. 分控相变余热回收系统的计算参数(根据提供的数据计算) (28)五、费用预算及经济效益分析 (29)1. 项目总投资费用 (29)2. 项目投资回报期 (29)3. 效益计算 (29)六、结论及建议 (31)一、公司介绍山西三合盛节能环保技术股份有限公司是成立于1996年,是太原市国家高新技术开发区入区及高新技术企业。
2010年完成从承接工程到自主研发方向的转型,目前主要致力于电厂、煤化工等工业领域节能减排技术的研发、设计、推广、实施及设备检修、技改等工作。
公司按照“以人为本、安全第一、科学管理、技术为先”的发展原则,依靠“技术革新求发展,瞄准市场搞开发”,坚持走“节能、减排、环保、创新”的发展道路。
1.公司基本情况1997年,公司获得建设部颁发的“施工资质证书”。
1998年,公司获得“安全施工许可证”。
2005年6月起至今,公司持续通过了ISO9001:2000的质量管理体系认。
风烟系统介绍:一.系统流程二.重要测点三.顺控四.模拟量控制五.现场设备一.系统流程(1)制粉系统每炉配六台正压冷一次风中速磨直吹式制粉系统。
每台磨配一台电子称重式给煤机、一个原煤仓。
每台炉分六套独立制粉系统,燃用设计煤种时,五台磨运行可满足锅炉最大连续蒸发量的要求,运行时,原煤仓中原煤进入给煤机,由给煤机输入磨煤机中碾磨、干燥,磨制后煤粉由干燥剂(一次风)带入分离器分离。
每台磨煤机出4根送粉管道至炉前经煤粉分配器分成8根煤粉管道,分别对应锅炉一层8只燃烧器。
在磨煤机每根送粉管出口设有气动煤粉关断闸板门,可以在3~5秒内快速关闭。
每根送粉管道与燃烧器连接附近,设有手动插板门,用于检修时隔离运行炉膛中的热烟气,保证设备及人员的安全。
冷风蒸汽只用在F 磨上去启动时,代替空预器加热一次风,采用辅汽加热。
(2)燃烧系统锅炉采用前后墙对冲燃烧Π型炉。
烟风系统采用平衡通风方式,空预器为四分仓容克式。
在供风系统上,采用环形大风箱。
在每个燃烧器上都设有二次风调节装置,通过调节装置可调节燃烧器的风量;为了减少NOx排放,在前后墙燃烧器的上方各布置二层燃烬风喷口。
(降低燃烧温度以降低NOx排放)(3)一次风系统一次风系统主要作用为输送煤粉用。
一次风机向磨煤机提供一次风和密封风,并向给煤机提供密封风。
一次风机为动叶可调轴流式。
一次风经升压后分两路,一路进入空预器加热后,由炉侧两路管道引入联络母管再分配到每台磨煤机去。
空预器一次风出口装有隔离风门,锅炉两侧热一次风道上设有流量测量装置。
另一路不经过空预器,通过炉侧两根冷一次风管道引至炉侧联络母管上作为调温风、磨煤机和给煤机的密封风风源。
调温风分配到每台磨煤机进口与热一次风混合,混合风通过调节装在每台磨煤机进口冷一次风道上的调节风门和热一次风道上的调节风门来调节混合风温,使之最终满足磨煤机出口风粉混合物70℃的要求。
(4)二次风系统二次风系统只作为燃烧用。
二次冷风进入空预器加热,空预器出口热风按锅炉燃烧要求进入锅炉前后墙的二次风箱。
增设低压省煤器降低锅炉排烟温度前言乌海热电厂#1炉为东方锅炉厂设计生产DG-670/13.7-20型中间再热自然循环煤粉锅炉,配国产200MW抽凝机组,最大蒸发量670t/h,额定汽温540/540℃,设计煤种为烟煤。
锅炉的设计排烟温度(BMCR)136.7℃,设计效率92.87%,2005年7月安装调试完毕,投入生产。
但实际运行锅炉排烟温度达165℃(冬季)~185℃(夏季),排烟温度超设计值30℃以上,为保证布袋除尘器的布袋安全运行,保证脱硫系统的高效运行,需要烟气温度有大幅度的降低。
为此,经对多套降低排烟温度方案论证,最终采用在电除尘器后烟道内加装低压省煤器。
1、低压省煤器安装系统简介低压省煤器热力系统如图1所示,其水侧与汽轮机回热系统的凝结水系统联布置,按经济效益最大化原则,夏季冬季采用不同系统与不同的运行方式(夏季模式按7个月,冬季模式按5个月)。
夏季运行模式进口水取自低压加热器系统;冬季运行模式配合电厂供热,以热网加热器凝结回水为主冷介质,以前级低压加热器出口凝结水为辅。
两种模式下的各路给水均经进口电调阀进入低压省煤器,经烟气加热后返回除氧器。
根据季节、煤质和工况的需要,装在水源上的进口电调阀可对进水的流量和温度进行调节,以保证低压省煤器受热面的壁温高于露点温度,防止低温腐蚀的发生,并使烟温降至需要的温度。
这种热力系统,低压省煤器的给水跨过若干级加热器,利用级间压降克服低压省煤器本体及连接管道的流阻,不必增设水泵,提高了运行经济性、可靠性,同时也自然地实现了排烟余热的梯级利用。
由于冬季模式与夏季模式受热面内流动的均为凝结水,切换时无需对管路系统进行清洗,冬、夏季模式可实现在线切换,可以有效保证设备的可靠性。
图1 低压省煤器管路系统图1-低压省煤器本体;2-低省进口集箱;3-手动调阀;4-低省出口集箱;5-流量计;6-低省进口电调阀低压省煤器的总体布置采用了双烟道错列管排逆流布置。
主受热面以锅炉对称中心为界,分甲、乙两侧分别安装于预除尘器后、布袋除尘器前的两个上行烟道内。
火力发电厂超低排放改造低低温省煤器(MGGH)1、概述:我国火电厂大气污染物排放要求的提高,必将促进环保治理技术不断创新和进步。
低低温省煤器(MGGH)系统是在借鉴国外先进技术的基础上,结合我国燃煤电厂实际情况进行创新开发的一种适合我国国情的环保治理新技术和新工艺。
应用低低温省煤器(MGGH)系统与电除尘技术结合形成的低低温电除尘技术,将电除尘器入口烟气温度降至酸露点温度以下,在大幅提高除尘效率的同时可以高效捕集SO3 ,保证燃煤电厂满足低排放要求,并有效减少PM2.5 排放。
而且低低温省煤系统还可以将回收的热量加以利用,具有较好的节能效果。
且通过将低低温省煤器(MGGH)系统降温段回收烟气余热,将热量利用于脱硫岛出口的烟气加热器,将脱硫出口净烟气温度抬升至安全温度以上,以减轻“石膏雨”现场,并降低烟囱防腐维护费用。
山西中源科扬节能服务有限公司是国家备案的节能服务公司,长期致力于烟气余热回收利用领域的技术研发及推广,拥有最先进的烟气余热回收利用技术,可以为客户提供最佳的余热回收利用方案,是集软件、硬件与服务为一体的综合服务商。
国内多个燃煤电厂低低温省煤器(MGGH)系统的成功投运证明,这一技术可以很好地满足最严格的排放标准要求,具有显著的经济效益和广阔的市场前景。
低低温省煤器系统与电除尘器系统的结合,不但扩大了省煤器及电除尘器的适用范围,而且为实现节能减排开辟了一条新路径。
2、低低温省煤器(MGGH)系统介绍低低温省煤器(MGGH)系统是一个闭式循环系统,主要由布置于电除尘器前的冷却器和布置于脱硫塔后的烟气加热器,配套热媒水辅助加热器、循环水泵、补水系统、热媒体膨胀罐、清灰装置、加药装置以及其它辅助系统组成。
冷却器和烟气加热器间的中间传热媒介为除盐水,该系统设置一个补水箱和补水泵,除盐水水源自带压力进入补水箱,通过补水泵进入MGGH闭式循环管路系统,直至充满整个系统,待热媒水膨胀罐达到一定液位时,启动热媒水循环泵,热媒水经循环泵升压后进入烟气冷却器回收烟气余热,加热后的除盐水进入烟气烟气加热器加热脱硫后的低温烟气,经烟气烟气加热器冷却后的除盐水回水到介质热媒水循环泵入口。