2019-2020年七年级上册和绝对值有关的问题典型例题(含答案)
- 格式:doc
- 大小:253.50 KB
- 文档页数:5
1.2.4 绝对值第1课时 绝对值1.理解绝对值的概念及其几何意义,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法;(重点)2.会求一个数的绝对值,知道一个数的绝对值,会求这个数;(难点)3.通过应用绝对值解决实际问题,培养学生的学习兴趣,提高学生对数学的好奇心和求知欲.一、情境导入从一栋房子里,跑出有两只狗(一灰一黄),有人在房子的西边3米处以及房子的东边3米处各放了一根骨头,两狗发现后,灰狗跑向西3米处,黄狗跑向东3米处分别衔起了骨头.问题:1.在数轴上表示这一情景. 2.两只小狗它们所跑的路线相同吗? 3.两只小狗它们所跑的路程一样吗?在实际生活中,有时存在这样的情况,有些问题我们只需要考虑数的大小而不考虑方向.在我们的数学中,就是不需要考虑数的正负性,比如:在计算小狗所跑的路程时,与狗跑的方向无关,这时所走的路程只需要用正数来表示,这样就必需引进一个新的概念——绝对值.二、合作探究探究点一:绝对值的意义及求法 【类型一】 求一个数的绝对值-3的绝对值是( )A .3B .-3C .-13 D.13解析:根据一个负数的绝对值是它的相反数,所以-3的绝对值是3.故选A.方法总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 【类型二】 利用绝对值求有理数如果一个数的绝对值等于23,则这个数是__________.解析:∵23或-23的绝对值都等于23,∴绝对值等于23的数是23或-23.方法总结:解答此类问题容易漏解、考虑问题不全面,所以一定要记住:绝对值等于某一个数的值有两个,它们互为相反数,0除外.【类型三】 化简绝对值化简:|-35|=______;-|-1.5|=______;|-(-2)|=______.解析:|-35|=35;-|-1.5|=-1.5;|-(-2)|=|2|=2.方法总结:根据绝对值的意义解答.即若a >0,则|a|=a ;若a =0,则|a|=0;若a <0,则|a|=-a.探究点二:绝对值的性质及应用 【类型一】 绝对值的非负性及应用若|a -3|+|b -2015|=0,求a ,b 的值.解析:由绝对值的性质可知|a -3|≥0,|b -2015|≥0,则有|a -3|=|b -2015|=0.解:由绝对值的性质得|a -3|≥0,|b -2015|≥0,又因为|a -3|+|b -2015|=0,所以|a -3|=0,|b -2015|=0,所以a =3,b =2015.方法总结:如果几个非负数的和为0,那么这几个非负数都等于0. 【类型二】 绝对值在实际问题中的应用第53届世乒赛于2015年4月26日至5月3日在苏州举办,此次比赛中用球的质量有严格的规定,下表是6个乒乓球质量检测的结果(单位:克,超过标准质量的克数记为正数,不足标准重量的克数记为负数).(1)(2)若规定与标准质量误差不超过0.1g 的为优等品,超过0.1g 但不超过0.3g 的为合格品,在这六个乒乓球中,优等品、合格品和不合格品分别是哪几个乒乓球?请说明理由.解析:由绝对值的几何定义可知,一个数的绝对值越小,离原点越近,将实际问题转化为距离标准质量越小,即绝对值越小,就越接近标准质量.解:(1)四号球,|0|=0正好等于标准的质量,五号球,|-0.08|=0.08,比标准球轻0.08克,二号球,|+0.1|=0.1,比标准球重0.1克.(2)一号球|-0.5|=0.5,不合格,二号球|+0.1|=0.1,优等品,三号球|0.2|=0.2,合格品,四号球|0|=0,优等品,五号球|-0.08|=0.08,优等品,六号球 |-0.15|=0.15,合格品.方法总结:判断质量、零件尺寸等是否合格,关键是看偏差的绝对值的大小,而与正、负数无关. 三、板书设计1.绝对值的几何定义:一般地,数轴上表示数a 的点与原点的距离叫作数a 的绝对值,记作|a|. 2.绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.用符号表示为:|a|=⎩⎪⎨⎪⎧a (a>0)0(a =0)-a (a<0)或|a|=⎩⎪⎨⎪⎧a (a≥0)-a (a<0)绝对值这个名词既陌生,又是一个不易理解的数学术语,是本章的重点内容,同时也是一个难点内容.教材从几何的角度给出绝对值的概念,也就是从数轴上表示数的点的位置出发,得出定义的.在数学教学过程中,要千方百计教给学生探索方法、使学生了解知识的形成过程,并掌握更多的数学思想、方法;教学过程中做到形数兼备、数形结合.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A.图①B.图②C.图③D.图④2.下列说法中,正确的是( ) ①射线AB 和射线BA 是同一条射线; ②若AB=BC ,则点B 为线段AC 的中点; ③同角的补角相等;④点C 在线段AB 上,M ,N 分别是线段AC ,CB 的中点.若MN=5,则线段AB=10. A .①② B .②③ C .②④ D .③④ 3.下列说法错误的是( ) A.倒数等于本身的数只有±1 B.两点之间的所有连线中,线段最短 C.-23x yz π的系数是3π-,次数是4D.角的两边越长,角就越大4.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?若设有x 个人,则可列方程是( )A .3(2)29x x +=-B .3(2)29x x -=+C .9232x x -+= D .9232x x +-=5.甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队?如果设应从乙队调x 人到甲队,列出的方程正确的是( ) A.96+x=13(72﹣x ) B.13(96+x )=72﹣x C.13(96﹣x )=72﹣x D.13×96+x=72﹣x 6.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355a ab b aab b a +---++=26b -,空格的地方被墨水弄脏了,请问空格中的一项是( ) A.+2abB.+3abC.+4abD.-ab7.当x=4时,式子5(x +b)-10与bx +4的值相等,则b 的值为( ). A.-7B.-6C.6D.78.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是112-=-1,-1的差倒数为()11112=--.现已知x 1=-21x 3,是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2019的值为( ) A.13-B.1-C.34D.49.下列说法中正确的是( ) A .4xy x y -+-的项是xy ,x ,y ,4 B .单项式m 的系数为0,次数为0 C .单项式22a b 的系数是2,次数是2D .1是单项式10.根据图中箭头指向的规律,从2014到2015再到2016,箭头的方向( )A. B. C. D.11.下列叙述正确的是( ) A.符号不同的两个数是互为相反数 B.一个有理数的相反数一定是负有理数 C.234与2.75都是﹣114的相反数D.0没有相反数12.-6 的绝对值是( )A .6B .-6C .±6 D.不能确定 二、填空题13.如图,直线SN 与直线WE 相交于点O ,射线ON 表示正北方向,射线OE 表示正东方向,已知射线OB 的方向是南偏东60,射线OC 在NOE ∠内,且NOC ∠与BOS ∠互余,射线OA 平分BON ∠,图中与COA ∠互余的角是______.14.(3分)34.37°=34°_____′_____″.15.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿,若每间住8人,则最后有一间宿舍不满也不空,则学生人数为______人.16.任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.7∙为例进行说明:设0. 7∙=x ,由0.=0.7777…可知,l0x =7.7777…,所以l0x =7+x ,解方程,得x =79于是得0. 7∙=79.将0. 216∙∙写成分数的形式是_____. 17.使(ax 2-2xy +y 2)-(-x 2+bxy +2y 2)=5x 2-9xy +cy 2成立的a +b +c =_____. 18.若2243abx y x y x y -+=- ,则b-a= 。
七年级数学-绝对值练习要点感知1 一般地,数轴上表示数a的点与原点的距离叫做数a的,记作,读作a的绝对值.预习练习1-1 数轴上一个点到原点的距离为5,则这个点所表示的数的绝对值为.要点感知2一个正数的绝对值是;一个负数的绝对值是;0的绝对值是.预习练习2-1 (云南中考)计算:|-17|=( )A.-17B.17C.-7 D.72-2(六盘水中考)绝对值最小的数是.知识点1 绝对值的意义1.(1)-3到原点的距离是3,所以|-3|=;(2)0到原点的距离是0,所以|0|=;(3)|-4|是数轴上表示的点到原点的距离.2.在数轴上,绝对值为14,且在原点左边的点表示的数为 .3.|2 015|的意义是数轴上表示______的点与原点的距离.4.(丽水中考)如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( )A.-4 B.-2 C.0 D.4知识点2 绝对值的计算5.(西双版纳中考)-2 013绝对值是( )A.2 013 B.-2 013 C.12 013D.-12 0136.(梧州中考)|6|=( )A.6 B.7 C.8 D.107.下列说法中,错误的是( )A.-12的绝对值是12B.绝对值等于12的数只有12C.+12的绝对值等于12D.+12、-12的绝对值相等8.若a与1互为相反数,则|a+2|等于( )A.2 B.-2 C.1 D.-19.在有理数中,绝对值等于它本身的数有( )A.一个 B.两个 C.三个 D.无数个10.计算:|-3.7|=,-(-3.7)=,-|-3.7|=,-|+3.7|=.11.求下列各数的绝对值:(1)+813;(2)-7.2; (3)0;(4)-813.知识点3 绝对值的性质12.(1)①正数:|+5|=,|12|=;②负数:|-7|=,|-15|=;③零:|0|=;(2)根据(1)中的规律发现:不论正数、负数和零,它们的绝对值一定是,即|a| 0.13.因为互为相反数的两个数到原点的距离相等,所以到原点的距离为2 013的点有个,分别是,即绝对值等于2 013的数是.14.若|a|+|b|=0,则a=,b=.15.(昭通中考)-4的绝对值是( )A.14B.-14C.4 D.-416.下列说法中正确的是( )A.最小的整数是0B.有理数分为正数和负数C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等17.(黔西南中考)|-3|的相反数是( )A.3 B.-3 C.±3 D.3118.如果-a的相反数是最小的正整数,b是绝对值最小的数,那么a+b=.19.绝对值小于6的整数有个,它们分别是;绝对值大于3且小于6的整数是.20.若|x|=|-2|,则x=;若|m|=13,且m<0,则m=.21.若|a|=a,则a 0;若|a|=-a,则a 0.22.当x=时,|x|+5取最小值,这个最小值是;当a=时,36-|a -2|取最大值,这个值为.23.写出下列各数的绝对值:-1,23,-34,0,-325,15.24.化简:(1)-|-3|; (2)-|-(-7.5)|; (3)+|-(+7)|. 25.计算:(1)|-7.25|×|-4|+|-32|÷|-8|;(2)(312-|-12|+0.5)×|-6|.挑战自我26.(1)已知|a|=5,|b|=3,且a>0,b>0,求a+b的值;(2)已知|a-2|+|b-3|+|c-4|=0,求式子a+b+c的值.参考答案要点感知1 绝对值, |a|.预习练习1-1 5.要点感知2它本身;它的相反数; 0.预习练习2-1 B2-2 0.1.(1) 3;(2) 0;(3) -4 .2.-14. 3. 2 015.4.B 5.A 6.A 7.B 8.C 9.D 10. 3.7, 3.7,-3.7,-3.7.11.求下列各数的绝对值:(1) |813|=813.(2) |-7.2|=-(-7.2)=7.2.(3) |0|=0.(4) |-813|=-(-813)=813.12.(1)①5,12;②7,15;③0;(2)非负数,≥.13.两,2_013和-2_013,±2_013.14.0,0.15.C 16.D 17.B 18. 1. 19. 11个, ±5,±4,±3,±2,±1,0; ±5,±4.20. ±2; -13. 21. ≥ ; ≤. 22. 0 , 5; 2 , 36. 23. 各数的绝对值分别为:1,23,34,0,325,15. 24. (1) 原式=-3.(2) 原式=-|7.5|=-7.5.(3) 原式=+|-7|=7.25. (1) 原式=7.25×4+32÷8=29+4 =33.(2) 原式=(312-12+0.5)×6 =3.5×6=21.挑战自我26. 因为|a|=5,|b|=3,且a>0,b>0,所以a =5,b =3.所以a +b =5+3=8.(2) 因为|a -2|+|b -3|+|c -4|=0,所以a -2=0,b -3=0,c -4=0.所以a =2,b =3,c =4,所以a +b +c =2+3+4=9.。
【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题1.14数轴与绝对值综合问题大题专练(重难点培优)一、解答题1.(2021·四川成都·七年级期中)a ,b ,c 在数轴上的位置如图所示:(1)求|a |a +|b |b +|c |c =_______(2)a 、b 、c 在数轴上的位置如图所示,则:化简:|a +c |―|a ―b |+|c ―a |;(3)求|x ―a |―|x ―b |的最大值,并求出此时x 的范围.2.(2021·河南周口·七年级期中)(1)画出数轴,在数轴上标出表示﹣2的点A ,设点B 在数轴上,且到点A 的距离为3,请标出点B 的位置,并写出点B 表示的数.(2)已知|a |=2,b 2=1,求a +b 的值.3.(2020·贵州·安顺市西秀区宁谷中学七年级期中)有理数a 、b 、c 在数轴上的位置如图所示,且表示数a 的点、数b 的点到原点的距离相等.(1)用“>”“=”“<”填空;b 0,a +b 0,a -c 0.b -c 0.(2)化简:|a +b |+|c -a |-|b |.4.(2021·山西阳泉·七年级期中)请完成以下问题(1)有理数a ,b ,c 所对应的点在数轴上的位置如图所示,试比较a ,﹣a ,b ,﹣b ,c ,﹣c ,0的大小,并用“<”连接.(2)有理数a 、b 、m 、n 、x 满足下列条件:a 与b 互为倒数,m 与n 互为相反数,x 的绝对值为最小的正整数,求2021(m +n )+2020x 3﹣2019ab 的值.5.(2020·山西晋城·七年级期中)综合与实践:一名外卖员骑电动车从饭店出发送外卖,向西走了2千米到达小琪家,然后又向东走了4千米到达小莉家,继续向东走了3.5千米到达小刚家,最后回到饭店.以饭店为原点,以向东的方向为正方向,用一个单位长度表示1千米,点O,A,B,C 分别表示饭店,小莉家,小刚家和小琪家.(1)请你在数轴上表示出点O,A,B,C的位置;(2)小刚家距小琪家多远?(3)小莉步行到小刚家,每小时走5千米;小琪骑自行车到小刚家,每小时骑15千米.若两个人同时分别从自己家出发,问两个人能否同时到达小刚家?若不能,谁先到达?6.(2022·福建·晋江市第一中学七年级期中)对于有理数a,b,n,d,若|a―n|+|b―n|=d,则称a和b 关于n的“相对关系值”为d,例如:|2―1|+|3―1|=3,则2和3关于1的“相对关系值”为3.(1)―3和5关于1的“相对关系值”为__________.(2)若a和2关于3的“相对关系值”为10,求a的值.7.(2021·江苏·常州实验初中七年级期中)已知:数轴上的点A、B分别表示﹣1和3.5.(1)在数轴上画出A、B两点;(2)若点C与点A距离4个单位长度,则点C表示的数是___.(3)若折叠纸面,使数轴上﹣1表示的点与3表示的点重合,则10表示的点与数___表示的点重合.8.(2022·河北保定·七年级期中)如图,已知实数a(a>0)表示在数轴上对应的位置为点P,现对点P进行如下操作:先把点P沿数轴以每秒1个单位的速度向左移动t秒,再把所得到的点沿数轴以每秒2个单位的速度向右移动a秒,得到点P′,我们把这样的操作称为点P的“回移”,点P′为点P的“回移点”.(1)用含有字母a,t的式子写出“回移点”P′表示的数__________;(填空)(2)当t=2时,①若a=4,求点P的回移点P′表示的实数;②若回移点P′与点P恰好重合,求a的值;(3)当t=3时,若回移点P′与点P相距7个单位长度,求a的值.9.(2022·北京朝阳·七年级期中)如图,在数轴上点A、C、B表示的数分别是-2、1、12.动点P从点A出发,沿数轴以每秒3个单位长度的速度向终点B匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向终点A匀速运动,设点Q的运动时间为t秒.(1)AB的长为_______;(2)当点P与点Q相遇时,求t的值.(3)当点P与点Q之间的距离为9个单位长度时,求t的值.(4)若PC+QB=8,直接写出t点P表示的数.10.(2022·河北秦皇岛·七年级期中)如图,已知数轴上的点A、B对应的数分别是-5和1.(1)若P到点A、B的距离相等,求点P对应的数;(2)动点P从点A出发,以2个长度单位/秒的速度向右运动,设运动时间为t秒,问:是否存在某个时刻t,恰好使得P到点A的距离是点P到点B的距离的2倍?若存在,请求出t的值;若不存在,请说明理由;(3)若动点P从点A出发向点B运动,同时,动点Q从点B出发向点A运动,经过2秒相遇;若动点P从点A出发向点B运动,同时,动点Q从点B出发与点P同向运动,经过6秒相遇,试求P点与Q点的运动速度(长度单位/秒)11.(2021·湖北武汉·七年级期中)如图,以O为原点的数轴上有A,B两点,它们对应的数分别为a,b,且(a﹣10)2+(2b+8)2=0.(1)直接写出结果:a= ,b= .(2)设点P,Q分别从点A,B同时出发,在数轴上相向运动,且在原点O处相遇.设它们运动的时间为t秒,点P运动的速度为每秒2.5个单位长度.①用含t的式子表示:t秒后,点P,Q在数轴上所对应的数(直接写出结果),点P对应的数是 ,点Q对应的数是 .②当P,Q两点间的距离恰好等于A,B两点间距离的一半时,求t的值.12.(2021·浙江温州·七年级期中)如图,在数轴上,点A表示﹣4,点B表示﹣1,点C表示8,P是数轴上的一个点.(1)求点A与点C的距离.(2)若PB表示点P与点B之间的距离,PC表示点P与点C之间的距离,当点P满足PB=2PC时,请求出在数轴上点P表示的数.(3)动点P从点B开始第一次向左移动1个单位长度,第二次向右移动2个单位长度,第三次向左移动3个单位长度,第四次向右移动4个单位长度,依此类推…在这个移动过程中,当点P满足PC=2PA时,则点P移动次.13.(2021·江苏徐州·七年级期中)阅读理解:如图,对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足3倍的数量关系,则称该点是其他两个点的“倍分点”.例如:数轴上点A、B、C表示的数分别是1、4,5,此时点B是点A,C的“倍分点”.知识运用:(1)当点A表示数―2,点B表示数2时,下列个数:―5,0,1,4中,是A,B两点的“倍分点”表示的数是2____________;(2)当点A表示数―1,点B表示数3时,点P是数轴上的一个动点.①若点P在点A、点B之间,且点P是点A,B的“倍分点“,则点P表示的数是____________;②若点P在点A的左侧,且点P是点A,B的“倍分点“,则点”表示的数是____________;③若点P在点B的右侧,当点A、点B、点P中,有一个点恰好是另外两点的“倍分点”时,请你直接写出点P表示的数是____________.14.(2020·广东广州·七年级期中)数轴上点A、B、C分别表示数a、b、c,且b是最小正整数,|a+b|+(c―5)2 =0.(1)填空:a=______,b=______,c=______;(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B、C分别以每秒m(m<5)个单位长度和5个单位长度的速度向右运动,假设经过t秒,点B与点C之间的距离表示为BC,点A与点B之间的距离表示为A B.若BC―AB的值保持不变,求m的值.15.(2021·广东·佛山市南海区石门实验学校七年级期中)如图,已知点A,B,C是数轴上三点,O为原点,点C对应的数为3,BC=2,AB=6.(1)点A,B对应的数分别为:__________、__________。
2019-2020年七年级上册和绝对值有关的问题典型例题(含答案)一、知识结构框图:数二、绝对值的意义:(1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。
(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。
也可以写成:()()() ||0a aa aa a⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数说明:(Ⅰ)|a|≥0即|a|是一个非负数;(Ⅱ)|a|概念中蕴含分类讨论思想。
三、典型例题例1.(数形结合思想)已知a、b、c在数轴上位置如图:则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( A ) A.-3a B. 2c-a C.2a-2b D. b解:| a | + | a+b | + | c-a | - | b-c|=-a-(a+b)+(c-a)+b-c=-3a分析:解绝对值的问题时,往往需要脱去绝对值符号,化成一般的有理数计算。
脱去绝对值的符号时,必须先确定绝对值符号内各个数的正负性,再根据绝对值的代数意义脱去绝对值符号。
这道例题运用了数形结合的数学思想,由a 、b 、c 在数轴上的对应位置判断绝对值符号内数的符号,从而去掉绝对值符号,完成化简。
例2.已知:,,且, 那么的值( C )A .是正数B .是负数C .是零D .不能确定符号解:由题意,x 、y 、z 在数轴上的位置如图所示:所以分析:数与代数这一领域中数形结合的重要载体是数轴。
这道例题中三个看似复杂的不等关系借助数轴直观、轻松的找到了x 、y 、z 三个数的大小关系,为我们顺利化简铺平了道路。
虽然例题中没有给出数轴,但我们应该有数形结合解决问题的意识。
例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的两侧”意味着甲乙两数符号相反,即一正一负。
2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-求一个数的绝对值一、选择题1.2-等于()A.2 B.-2 C.+2 D.+12.π﹣3的绝对值是()A.3 B.πC.3﹣πD.π﹣33.|x|=l,则x与-3的差为( )A.4 B.4或2 C.-4或-2 D.24.化简|-15|等于()A.15 B.-15 C.±15D.1 155.﹣5的绝对值是()A.﹣5 B.5 C.0.2 D.﹣0.2 6.|﹣3|的相反数是()A.﹣3 B.﹣67C.3 D.3或﹣37.下列式子中,化简结果正确的是()A.﹣(﹣5)=5 B.+(﹣5)=5 C.|﹣0.5|=﹣12D.+(﹣12)=128.下列说法中正确的是().A.一个数的绝对值一定大于这个数的相反数B.若|a|=-a,则a≤0C.绝对值等于3的数是-3D.绝对值不大于2的数是±2,±1,09.在131,1.2,2,0,22---中,负数的个数有()A.1个B.2个C.3个D.4个10.﹣7的绝对值是().A.﹣7 B.7 C.﹣D.11.下列计算结果不等于2013的是()A.-|-2013| B.+|-2013| C.-(-2013)D.|+2013|12.如图,A ,B ,C ,D ,E 分别是数轴上五个连续整数所对应的点,其中有一点是原点,数a 对应的点在B 与C 之间,数b 对应的点在D 与E 之间,若3a b +=则原点可能是( )A .A 或EB .A 或BC .B 或CD .B 或E13.|﹣2|=( ) A .0B .﹣2C .2D .2或-214.下列说法正确的是( ) A .若a a =,则0a > B .若=-a b ,则a b = C .若a b =,则a b =D .若a b >,则a b >15.-2019的绝对值等于( ) A .-2019 B .-12109C .12019+ D .2019二、填空题1.计算:|-12.5|+|-2.5|=________.26的相反数是____ ;32018____. 3.136⎛⎫-- ⎪⎝⎭的倒数是_________; a-3的相反数_________4.若3x =,24y =且x y <,则x y +=_________. 5.化简: 若0a <,则||a =______.6.-23的相反数是_____,绝对值是_____. 7.一个数的绝对值是23,那么这个数为________. 8.﹣7的绝对值是_____. 9.若a 1=,2a 4+=______.10.542-的相反数是___________,542-的绝对值是_________.11.π的相反数是_________; -|-2|的相反数是________ ; 12-的相反数是 _________绝对值是_________.12.-2.5的相反数、倒数、绝对值分别为 _______、______、______. 13.-1.5的绝对值是_______;0的相反数是_______ 14.绝对值是34的数是________. 15.计算:(1)77-+=_____; (2)|4|-=_____. 三、解答题1.一辆出租车从A 站出发,先向东行驶12 km ,接着向西行驶8 km ,然后又向东行驶4 km. (1) 画一条数轴,以A 站为原点,向东为正方向,在数轴上表示出租车行驶的终点位置B ; (2)求各次路程的绝对值的和,并说明这个数据的实际意义是什么?(3)若出租车每行驶1 km 耗油0.05升,出租车由起点A 到终点B 共耗油多少升?2.若5a =,3b =,且0ab <,求-a b 的值.3.列式并计算:求–0.8的绝对值的相反数与265的相反数的差4.先把下列各数在数轴上表示出来,再按从小到大的顺序用“<”号把这些数连接起来:3,()1--,﹣3.5,0,2--5.把下列各数在数轴上表示出来,并按从小到大的顺序用“<”连接起来.10,3,,|4|2---参考答案一、选择题1.B解析:表示求2的绝对值的相反数.详解:解:-|2|=-2.故选B.点睛:本题考查了求有理数的绝对值,正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数.2.D解析:根据实数的性质判断π与3的大小,即可得出答案.详解:解:∵π>3,∴│π-3│=π-3,故选D.点睛:本题考查了实数的性质,解题的关键是熟练的掌握实数的性质.3.B解析:由于|x|=1,所以,x=±1,那么,x与-3的差有两种情况.详解:由|x|=1得:x=1或x=-1,x=1时,x-(-3)=4,x=-1时,x-(-3)=2,综上,x与-3的差为4或2,故选B.点睛:本题主要考查了绝对值:数轴上一个数所对应的点与原点的距离叫做该数绝对值.4.A解析:根据绝对值的定义即可得出答案.详解:根据绝对值的定义可知,|-15|=15,故答案选择A.点睛:本题主要考查是绝对值:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.5.B解析:根据负数的绝对值等于它的相反数解答.详解:﹣5的绝对值是|﹣5|=5.故选B.点睛:本题考查了绝对值的性质,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.A解析:利用相反数、绝对值的性质求解即可.详解:-=,3的相反数是3-.33故选:A.点睛:此题考查了相反数、绝对值的性质,要求掌握相反数、绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.7.A解析:A. −(−5)=5,故本选项正确;B. +(−5)=−5,故本选项错误;C. |−0.5|=12,故本选项错误;D. +(−12)=−12,故本选项错误.故选A.8.B解析:试题分析:0的绝对值是0,0的相反数也是0,因此A 选项一个数的绝对值一定大于这个数的相反数说法错误;根据正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,所以若|a|=-a ,则a≤0,故B 说法正确;C 选项绝对值等于3的数有两个,是±3,因此C 说法错误;D 选项应是绝对值不大于2的整数是±2,±1,0,故D 说法错误.因此本题选B . 考点:对绝对值的理解. 9.B解析:试题分析:在131,1.2,2,0,22---中,负数有11,2,2--共2个,故答案选B . 考点:负数. 10.B解析:试题分析:根据绝对值的可知,﹣7的绝对值是7. 考点:绝对值. 11.A解析:试题分析:∵-|-2013|=-2013,+|-2013|=2013,-(-2013)=2013,|+2013|=2013;故选A . 考点:有理数的运算. 12.D解析:分别讨论原点的位置,得到a b +的取值范围,即可得出答案. 详解:当A 为原点时,12a <<,3<<4b ,则3+>a b ,不符合题意; 当B 为原点时,01a <<,23b <<,则3a b +=可能成立,符合题意, 当C 为原点时,10a -<<,12b <<,则3a b +<,不符合题意; 当D 为原点时,21a -<<-,01b <<,则3a b +<,不符合题意; 当E 为原点时,32a -<<-,10b -<<,则3a b +=可能成立,符合题意. 故选D . 点睛:本题考查数轴与绝对值,运用分类讨论思想是关键.13.C解析:根据负数的绝对值等于它的相反数去掉绝对值. 详解:()2=2=2---点睛:本题考查去绝对值的方法,负数的绝对值等于它的相反数,正数的绝对值等于它本身,0的绝对值是0. 14.B解析:根据绝对值的意义及其性质对选项进行判断即可得出答案. 详解:解:A.若a a =,则0a ≥,此选项错误; B. 若=-a b ,则a b =,此选项正确; C. 若a b =,则a b =±,此选项错误; D. 若a b >,则a b >或a b <,此选项错误; 故选:B . 点睛:本题考查的知识点是绝对值,掌握绝对值的代数意义及其性质是解此题的关键. 15.D解析:根据绝对值的性质:一个负数的绝对值是它的相反数解答即可. 详解:-2019的绝对值等于2019故选:D 点睛:本题考查了绝对值的性质,掌握“一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0”是关键.二、填空题 1.15解析:分析:先根据一个负数的绝对值等于它的相反数化简绝对值,然后按照加法法则计算即可.详解:|-12.5|+|-2.5|=12.5+2.5=15. 故答案为15.点睛:本题考查了绝对值的意义,一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数.2.3)=故答案是:3 3.6193-a 解析:因为136⎛⎫-- ⎪⎝⎭=196,所以136⎛⎫-- ⎪⎝⎭的倒数是619.a-3的相反数-(a-3)=3-a. 故答案是:619,3-a.4.5-或1-解析:分析:根据3x =,24y =,得出x 、y 的值,再分情况讨论,x 和y 的取值且x<y ,得出x+y 的值.解:因为3x =||,24y =, 所以x=3或x=-3,y=2或y=-2, 又因为x<y, 所以x=-3,当x=-3,y=2,则x+y=-1, 当x=-3,y=-2时,x+y=-5; 故答案是-5或-1. 5.-a解析:根据a 的取值范围,化简a 即可. 详解:解:因为0a<,所以a a=-,故答案为-a.点睛:本题考查了绝对值和相反数的意义.解决本题的关键是掌握绝对值的意义.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.6.23;23.解析:根据相反数和绝对值的定义解答即可. 详解:-23的相反数是23,绝对值是2-3=23.故答案为23,23.点睛:本题考查了绝对值和相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.7.2 3±解析:根据绝对值的定义进行计算即可.详解:解:∵一个数的绝对值是23,∴这个数是±23,故答案为23±.点睛:本题考查了绝对值的定义,掌握定义是解题的关键.8.7.解析:试题分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.∵﹣7<0,∴|﹣7|=7.考点: 绝对值.9.6或2解析:直接利用绝对值的性质得出a 的值,进而得出答案. 详解: 解:a 1=,a 1∴=±,2a 4246∴+=±+=或2.故答案为6或2. 点睛:此题主要考查了绝对值,正确得出a 的值是解题关键.10.425425解析:根据相反数和绝对值的概念写出即可. 详解:542-的相反数是425,542-的绝对值是425, 故答案为:425;425. 点睛:本题主要考查了相反数和绝对值,熟练掌握其概念是解题的关键.11.-π; 2; 12; 12; 解析:根据相反数、绝对值的定义来解答即可. 详解:解:π的相反数是-π; ∵ -|-2|=-2, ∴-2的相反数是2 ; ∴-|-2|的相反数是2.12-的相反数是12,绝对值是12. 故答案为:-π,2,12,12 点睛:本题考查了相反数、绝对值,熟练掌握相反数、绝对值的定义是解题的关键.12.2.5;2-5; 2.5;解析:根据相反数的性质,互为相反数的两个数和为0;倒数的性质,互为倒数的两个数积为1;绝对值的定义,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,求解即可;详解:∵互为相反数的两个数和为0,∴-2.5的相反数为2.5;∵互为倒数的两个数积为1,∴-2.5的倒数为2-5;∵一个负数的绝对值是它的相反数,∴-2.5的绝对值为2.5;故答案为2.5;2-5;2.5;点睛:本题主要考查了倒数,相反数,绝对值,掌握倒数,相反数,绝对值的定义是解题的关键.13.1.5 0解析:根据绝对值和相反数的定义求解.详解:|-1.5|=1.50的相反数是0故填:1.5,0.点睛:本题考查了绝对值和相反数的性质,掌握绝对值和相反数的性质及定义,并能熟练运用到实际运算当中是解题的关键.14.±3 4解析:根据绝对值的性质进行解答即可.详解:解:绝对值是34的数是±34.故答案为:±34.点睛:本题考查的是绝对值的性质,解答此题的关键是熟知一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.15.0 4解析:(1)直接利用相反数的意义即可求出值;(2)直接利用绝对值的意义计算即可求出值.详解:(1)77-+=0;(2)|4|-=4.故答案为:0;4.点睛:本题考查了相反数和绝对值,解题的关键是掌握相反数和绝对值的意义.三、解答题1.(1)详见解析;(2) 24km,它的实际意义是出租车行驶的总路程是24 km;(3)1.2升解析:(1)根据题意画出数轴解答即可;(2)根据绝对值的意义和有理数的加法法则即可求出各次路程的绝对值的和,实际意义是出租车行驶的总路程,据此即可解答;(3)用出租车行驶的总路程×0.05即可求出结果.详解:解:(1)终点B的位置如图所示.(2)|12|+|-8|+|4|=24(km);它的实际意义是出租车行驶的总路程是24 km;(3)0.05×24=1.2(升).即出租车由起点A到终点B共耗油1.2升.点睛:本题考查了数轴、有理数的绝对值和有理数的加法运算,属于基本题型,熟练掌握基本知识是解题的关键.2.8±解析:根据绝对值的意义,得到a 、b 的值,然后结合0ab <,进行分类讨论,即可求出答案. 详解: 解:∵5a =,3b =,∴5a =±,3b =±,∵0ab <,∴若5a =,则3b =-;若5a =-,则3b =,当5a =,3b =-时,5(3)8a b -=--=;当5a =-,3b =时,538a b -=--=-;∴-a b 的值为8±.点睛:本题考查了求代数式的值,绝对值的意义,解题的关键是正确得到a 、b 的值,利用分类讨论的思想进行解题.3.285解析:先求出–0.8的绝对值的相反数,及265的相反数,然后相减即可得出答案. 详解:–0.8的绝对值的相反数为–0.8,265的相反数为-265,–0.8-(-265)=285. 故答案为285. 点睛:此题考查绝对值,相反数,有理数的加法,解题关键在于掌握运算法则.4.数轴见解析,﹣3.5<2--<0<()1--<3解析:根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上原点的右边表示正数,原点的左边表示负数,从而可得答案.详解:解:由()11,22,--=--=-把3,()1--,﹣3.5,0,2--在数轴上表示如图:由数轴上的点表示的数是右边的数总比左边的数大, 得:﹣3.5<2--<0<()1--<3.点睛:本题考查的是利用数轴上的点表示有理数,相反数的含义,求一个数的绝对值,有理数的大小比较,掌握以上的知识是解题的关键.5.在数轴上表示见解析,14302--<-<<解析:先化简|4|--,再根据有理数在数轴上的表示方法即可将已知的各数在数轴上进行表示,然后根据数轴上右边的数总比左边的数大即可将已知的有理数进行比较.详解:解:|4|--=﹣4,则有理数10,3,,|4|2---在数轴上表示如图:按从小到大的顺序连接如下:14302--<-<<.点睛:本题考查了数轴和有理数的大小比较,属于基础题目,熟练掌握基本知识是解题的关键.。
2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-求一个数的绝对值一、选择题1.﹣2019的绝对值是( ) A .2019 B .﹣2019 C .0 D .1 2.已知a =-5,|a|=|b|,则b 的值等于( ) A .5B .-5C .0D .±53.已知x x =-,那么x 一定是( ) A .大于零 B .小于零 C .等于零 D .小于或等于零 4.下列四个数的绝对值比2大的是( ). A .-3B .0C .1D .25.3-的绝对值是( ) A .13B .3-C .13-D .36.下列各数中,一定互为相反数的是( ) A .()1--和1 B .2-和2+ C .()3--和3-- D .m 和m - 7.3﹣2的绝对值是( ) A .2-3B .3-2C .3D .- 38.|a|=2,则实数a 的值是( ) A .-2B .12- C .2±D .29.下面各对数中互为相反数的是( ) A .2与()2-- B .2-与2-C .|2|--与2-D .2-与()2+-10.3--的值为 A .3B .-3C .D .-11.3 ) A .3B 3C .3D .312.下列有理数绝对值最小的是( ) A .-1B .0C .1D .0.513.下列各数属于自然数的是( )A.﹣4 B.|﹣4| C.+(﹣4)D.0.4 14.下列各对数互为相反数的是()A.-(-8)与+(+8)B.-(+8)与-︱-8︱C.-(+8) 与-(-8)D.-︱-8︱与+(-8)15.—2的绝对值是()A.2 B.—2 C.12D.无法确定二、填空题1.100的绝对值为________,-100的绝对值为________;2.-7的绝对值是__________.3.绝对值大于2.1而小于5.4的整数的积为________.4.π-的绝对值是_______________;5.计算:﹣|﹣5|=_____;﹣(﹣5)=_____;|﹣5|=_____6.﹣7的绝对值是_____.7.若4x=,则5x-的值是___________.8.﹣6的绝对值的结果为_____.9.若x是2的相反数,︱y︱=3,则x-y的值是_____________.10.74-的绝对值是_______.11.计算:﹣|﹣5|=_____;﹣(﹣5)=_____;|﹣5|=_____12________13.比大小:﹣1_____﹣0.2(填写“>”或“<”)14.-|-67|=_______,-(-67)=_______,- |+13|=_______,-(+13)=_______,+|-(12)| =_______,+(-12)=_______15.如果a是最大的负整数,b是绝对值最小的数,那么-a+b=________.三、解答题1.将有理数213-,112,3,-4,()1--,0,34--按从大到小的顺序,用“>”连接起来.2.已知:﹣4,|﹣2|,﹣2,﹣(﹣3.5),0,112.(1)在如图所示的数轴上表示出以上各数;(2)比较以上各数的大小,用“<”号连接起来; _____<_____<______<______<______<______(3)在以上各数中选择恰当的数填在图中这两个圈的(重叠)部分.3.把下列各数及它们的相反数在数轴上表示出来,并用“<”号把它们连接起来.13,(4),0,| 2.5|,12-----.4.画数轴并表示出以下各数,并用“<”号连接4-,2-,2-,()3.5--,0,112-.5.在数轴上表示下列数,再用“<”号把各数连接起来. +2,()4-+,()1+-,3-,-2.5参考答案一、选择题1.A解析:直接利用绝对值的性质得出答案.详解:﹣2019的绝对值是:|-2019|=2019.故选A.点睛:查了绝对值,正确把握绝对值的定义是解题关键.2.D解析:根据绝对值的性质进行计算即可.详解:解:∵a=-5,|a|=|b|∴|b|=5∴b=5故选D点睛:本题主要考查绝对值的性质,掌握绝对值的性质是解题的关键.3.D解析:一个数的绝对值等于它的相反数,则这个数一定小于或等于0.详解:因为|x|=﹣x,所以x一定小于或等于0.故选D.点睛:理解绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.4.A解析:分别求出选项中四个数的绝对值,再与2比较,从而可得答案. 详解:解:因为:33,00,11,22,-==== 所以:3->2. 故选:A . 点睛:本题考查的是求一个数的绝对值以及有理数的大小比较,掌握以上知识是解题的关键. 5.D解析:利用绝对值的性质求解即可. 详解:解:∵= 故选:D. 点睛:本题主要考察绝对值的性质,正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零. 6.C解析:根据绝对值的性质和相反数的概念分别进行化简,然后可得答案. 详解:A. ()1--=1,()1--和1不是相反数,故此选项错误;B. |−2|=2,|+2|=2,不是相反数,故此选项错误;C. =3()3--,3--=-3,是相反数,故此选项正确;D. |m|与|−m|不是相反数,故此选项错误; 故选:C. 点睛:此题考查绝对值、相反数,解题关键在于确定绝对值的值. 7.A解析:分析:根据差的绝对值是大数减小数,可得答案.的绝对值是 故选A .点睛:本题考查了实数的性质,差的绝对值是大数减小数.8.C解析:根据绝对值的意义进行求解即可得.详解:a 的绝对值是指数轴上表示数a 的点到原点的距离, 因为|a|=2,在数轴上到原点距离为2的点表示的数是2或-2, 所以a 的值为±2, 故选C.点睛:本题考查了绝对值的意义,熟练掌握绝对值的意义是解题的关键. 9.B解析:根据相反数的定义对各项进行判断即可. 详解:解:A 选项:()22=--,不是互为相反数,故A 错误; B 选项:22-=,2与2-互为相反数,故B 正确; C 选项:22--=-,不是互为相反数,故C 错误; D 选项:()22-=+-,不是互为相反数,故D 错误; 故选B . 点睛:本题考查了相反数的问题,掌握相反数的定义是解题的关键. 10.B解析:试题分析: 负数的绝对值等于其相反数,33-=,所以33--=-;故答案选B. 考点:绝对值. 11.B解析:利用绝对值的性质求解即可. 详解:解:∵=故选B. 点睛:本题主要考察绝对值的性质,正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零. 12.B解析:根据绝对值定义,0是绝对值最小的数即可判断.详解:解:∵正数绝对值得本身,负数绝对值得相反数,0的绝对值是0,∴0是绝对值最小的数,故选:B点睛:本题考查绝对值的定义,对定义的理解是解答此题的关键.13.B解析:把各数化简计算后,表示物体个数的0,1,2,3,4,……叫做自然数, 把各数化简计算后,再判断.0也是自然数.详解:解:﹣4不是自然数,故选项A不合题意;|﹣4|=4,是自然数,故选项B符合题意;+(﹣4)=﹣4,不是自然数,故选项C不合题意;0.4不是自然数,故选项D不合题意;故选B.点睛:本考查了自然数的概念,注意0也是自然数,熟记自然数的概念是解题的关键.14.C解析:先根据绝对值进行化简,再根据相反数的定义判断即可.详解:A、∵-(-8)=8,+(+8)=8,∴-(-8)与+(+8)不是互为相反数,选项错误;B、∵-(+8)=-8,-︱-8︱=-8,∴-(+8)与-︱-8︱不是互为相反数,选项错误;C、∵-(+8) =-8,-(-8)=-8,∴-(+8) 与-(-8)不是互为相反数,选项正确;D、∵-︱-8︱=-8,+(-8)=-8,∴-︱-8︱与+(-8)不是互为相反数,选项错误;故选C.点睛:本题考查相反数和绝对值,关键是熟练掌握相反数的概念和求绝对值.15.A解析:根据绝对值的定义,即可完成解答.详解:解:—2的绝对值是2.点睛:本题考查了绝对值的定义,灵活运用绝对值的定义是解答本题的关键.二、填空题1.100 100解析:利用绝对值的定义解题.详解:|100|=100, |-100|=100;故答案为100, 100.点睛:主要考查绝对值的定义,要求熟记以下规律.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.7解析:试题解析:根据绝对值的定义可得:|-7|=7.故答案为7.3.-3600解析:找出绝对值大于2.1而小于5.4的整数,求出之积即可.详解:绝对值大于2.1而小于5.4的整数有−3,−4,−5,3,4,5,之积为−3600.故答案为−3600点睛:此题考查绝对值,有理数大小比较,有理数的乘法,解题关键在于掌握运算法则.4.π解析:根据绝对值的求法进行计算即可得到答案.详解:-=,故答案为π.由题意可得ππ点睛:本题考查求绝对值,解题的关键是掌握求绝对值的方法.5.﹣5, 5 5解析:直接利用绝对值以及相反数的定义化简得出答案.详解:﹣|﹣5|=﹣5;﹣(﹣5)=5;|﹣5|=5.故答案为﹣5,5,5.点睛:此题主要考查了绝对值以及相反数,正确把握相关定义是解题关键.6.7.解析:试题分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.∵﹣7<0,∴|﹣7|=7.考点:绝对值.7.详解:分析:把x的值代入原式,利用绝对值的代数意义计算即可得到结果.详解:当x=4时,原式=|4﹣5|=|﹣1|=1.故答案为1.点睛:本题考查了绝对值,熟练掌握绝对值的代数意义是解答本题的关键.8.6解析:根据绝对值的定义计算详解:解:∵|﹣6|=6,故答案为6点睛:此题考查了绝对值的定义,难度不大9.-5或1解析:根据相反数和绝对值的定义,确定x和y的值,然后进行计算即可.详解:解:由题意得:x=-2,y=±3所以x-y的值是-5或1.点睛:本题考查了相反数和绝对值的定义,灵活运用相反数和绝对值的定义是解答本题的关键.10.7 4解析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.详解:解:77 44-=.故答案为74.点睛:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.11.﹣5, 5 5解析:直接利用绝对值以及相反数的定义化简得出答案.详解:﹣|﹣5|=﹣5;﹣(﹣5)=5;|﹣5|=5.故答案为﹣5,5,5.点睛:此题主要考查了绝对值以及相反数,正确把握相关定义是解题关键.12.解析:由绝对值的意义,即可求出答案.详解:解:由绝对值的意义,得故答案为:5±.点睛:本题考查了绝对值的意义,解题的关键是掌握绝对值的意义进行解题.13.〈解析:求出两数的绝对值,再判断即可得到答案.详解:∵|−1|=1,|−0.2|=0.2,∴1>0.2,故答案为<.点睛:本题考查有理数大小比较和绝对值,解题的关键是掌握有理数大小比较方法和求绝对值.14.-67,67, -13, -13,12, _12解析:根据绝对值和相反数的定义求解. 详解:-|-67|=-67,-(-67)=67,- |+13|=-13,-(+13)=-13,+|-(12)| =12,+(-1 2)=_12故答案为-67,67,-13,-13,12,_12点睛:考核知识点:绝对值,相反数.理解定义是关键.15.1解析:根据有理数的分类、绝对值的定义可得到1a=-,0b=,然后把a、b的值代入-a+b 进行计算即可.详解:解:a是最大的负整数,b是绝对值最小的数,1a∴=-,0b=,(1)0101a b∴-+=--+=+=.故答案为:1.点睛:本题主要考查的是有理数的相关知识.最大的负整数是1-,绝对值最小的有理数是0.三、解答题1.13231(1)014 243 >>-->>-->->-解析:先化简各数,然后根据有理数比较大小的法则进行比较.详解:解:∵()1=1--,33=44---,11=1.52,21 1.6673-≈-,∴按从大到小的顺序为:13231(1)014243>>-->>-->->-.点睛:本题考查的是有理数的大小比较,解答此类题目时要先估算出分数的大小,化简绝对值,再根据有理数比较大小的法则进行比较.2.(1)答案见解析;(2)-4<-2<0 <112<∣-2∣<-(-3.5);(3)-4,-2.解析:(1)在数轴上找到各数的位置即可解答;(2)根据(1)题中各数的位置即可解答;(3)根据题目中的数据找出既是负数又是整数的数即可解答. 详解:解:(1)如图所示:(2)-4<-2<0 <112<∣-2∣<-(-3.5);(3)在﹣4,|﹣2|,﹣2,﹣(﹣3.5),0,112这些数中,既是负数又是整数的数是-4,-2,所以这两个圈的重叠部分应填-4,-2,如图.本题考查了有理数的概念、有理数在数轴上的表示和比较有理数大小的方法,熟练掌握有理数的相关知识是解题的关键.3.1143 2.5101| 2.5|3(4)22-<-<-<-<<<-<<--,数轴上表示见解析.解析:先分别求得个数的相反数,再在数轴上表示,把这些数从左到右依次用小于号连接即可. 详解:解:-3的相反数为:3,(4)--的相反数为:-4,0的相反数为:0,| 2.5|-的相反数为:-2.5,112-的相反数为:112, 在数轴上表示如下:所以,1143 2.5101| 2.5|3(4)22-<-<-<-<<<-<<--. 点睛:本题考查了有理数比较大小,数轴上的点表示的数,绝对值和相反数.在数轴上右边总比左边的大.4.详见解析,14210|2|( 3.5)2-<-<-<<-<--解析:先画出标准数轴,再将各数准确标到相应位子上即可. 详解:22-=,()3.5 3.5--=,在数轴表示如图所示:排序:14210|2|( 3.5)2-<-<-<<-<--本题考查了利用数轴比较大小,能够准确在数轴上表示出各个点是解决问题的关键.5.在数轴上表示见解析,()()4 2.5123-+<-<+-<+<- 解析:先化简,再在数轴上表示各个数,然后比较即可. 详解:∵()44-+=-,()11+-=-,33=-, ∴在数轴上表示为:∴()()4 2.5123-+<-<+-<+<-. 点睛:本题考查了相反数、绝对值以及利用数轴比较有理数的大小,能在数轴上正确表示各个数是解此题的关键,注意:在数轴上表示的数,右边的数总比左边大.。
第2章《绝对值》解答题专练1.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是______,(2)数轴上表示x与2的两点之间的距离可以表示为______.(3)如果|x﹣2|=5,则x=______.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是______.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.2.阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,如图2,点A、B都在原点的右边|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|;回答下列问题:(1)数轴上表示2和5的两点之间的距离是______,数轴上表示﹣2和﹣5的两点之间的距离是______,数轴上表示1和﹣3的两点之间的距离是______.(2)数轴上表示x和﹣1的两点A和B之间的距离是______,如果|AB|=2,那么x为______;(3)当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是______.3.小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是______,最小值是______”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:(1)当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值范围是______,最小值是______.(2)已知y=|2x+8|﹣4|x+2|,求相应的x的取值范围及y的最大值.写出解答过程.4.请把下列每对数在数轴上所对应的两点的距离写在横线上:(1)①3与2______;3与﹣2______;③﹣4与﹣4______;④﹣3与2______;你能发现求出距离与这两个数的差有什么关系吗?如果有一对数为a,b,则a,b两数所对应的两点之间的距离可表示为______.(2)如图所示,点A、B所代表的数分别为1,﹣2,在数轴上画出与A、B两点的距离之和为5的点(并表上相应的字母)(3)由以上探索解答下列问题:①当|x+1|+|x﹣2|=7时,x=______;②|x﹣3|+|x﹣4|+|x﹣5|的和的最小值=______③求|x﹣1|+|x﹣2|+|x﹣3|…|x﹣21|的最小值.5.先阅读,后探究相关的问题【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看做|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.(1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为______和______,B,C两点间的距离是______;(2)数轴上表示x和﹣1的两点A和B之间的距离表示为______;如果|AB|=3,那么x 为______;(3)若点A表示的整数为x,则当x为______时,|x+4|与|x﹣2|的值相等;(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是______.6.认真阅读下面的材料,完成有关问题.材料1:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.问题(1):点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C 的距离之和可表示为______(用含绝对值的式子表示).问题(2):利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是______,②设|x ﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是______;当x的值取在______的范围时,|x|+|x﹣2|的最小值是______.材料2:求|x﹣3|+|x﹣2|+|x+1|的最小值.分析:|x﹣3|+|x﹣2|+|x+1|=(|x﹣3|+|x+1|)+|x﹣2|根据问题(2)中的探究②可知,要使|x﹣3|+|x+1|的值最小,x的值只要取﹣1到3之间(包括﹣1、3)的任意一个数,要使|x﹣2|的值最小,x应取2,显然当x=2时能同时满足要求,把x=2代入原式计算即可.问题(3):利用材料2的方法求出|x﹣3|+|x﹣2|+|x|+|x+1|的最小值.7.阅读下面的材料,然后回答问题.点A,B在数轴上分别表示实数a,b,A,B两点之间的距离用|AB|表示.当A,B两点中有一点在原点时,不妨设点A在原点,如图1所示,|AB|=|OB|=|b|=|a﹣b|.当A,B两点都不在原点时,①如图2所示,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a ﹣b|;②如图3所示,点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图4所示,点A,B分别在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|.综上可知,数轴上任意两点A,B之间的距离可表示为:|AB|=|a﹣b|.(1)数轴上表示﹣2和﹣5两点之间的距离是______,数轴上表示2和﹣5两点之间的距离是______.(2)数轴上表示x和2两点A和B之间的距离是______;如果|AB|=3,那么x______.(3)当代数式|x+2|+|x﹣3|取最小值时,x的取值范围是______.8.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离,这个结论可以推广为|x1﹣x2|表示在数轴上x1,x2对应点之间的距离.例1:解方程|x|=2,容易看出,在数轴上与原点距离为2点的对应数为2或﹣2,即该方程的解为x=2或x=﹣2例2:解不等式|x﹣1|>2,如图1,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1和3,则|x﹣1|>2的解集为x<﹣1或x>3.例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边,若x对应点在1的右边,由图2可以看出x=2.同理,若x对应点在﹣2的左边,可得x=﹣3,故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为______.(2)不等式|x﹣3|+|x+4|≥9的解集为______.9.阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.10.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和10两点之间的距离是______,数轴上表示2和﹣10的两点之间的距离是______.(2)数轴上表示x和﹣2的两点之间的距离表示为______.(3)若x表示一个有理数,|x﹣1|+|x+2|有最小值吗?若有,请求出最小值,若没有,写出理由.(4)若x表示一个有理数,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+…+|x﹣2014|+|x﹣2015|的最小值.11.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=______.(2)若|x﹣2|=5,则x=______(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,这样的整数是______.12.阅读下面材料:在数轴上5与﹣2所对的两点之间的距离:|5﹣(﹣2)|=7;在数轴上﹣2与3所对的两点之间的距离:|﹣2﹣3|=5;在数轴上﹣8与﹣5所对的两点之间的距离:|(﹣8)﹣(﹣5)|=3在数轴上点A、B分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是______;数轴上表示数x和3的两点之间的距离表示为______;数轴上表示数______和______的两点之间的距离表示为|x+2|,;(2)七年级研究性学习小组在数学老师指导下,对式子|x+2|+|x﹣3|进行探究:①请你在草稿纸上画出数轴,当表示数x的点在﹣2与3之间移动时,|x﹣3|+|x+2|的值总是一个固定的值为:______.②请你在草稿纸上画出数轴,要使|x﹣3|+|x+2|=7,数轴上表示点的数x=______.13.阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,AB=OB=|b|=|a﹣b|当A、B两点都不在原点时,①如图2,点A、B都在原点的右边|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|;③如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|b|+|a|=﹣b+a=|a﹣b|;综上,数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:①数轴上表示2和5的两点之间的距离是______,数轴上表示﹣2和﹣5的两点之间的距离是______,数轴上表示1和﹣3的两点之间的距离是______;②数轴上表示x和﹣1的两点A和B之间的距离是______,如果|AB|=2,那么x为______;③当代数式|x+4|+|y﹣7|取最小值时,则x﹣y=______.参考答案与解析1.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是7 ,(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2| .(3)如果|x﹣2|=5,则x= 7或﹣3 .(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是﹣3、﹣2、﹣1、0、1 .(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【分析】(1)根据距离公式即可解答;(2)利用距离公式求解即可;(3)利用绝对值求解即可;(4)利用绝对值及数轴求解即可;(5)根据数轴及绝对值,即可解答.【解答】解:(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)∵|x﹣2|=5,∴x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,∴这样的整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;(5)有最小值是3.【点评】本题是一道去绝对值和数轴相联系的综合试题,考查了取绝对值的方法,取绝对值在数轴上的运用.难度较大.去绝对的关键是确定绝对值里面的数的正负性.2.阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,如图2,点A、B都在原点的右边|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|;回答下列问题:(1)数轴上表示2和5的两点之间的距离是 3 ,数轴上表示﹣2和﹣5的两点之间的距离是 3 ,数轴上表示1和﹣3的两点之间的距离是 4 .(2)数轴上表示x和﹣1的两点A和B之间的距离是|x+1| ,如果|AB|=2,那么x 为1或﹣3 ;(3)当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是﹣1≤x≤2 .【分析】审题可知题中通过探索已经得出数轴上两点之间的距离求值方法:即两数之差的绝对值,(1)求两点距离,我们根据题意代入求值即可.(2)第一个问题只需把字母和数代入即可,第二个问题,根据题意列出方程求解即可.(3)将绝对值理解为两点之间的距离,再根据两点之间线段最短分析即可.【解答】解:(1)数轴上表示2和5的两点之间的距离是:|2﹣5|=3,数轴上表示﹣2和﹣5的两点之间的距离是:|﹣2﹣(﹣5)|=3,数轴上表示1和﹣3的两点之间的距离是:|1﹣(﹣3)|=4.故答案为:3,3,4(2)数轴上表示x和﹣1的两点A和B之间的距离是:|x﹣(﹣1)|=|x+1|,由|AB|=2得:|x+1|=2,所以有:x+1=2,或x+1=﹣2,解得x=1,或x=﹣3.故答案为:|x+1|,1或﹣3.(3)|x+1|+|x﹣2|可以看作:表示x的点到表示﹣1的点和到表示2的点的距离的和,根据两点之间线段最短,可知表示x的点在表示﹣1的点和到表示2的点的线段上,所以﹣1≤x≤2.故答案为:﹣1≤x≤2.【点评】此题主要考察数轴上两点之间的距离,准确把握题中距离公式并认真代入计算是解题的关键,解题中要注意:由距离求点时,要分类讨论避免漏解.3.小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是﹣1≤x≤2 ,最小值是3 ”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:(1)当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值范围是4≤x ≤6 ,最小值是8 .(2)已知y=|2x+8|﹣4|x+2|,求相应的x的取值范围及y的最大值.写出解答过程.【分析】(1)根据线段上的点与线段的端点的距离最小,可得答案;(2)根据两个绝对值,可得分类的标准,根据每一段的范围,可得到答案.【解答】解:(1)当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值范围是4≤x≤6,最小值是8;(2)当x≥﹣2,时y=﹣2x,当x=﹣2时,y最大=4;当﹣4≤x≤﹣2时,y=6x+16,当x﹣2时,y最大=4;当x≤﹣4,时y=2x,当x=﹣4时,y最大=﹣8,所以x=﹣2时,y有最大值y=4.【点评】本题考查了绝对值,线段上的点与线段的端点的距离最小,(2)分类讨论是解题关键.4.请把下列每对数在数轴上所对应的两点的距离写在横线上:(1)①3与2 1 ;3与﹣2 5 ;③﹣4与﹣4;④﹣3与2 6 ;你能发现求出距离与这两个数的差有什么关系吗?如果有一对数为a,b,则a,b两数所对应的两点之间的距离可表示为|a﹣b| .(2)如图所示,点A、B所代表的数分别为1,﹣2,在数轴上画出与A、B两点的距离之和为5的点(并表上相应的字母)(3)由以上探索解答下列问题:①当|x+1|+|x﹣2|=7时,x= 4 ;②|x﹣3|+|x﹣4|+|x﹣5|的和的最小值= 2③求|x﹣1|+|x﹣2|+|x﹣3|…|x﹣21|的最小值.【分析】(1)利用数轴分别得出,进而得出a,b两数所对应的两点之间的距离;(2)根据点A、B所代表的数分别为1,﹣2,在数轴上画出与A、B两点的距离之和为5的点,结合数轴得出即可;(3)①利用x的取值范围分析得出即可;②利用x=4时,求出原式的最值即可;③可以用数形结合来解题:x为数轴上的一点,|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣21|表示:点x到数轴上的21个点(1、2、3、…、21)的距离之和,由于原式的绝对值共有21项,最中间的那一项是|x﹣11|,所以只需取x=11,它们的和就可以获得最小值.【解答】解:(1)①1;②5;③;④6;a,b两数所对应的两点之间的距离可表示为|a﹣b|;(2)C、D是与A、B两点的距离之和为5的点;(3)①当x≥﹣1时,|x+1|+|x﹣2|=7为x+1+x﹣2=7或x+1+2﹣x=7(舍去),解得:x=4,当x<﹣1时,|x+1|+|x﹣2|=7为﹣x﹣1﹣x+2=7,解得:x=﹣3,故答案为:4或﹣3;②当|x﹣3|+|x﹣4|+|x﹣5|的和最小,则x=4,∴原式=1+0+1=2;故答案为:2;③当x=11时,|x﹣1|+|x﹣2|+|x﹣3|…|x﹣21|=10+9+8+7+…+9+10=10×11=110.【点评】此题主要考查了绝对值的性质以及利用数形结合求最值问题,利用已知得出x=11时,|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣21|能够取到最小值是解题关键.5.先阅读,后探究相关的问题【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看做|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.(1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为﹣2.5 和 1 ,B,C两点间的距离是 3.5 ;(2)数轴上表示x和﹣1的两点A和B之间的距离表示为;如果|AB|=3,那么x为﹣4,2 ;(3)若点A表示的整数为x,则当x为﹣1 时,|x+4|与|x﹣2|的值相等;(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是﹣5≤x≤2 .【分析】(1)根据数先在数轴上描出点,再根据点得出两点间的距离;(2)根据数轴上两点间的距离公式,可得到一点距离相等的点有两个;(3)根据到两点距离相等的点是这两个点的中点,可得答案;(4)根据线段上的点到这两点的距离最小,可得范围.【解答】解:(1)B点表示的数﹣2.5,C点表示的数1,BC的距离是1﹣(﹣2.5)=3;(2)数轴上表示x和﹣1的两点A和B之间的距离表示为,如果|AB|=3,那么x为﹣4,2;(3)若点A表示的整数为x,则当x为﹣1,时,|x+4|与|x﹣2|的值相等;(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是﹣5≤x≤2,故答案为:﹣2.5,1;,﹣4,2;﹣1;﹣5≤x≤2.【点评】本题考查了绝对值,由数轴上点的关系,得出到一点距离相等的点有两个,到两点相等的点是这两点的中点,到两点距离和最小的点是这条线段上的点.6.认真阅读下面的材料,完成有关问题.材料1:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.问题(1):点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为+(用含绝对值的式子表示).问题(2):利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是﹣2,4 ,②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是 4 ;当x的值取在0≤x≤2 的范围时,|x|+|x﹣2|的最小值是 2 .材料2:求|x﹣3|+|x﹣2|+|x+1|的最小值.分析:|x﹣3|+|x﹣2|+|x+1|=(|x﹣3|+|x+1|)+|x﹣2|根据问题(2)中的探究②可知,要使|x﹣3|+|x+1|的值最小,x的值只要取﹣1到3之间(包括﹣1、3)的任意一个数,要使|x﹣2|的值最小,x应取2,显然当x=2时能同时满足要求,把x=2代入原式计算即可.问题(3):利用材料2的方法求出|x﹣3|+|x﹣2|+|x|+|x+1|的最小值.【分析】(1)根据两点间的距离公式,可得答案;(2)根据两点间的距离公式,点在线段上,可得最小值;(3)根据两点间的距离公式,点在线段上,可得答案.【解答】解:(1)|x+2|+;(2)①﹣2、4,②4;不小于0且不大于2,2;(3)|x﹣3|+|x﹣2|+|x|+|x+1|=(|x﹣3|+|x+1|)+(|x﹣2|+|x|)要使|x﹣3|+|x+1|的值最小,x的值取﹣1到3之间(包括﹣1、3)的任意一个数,要使|x﹣2|+|x1|的值最小,x取0到2之间(包括0、2)的任意一个数,显然当x取0到2之间(包括0、2)的任意一个数能同时满足要求,不妨取x=0代入原式,得|x﹣3|+|x﹣2|+|x|+|x+1|=3+2+0+1=6方法二:当x取在0到2之间(包括0、2)时,|x﹣3|+|x﹣2|+|x|+|x+1|=﹣(x﹣3)﹣(x﹣2)+x+(x+1)=﹣x+3﹣x+2+x+x+1=6.【点评】本题考查了绝对值,注意到线段两端点距离最小的点在线段上(端点除外).7.阅读下面的材料,然后回答问题.点A,B在数轴上分别表示实数a,b,A,B两点之间的距离用|AB|表示.当A,B两点中有一点在原点时,不妨设点A在原点,如图1所示,|AB|=|OB|=|b|=|a﹣b|.当A,B两点都不在原点时,①如图2所示,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a ﹣b|;②如图3所示,点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图4所示,点A,B分别在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|.综上可知,数轴上任意两点A,B之间的距离可表示为:|AB|=|a﹣b|.(1)数轴上表示﹣2和﹣5两点之间的距离是 3 ,数轴上表示2和﹣5两点之间的距离是7 .(2)数轴上表示x和2两点A和B之间的距离是|x﹣2| ;如果|AB|=3,那么x =5或﹣1 .(3)当代数式|x+2|+|x﹣3|取最小值时,x的取值范围是﹣2<x<3 .【分析】(1)依据两点间的距离公式计算即可;(2)依据两点间的距离公式以及绝对值的定义回答即可;(3)|x+2|+|x﹣3|表示数轴上表示数字x的点到3与﹣2的距离之和.【解答】解:(1)﹣2和﹣5两点之间的距离=|﹣2﹣(﹣5)|=3;2和﹣5两点之间的距离=|﹣5﹣2|=|﹣7|=7;(2)x和2两点A和B之间的距离=|x﹣2|,|x﹣2|=3,则x﹣2=3或x﹣2=﹣3.解得:x=5或x=﹣1.(3)|x+2|+|x﹣3|表示数轴上表示数字x的点到3与﹣2的距离之和,∴当﹣2≤x≤3时,|x+2|+|x﹣3|有最小值.故答案为:(1)3;7;(2)|x﹣2|;5或﹣1;(3)﹣2≤x≤3.【点评】本题主要考查的是数轴、绝对值,掌握绝对值的几何意义是解题的关键.8.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离,这个结论可以推广为|x1﹣x2|表示在数轴上x1,x2对应点之间的距离.例1:解方程|x|=2,容易看出,在数轴上与原点距离为2点的对应数为2或﹣2,即该方程的解为x=2或x=﹣2例2:解不等式|x﹣1|>2,如图1,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1和3,则|x﹣1|>2的解集为x<﹣1或x>3.例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边,若x对应点在1的右边,由图2可以看出x=2.同理,若x对应点在﹣2的左边,可得x=﹣3,故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为x=1或x=﹣7 .(2)不等式|x﹣3|+|x+4|≥9的解集为x≥4或x≤﹣5 .【分析】(1)根据已知条件可以得到绝对值方程,可以转化为数轴上,到某个点的距离的问题,即可求解;(2)不等式|x﹣3|+|x+4|≥9表示到3与﹣4两点距离的和,大于或等于9个单位长度的点所表示的数.【解答】解:(1)方程|x+3|=4的解就是在数轴上到﹣3这一点,距离是4个单位长度的点所表示的数,是1和﹣7.故解是x=1或x=﹣7;(2)由绝对值的几何意义知,该方程表示求在数轴上与3和﹣4的距离之和为大于或等于9的点对应的x的值.在数轴上,即可求得:x≥4或x≤﹣5.故答案为:(1)x=1或x=﹣7;(2)x≥4或x≤﹣5.【点评】本题主要考查了绝对值的意义,就是表示距离,正确理解题中叙述的题目的意义是解决本题的关键.9.阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.【分析】(1)分为x<﹣2、﹣2≤x<4、x≥4三种情况化简即可;(2)分x<﹣1、﹣1≤x≤1、x>1分别化简,结合x的取值范围确定代数式值的范围,从而求出代数式的最大值.【解答】解:(1)当x<﹣2时,|x+2|+|x﹣4|=﹣x﹣2+4﹣x=﹣2x+2;当﹣2≤x<4时,|x+2|+|x﹣4|=x+2+4﹣x=6;当x≥4时,|x+2|+|x﹣4|=x+2+x﹣4=2x﹣2;(2)当x<﹣1时,原式=3x+5<2,当﹣1≤x≤1时,原式=﹣5x﹣3,﹣8≤﹣5x﹣3≤2,当x>1时,原式=﹣3x﹣5<﹣8,则|x﹣1|﹣4|x+1|的最大值为2.【点评】本题主要考查了绝对值,解题的关键是能根据材料所给信息,找到合适的方法解答.10.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和10两点之间的距离是8 ,数轴上表示2和﹣10的两点之间的距离是12 .(2)数轴上表示x和﹣2的两点之间的距离表示为|x+2| .(3)若x表示一个有理数,|x﹣1|+|x+2|有最小值吗?若有,请求出最小值,若没有,写出理由.(4)若x表示一个有理数,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+…+|x﹣2014|+|x﹣2015|的最小值.【分析】(1)(2)依据在数轴上A、B两点之间的距离AB=|a﹣b|求解即可;(3)|x﹣1|+|x+2|表示数轴上x和1的两点之间与x和﹣2的两点之间距离和;(4)依据绝对值的几何意义回答即可.【解答】解:(1)|10﹣2|=8;|2﹣(﹣10)|=12;故答案为:8;12.(2)|x﹣(﹣2)|=|x+2|;故答案为:|x+2|.(3)|x﹣1|+|x+2|表示数轴上x和1的两点之间与x和﹣2的两点之间距离和,利用数轴可以发现当﹣2≤x≤1时有最小值,这个最小值就是1到﹣2的距离,故|x﹣1|+|x+2|最小值是3;(4)当x=1008时有最小值,此时,原式=1007+1006+1005+…+2+1+0+1+2+…1006+1007=1015056.【点评】本题主要考查的是数轴、绝对值,理解绝对值的几何意义是解题的关键.11.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|= 6 .(2)若|x﹣2|=5,则x= ﹣3或7(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,这样的整数是﹣2、﹣1、0、1、2、3、4 .【分析】(1)根据4与﹣2两数在数轴上所对应的两点之间的距离是6,可得|4﹣(﹣2)|=6.(2)根据|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,可得x=﹣3或7.(3)因为4与﹣2两数在数轴上所对应的两点之间的距离是6,所以使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),据此求出这样的整数有哪些即可.【解答】解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.故答案为:6;﹣3或7;﹣2、﹣1、0、1、2、3、4.【点评】(1)此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.(2)解答此题的关键是要明确:|x﹣a|既可以理解为x与a的差的绝对值,也可理解为x 与a两数在数轴上所对应的两点之间的距离.12.阅读下面材料:在数轴上5与﹣2所对的两点之间的距离:|5﹣(﹣2)|=7;在数轴上﹣2与3所对的两点之间的距离:|﹣2﹣3|=5;在数轴上﹣8与﹣5所对的两点之间的距离:|(﹣8)﹣(﹣5)|=3在数轴上点A、B分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是 3 ;数轴上表示数x和3的两点之间的距离表示为|x﹣3| ;数轴上表示数x 和﹣2 的两点之间的距离表示为|x+2|,;(2)七年级研究性学习小组在数学老师指导下,对式子|x+2|+|x﹣3|进行探究:①请你在草稿纸上画出数轴,当表示数x的点在﹣2与3之间移动时,|x﹣3|+|x+2|的值总是一个固定的值为: 5 .②请你在草稿纸上画出数轴,要使|x﹣3|+|x+2|=7,数轴上表示点的数x= ﹣3或4 .。
人教版2019-2020学年七年级上册期末数学试卷含答案解析一、选择题(每小题2分,共20分)1.如果向东走2m记为+2m,则向西走3m可记为()A.+3m B.+2m C.﹣3m D.﹣2m2.在,,,0.1010010001,,中,无理数的个数是()A.1 B.2 C.3 D.43.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×1084.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短5.下列化简正确的是()A.2a+3b=5ab B.7ab﹣3ab=4C.2ab+3ab=5ab D.a2+a2=a46.下列算式中,运算结果为负数的是()A.﹣(﹣2)B.|﹣2| C.(﹣2)3D.(﹣2)27.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°8.2018年宁波市中考新增英语口语听力自动化考试,考试需要耳麦,已知甲耳麦比乙耳麦贵20元,某校购买了甲耳麦40个、乙耳麦60个,共花费了6000元,假设甲耳麦每个x元,由题意得()A.40x+60(x﹣20)=6000 B.40x+60(x+20)=6000C.60x+40(x﹣20)=6000 D.60x+40(x+20)=60009.已知a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣2b|﹣|c﹣2b|的结果是()A.0 B.4b C.﹣2a﹣2c D.2a﹣4b10.某校组织了一次数学测试,试卷的计分规则如下:如果某考生考了82分及以下,他的分数就是实际分数,如果考了82分以上,超过82分的部分按一半计算(例如小明同学考了90分,按这个规则得82+8÷2=86分),全部答对的学生按照这个规则得100分.如果某一个同学按照这个规则的最后分数是93分,他实际考试被扣了()分.A.11 B.14 C.16 D.18二、填空题(每小题3分,共30分)11.单项式的系数是,次数是.12.﹣8的立方根是,9的算术平方根是.13.近似数13.7万精确到位.14.用度表示30°9′36″为.15.已知2x6y2和﹣是同类项,则m﹣n的值是.16.已知a,b为有理数,定义一种运算:a*b=2a﹣3b,若(5x﹣3)*(1﹣3x)=29,则x值为.17.若a、b互为相反数,m、n互为倒数,则2018a+2017b+mnb的值为.18.如图,AB,CD相交于点O,∠BOE=90°,有以下结论:①∠AOC与∠COE互为余角;②∠BOD与∠COE互为余角;③∠AOC=∠BOD;④∠COE与∠DOE互为补角;⑤∠AOC与∠DOE互为补角;⑥∠AOC=∠COE其中错误的有(填序号).19.计算机利用的是二进制数,它共有两个数码0、1,将一个十进制数转化为二进制数,只需要把该数写成若干个2n数的和,依次写出1或0即可.如十进制数19=16+2+1=1×24+0×23+0×22+1×21+1×20,转化为二进制数就是10011,所以19是二进制下的5位数.问:365是二进制下的位数.20.在1,3,5,……,2017,2019,2021这1011数的前面任意添加一个正号或一个负号,其代数和的绝对值最小值是.三、解答题(本大题共有8小题,共50分)21.计算:(1)﹣12018+(﹣6)2×(﹣)(2)+﹣|﹣3|22.解下列方程(1)4+3(x﹣2)=x(3)=1﹣.23.先化简,再求值:﹣8m2+[7m2﹣2m﹣(3m2﹣4m)],其中m=﹣.24.如题,平面上四个点A,B,C,D,按要求完成下列问题:(1)连接线段AD,BC;(2)画射线AB与直线CD相交于E点;(3)在直线CD上找一点M,使线段AM最短,并说明理由.25.如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC=a,BC=b.(1)若a=4 cm,b=6 cm,求线段MN的长;(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.26.观察下列两个等式:2+2=2×2,3+=3×,给出定义如下:我们称使等式a+b=ab成立的一对有理数a,b为“有趣数对”,记为(a,b)如:数对(2,2),(3,)都是“有趣数对”.(1)数对(0,0),(5,)中是“有趣数对”的是;(2)若(a,)是“有趣数对”,求a的值;(3)请再写出一对符合条件的“有趣数对”;(注意:不能与题目中已有的“有趣数对”重复)(4)若(a2+a,4)是“有趣数对”求3﹣2a2﹣2a的值.27.公共自行车的普及给市民的出行带来了方便.现有两个公共自行车投放点A地、B地.要从甲、乙两厂家向A、B两地运送自行车.已知甲厂家可运出20辆自行车,乙厂家可运出60辆自行车;A地需30辆自行车,B地需50辆自行车.甲、乙两厂家向A、B两地的运费如下表:(1)若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为;则乙厂家运往A地的自行车的量数为;则乙厂家运往B地的自行车的量数为;(2)当甲、乙两厂家各运往A、B两地多少辆自行车时,总运费等于470元?28.请阅读下列材料,并解答相应的问题:将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”中国古代称“幻方”为“河图“、“洛书“等,例如,下面是三个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3×3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等.(1)设图1的三阶幻方中间的数字是x,用x的代数式表示幻方中9个数的和为;(2)请你将下列九个数:﹣10、﹣8、﹣6、﹣4、﹣2、0、2、4、6分别填入图2方格中,使得每行、每列、每条对角线上的三个数之和都相等;(3)图3是一个三阶幻方,那么标有x的方格中所填的数是;(4)如图4所示的每一个圆中分别填写了1、2、3…19中的一个数字(不同的圆中填写的数字各不相同),使得图中每一个横或斜方向的线段上几个圆内的数之和都相等,现在已知该图中七个圆内的数字,则图中的x=,y=.参考答案与试题解析一.选择题(共10小题)1.如果向东走2m记为+2m,则向西走3m可记为()A.+3m B.+2m C.﹣3m D.﹣2m【分析】根据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.【解答】解:若向东走2m记作+2m,则向西走3m记作﹣3m,故选:C.2.在,,,0.1010010001,,中,无理数的个数是()A.1 B.2 C.3 D.4【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:在所列6个数中无理数有、这两个,故选:B.3.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×108【分析】先确定出a和n的值,然后再用科学记数法的性质表示即可.【解答】解:30000000=3×107.故选:A.4.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短【分析】根据两点之间,线段最短解答即可.【解答】解:因为两点之间线段最短.故选:D.5.下列化简正确的是()A.2a+3b=5ab B.7ab﹣3ab=4C.2ab+3ab=5ab D.a2+a2=a4【分析】直接利用合并同类项法则分别计算得出答案.【解答】解:A、2a+3b无法计算,故此选项不合题意;B、7ab﹣3ab=4ab,故计算错误,不合题意;C、2ab+3ab=5ab,正确,符合题意;D、a2+a2=2a2,故计算错误,不合题意;故选:C.6.下列算式中,运算结果为负数的是()A.﹣(﹣2)B.|﹣2| C.(﹣2)3D.(﹣2)2【分析】根据在一个数的前面机上负号就是这个数的相反数,负数的绝对值是它的相反数,负数的奇数次幂是负数,负数的偶数次幂是正数,可得答案.【解答】解:A、﹣(﹣2)=2,故A错误;B、|﹣2|=2,故B错误;C、(﹣2)3=﹣8,故C正确;D、(﹣2)2=4,故D错误;故选:C.7.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°【分析】∠BAC等于三个角的和,求出各角的度数,相加即可.【解答】解:如图,由题意,可知:∠AOD=60°,∴∠CAE=30°,∵∠BAF=20°,∴∠BAC=∠CAE+∠EAF+∠BAF=30°+90°+20°=140°,故选:D.8.2018年宁波市中考新增英语口语听力自动化考试,考试需要耳麦,已知甲耳麦比乙耳麦贵20元,某校购买了甲耳麦40个、乙耳麦60个,共花费了6000元,假设甲耳麦每个x元,由题意得()A.40x+60(x﹣20)=6000 B.40x+60(x+20)=6000C.60x+40(x﹣20)=6000 D.60x+40(x+20)=6000【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,40x+60(x﹣20)=6000,故选:A.9.已知a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣2b|﹣|c﹣2b|的结果是()A.0 B.4b C.﹣2a﹣2c D.2a﹣4b【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a﹣2b>0,c﹣2b>0,则原式=a+c﹣a+2b﹣c+2b=4b.故选:B.10.某校组织了一次数学测试,试卷的计分规则如下:如果某考生考了82分及以下,他的分数就是实际分数,如果考了82分以上,超过82分的部分按一半计算(例如小明同学考了90分,按这个规则得82+8÷2=86分),全部答对的学生按照这个规则得100分.如果某一个同学按照这个规则的最后分数是93分,他实际考试被扣了()分.A.11 B.14 C.16 D.18【分析】根据题意可以得到本次考试的实际满分是多少,从而可以计算出某一个同学按照这个规则的最后分数是93分,他实际考试被扣了多少分,本题得以解决.【解答】解:由题意可得,这次考试总分为:82+(100﹣82)×2=118(分),如果某一个同学按照这个规则的最后分数是93分,则这个同学的实际考试被扣了:118﹣[82+(93﹣82)×2]=118﹣(82+11×2)=118﹣(82+22)=118﹣104=14(分),故选:B.二.填空题(共10小题)11.单项式的系数是,次数是 4 .【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数可得答案.【解答】解:单项式的系数是,次数是4;故答案为:;4.12.﹣8的立方根是﹣2 ,9的算术平方根是 3 .【分析】根据立方根和算术平方根的定义求解可得.【解答】解:﹣8的立方根是﹣2,9的算术平方根是3,故答案为:﹣2、3.13.近似数13.7万精确到千位.【分析】根据近似数的精确度求解.【解答】解:近似数13.7万精确到千位.故答案为千.14.用度表示30°9′36″为30.16°.【分析】根据度分秒的进率为60,再进行换算即可.【解答】解:30°9′36″=30.16°,故答案为:30.16°15.已知2x6y2和﹣是同类项,则m﹣n的值是0 .【分析】根据同类项得定义得出m、n的值,继而代入计算可得.【解答】解:根据题意知3m=6,即m=2、n=2,所以m﹣n=2﹣2=0,故答案为:0.16.已知a,b为有理数,定义一种运算:a*b=2a﹣3b,若(5x﹣3)*(1﹣3x)=29,则x值为 2 .【分析】根据新定义列出关于x的方程,解之可得.【解答】解:由题意得2(5x﹣3)﹣3(1﹣3x)=29,10x﹣6﹣3+9x=29,10x+9x=29+6+3,19x=38,x=2,故答案为:2.17.若a、b互为相反数,m、n互为倒数,则2018a+2017b+mnb的值为0 .【分析】根据a、b互为相反数,m、n互为倒数,可以求得a+b和mn的值,从而可以求得所求式子的值.【解答】解:∵a、b互为相反数,m、n互为倒数,∴a+b=0,mn=1,∴2018a+2017b+mnb=2017(a+b)+a+b=2017×0+0=0,故答案为:0.18.如图,AB,CD相交于点O,∠BOE=90°,有以下结论:①∠AOC与∠COE互为余角;②∠BOD与∠COE互为余角;③∠AOC=∠BOD;④∠COE与∠DOE互为补角;⑤∠AOC与∠DOE互为补角;⑥∠AOC=∠COE其中错误的有⑥(填序号).【分析】根据垂线的定义、对顶角、邻补角的性质解答即可.【解答】解:∵AB,CD相交于点O,∠BOE=90°,∴①∠AOC与∠COE互为余角,正确;②∠BOD与∠COE互为余角,正确;③∠AOC=∠BOD,正确;④∠COE与∠DOE互为补角,正确;⑤∠AOC与∠BOC=∠DOE互为补角,正确;⑥∠AOC=∠BOD≠∠COE,错误;故答案为:⑥.19.计算机利用的是二进制数,它共有两个数码0、1,将一个十进制数转化为二进制数,只需要把该数写成若干个2n数的和,依次写出1或0即可.如十进制数19=16+2+1=1×24+0×23+0×22+1×21+1×20,转化为二进制数就是10011,所以19是二进制下的5位数.问:365是二进制下的9 位数.【分析】根据题意得28=256,29=512,根据规律可知最高位应是1×28,故可求共由有9位数.【解答】解:∵28=256,29=512,且256<365<512,∴最高位应是1×28,则共有8+1=9位数,故答案为:9.20.在1,3,5,……,2017,2019,2021这1011数的前面任意添加一个正号或一个负号,其代数和的绝对值最小值是 1 .【分析】从题目中可见这是一组奇数的排列,求一共有1011个数的代数和的绝对值,根据奇数做差可求出最小值.【解答】解:根据题意,要求出其代数和的绝对值最小值,相邻两位做差,差值都为2,则其中1010个数做差的绝对值最小值为:(1010÷2)×2=1010如果剩余的一个数取﹣1009或﹣1011,整个代数和最小,即|1010﹣1009|=1或|1010﹣1011|=1所以其代数和的绝对值最小值是:1故答案为:1三.解答题(共8小题)21.计算:(1)﹣12018+(﹣6)2×(﹣)(2)+﹣|﹣3|【分析】(1)直接利用有理数的混合运算法则计算得出答案;(2)直接利用立方根以及绝对值的性质分别化简得出答案.【解答】解:(1)原式=﹣1+36×=﹣1+6=5;(2)原式=2+﹣3=.22.解下列方程(1)4+3(x﹣2)=x(2)=1﹣.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:4+3x﹣6=x,移项合并得:2x=2,解得:x=1;(2)去分母得:8x﹣2=6﹣3x+1,移项合并得:11x=9,解得:x=.23.先化简,再求值:﹣8m2+[7m2﹣2m﹣(3m2﹣4m)],其中m=﹣.【分析】原式去括号合并得到最简结果,把m的值代入计算即可求出值.【解答】解:原式=﹣8m2+7m2﹣2m﹣3m2+4m=﹣4m2+2m,当m=﹣时,原式=﹣1﹣1=﹣2.24.如题,平面上四个点A,B,C,D,按要求完成下列问题:(1)连接线段AD,BC;(2)画射线AB与直线CD相交于E点;(3)在直线CD上找一点M,使线段AM最短,并说明理由.【分析】(1)画线段AD,BC即可;(2)画射线AB与直线CD,交点记为E点;(3)根据垂线段最短作出垂线段即可求解.【解答】解:(1)如图所示:(2)如图所示:(3)如图所示:理由是垂线段最短.25.如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC=a,BC=b.(1)若a=4 cm,b=6 cm,求线段MN的长;(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.【分析】(1)根据M、N分别是AC、BC的中点,求出MC、CN的长度,MN=MC+CN;(2)根据(1)的方法求出MN=AB;(3)作出图形,MC=AC,CN=BC,所以MN=AC﹣CB.【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∴MN=MC+CN=AC+BC=×4+×6=5cm,所以MN的长为5cm.(2)同(1),MN=AC+CB=(AC+CB)=(a+b).(3)图如右,MN=(a﹣b).理由:由图知MN=MC﹣NC=AC﹣BC=a﹣b=(a﹣b).26.观察下列两个等式:2+2=2×2,3+=3×,给出定义如下:我们称使等式a+b=ab成立的一对有理数a,b为“有趣数对”,记为(a,b)如:数对(2,2),(3,)都是“有趣数对”.(1)数对(0,0),(5,)中是“有趣数对”的是(0,0);(2)若(a,)是“有趣数对”,求a的值;(3)请再写出一对符合条件的“有趣数对”(4,);(注意:不能与题目中已有的“有趣数对”重复)(4)若(a2+a,4)是“有趣数对”求3﹣2a2﹣2a的值.【分析】(1)根据“有趣数对”的定义即可得到结论;(2)根据“有趣数对”的定义列方程即可得到结论;(3)根据根据“有趣数对”的定义即可得到结论;(4)根据“有趣数对”的定义列方程即可得到结论.【解答】解:(1)∵0+0=0×0,∴数对(0,0)是“有趣数对”;∵5+=,5×=,∴(5,)不是“有趣数对”,故答案为:(0,0);(2)∵(a,)是“有趣数对”,∴a=a+,解得:a=﹣3;(3)符合条件的“有趣数对”如(4,);故答案为:(4,);(4)∵(a2+a,4)是“有趣数对”∴a2+a+4=4(a2+a),解得:a2+a=,∴﹣2a2﹣2a=﹣2(a2+a)=﹣2×=﹣,∴3﹣2a2﹣2a=3﹣=.27.公共自行车的普及给市民的出行带来了方便.现有两个公共自行车投放点A地、B地.要从甲、乙两厂家向A、B两地运送自行车.已知甲厂家可运出20辆自行车,乙厂家可运出60辆自行车;A地需30辆自行车,B地需50辆自行车.甲、乙两厂家向A、B两地的运费如下表:(1)若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为20﹣x;则乙厂家运往A地的自行车的量数为30﹣x;则乙厂家运往B地的自行车的量数为30+x;(2)当甲、乙两厂家各运往A、B两地多少辆自行车时,总运费等于470元?【分析】(1)根据表格中的数据填空;(2)根据总运费是470元列出方程并解答.【解答】解:(1)若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为 20﹣x;则乙厂家运往A地的自行车的量数为 30﹣x;则乙厂家运往B地的自行车的量数为 30+x;故答案是:20﹣x;30﹣x;30+x.(2)根据题意,得5x+6(20﹣x)+10(30﹣x)+4(30+x)=470解得x=10则20﹣x=10(辆)30﹣x=20(辆)30+x=40(辆)答:甲厂家运往B地的自行车的量数为10辆,则甲厂向B运算自行车的数量是10辆;乙厂家运往A地的自行车的量数为20辆;乙厂家运往B地的自行车的量数为40辆.28.请阅读下列材料,并解答相应的问题:将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”中国古代称“幻方”为“河图“、“洛书“等,例如,下面是三个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3×3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等.(1)设图1的三阶幻方中间的数字是x,用x的代数式表示幻方中9个数的和为9x;(2)请你将下列九个数:﹣10、﹣8、﹣6、﹣4、﹣2、0、2、4、6分别填入图2方格中,使得每行、每列、每条对角线上的三个数之和都相等;(3)图3是一个三阶幻方,那么标有x的方格中所填的数是21 ;(4)如图4所示的每一个圆中分别填写了1、2、3…19中的一个数字(不同的圆中填写的数字各不相同),使得图中每一个横或斜方向的线段上几个圆内的数之和都相等,现在已知该图中七个圆内的数字,则图中的x= 1 ,y=19 .【分析】观察数字之间的关系,根据每行、每列、每条对角线上的三个数之和相等;(1)(x+3)+(x﹣4)+(x+1)+(x﹣2)+(x+2)+x+(x﹣1)+(x+4)+(x﹣3)(2)﹣10、﹣8、﹣6、﹣4、﹣2、0、2、4、6将数从小到大排序,最中间的数填入中心位置,大小匹配填﹣2的两侧;(3)三个数之和18+x,2边填16,以此为突破口;(4)设第一行最后一个数是m,则每一个横或斜方向的线段的和是28+m,以此展开推理;【解答】解:(1)三阶幻方如图所示:用x的代数式表示幻方中9个数的和S=(x+3)+(x﹣4)+(x+1)+(x﹣2)+(x+2)+x+(x﹣1)+(x+4)+(x﹣3)=9x;故答案为9x;(2)三阶幻方如图所示:(3)故答案为21;(4)如图所示:x=1,y=19;故答案气为1,19;。
2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-求一个数的绝对值一、选择题1.2019的绝对值是()A.12019B.2019-C.2019 D.2019±2.在有理数-(-2),-2-,-5,0,3,-1.5中负数的个数为()A.1个B.2个C.3个D.4个3.下列各数中,绝对值最大的是()A.-6 B.-3 C.0 D.24.-2的绝对值等于A.2 B.-2 C.D.45.-2的绝对值是()A.2 B.-2 C.D.-6.在﹣112,15,﹣10,0,﹣(﹣5),﹣|+3|,+(﹣5),﹣(+112)中,负数的个数有()A.2个B.3个C.4个D.5 个7.-2的绝对值是()A.-2 B.2 C.D.8.|-2015|等于()A.2015 B.-2015 C.±2015D.9.下列各数中,一定互为相反数的是()A.-(-5)和-|-5| B.|-5|和|+5|C.-(-5)和|-5| D.|a|和|-a|10.一个数的绝对值是5,那么这个数是()A .±5B .5C .-5D .11.﹣1的绝对值是( )A .﹣1B .1C .0D .±112.4x =,则x x +等于( ).A .8B .8或-8C .4或-4D .0或8 132的绝对值是( )A .B C D .14.﹣2 的绝对值是( )A .﹣2B .2C .2±D .-12 15.|3.14-π|的值是 ( )A .0B .3.14-πC .π-3.14D .3.14+π 16.已知x x =-,那么x 一定是() A .大于零 B .小于零C .等于零D .小于或等于零 17.下列各式不成立的是( )A .|﹣2|=2B .|+2|=|﹣2|C .﹣|+2|=±|﹣2|D .﹣|﹣3|=+(﹣3) 18.-3的绝对值是( )A .3B .-3C .13D .919.实数( )A .B .3C D .20.|﹣3|=( )A .13B .﹣13C .3D .﹣3 21.若-|a |=-3.2,则a 是()A .3.2B .-3.2C .±3.2D .0和3.2 22.︱-32︱的值是( )A .-3B .3C .9D .-9 23.下列各式错误的是( )A .-|+2|=-2B .-(+2)=-2C .-(-2)=2D .-|-2|=224.如图,数轴上点A所表示的数的绝对值为()A.3 B.±3C.﹣3 D.以上均不对25.若│x--3│+│y--2│=0,则│x│+│y│的值是()A.5 B.1 C.2 D.0参考答案一、选择题1.C解析:正数的绝对值是它本身,依此即可求解.详解:2019的绝对值等于2019.故选:C.点睛:此题考查了绝对值,解题关键在于掌握如果用字母a表示有理数,则数a 绝对值要由字母a 本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a 的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.2.C解析:根据负数的定义:负数小于0逐个判断即可.详解:解:在有理数-(-2),-2-,-5,0,3,-1.5中,负数有:-2-,-5,-1.5,共3个.故选:C.点睛:本题考查了负数的概念,属于应知应会题型,掌握负数的定义是关键.3.A解析:分别求出各个数的绝对值再比较大小即可.详解:-,0=0,2=2,6=6-,3=3∴绝对值最大的是6-故选:A.点睛:本题考查了绝对值和有理数的大小比较,熟练掌握绝对值的定义是解题的关键.4.A解析:分析:直接根据绝对值的意义得到答案.解:|-2|=2.故选A.点评:本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=-a.5.A解析:试题分析:因为负数的绝对值等于它的相反数,所以-2的绝对值是2,故选A.考点:绝对值.6.D解析:根据负数的定义,判断下列的数中是负数的数.详解:解:112-、10-、3-+、()5+-、112⎛⎫-+ ⎪⎝⎭是负数,有5个.故选:D.点睛:本题考查负数的定义,需要注意并不是有负号的数就一定是负数,比如题目中的()5--就是正数.7.B解析:试题分析:数轴上表示一个数的点离开原点的距离叫这个数的绝对值.(0){(0),a aaa a≥=-<2 2.∴-=乘积为1的两个数互为倒数;所以2-的倒数等于12-.乘积为1-的两个数互为负倒数.所以2-的负倒数等于12.所以选B.考点: 1绝对值;2倒数;3负倒数.8.A解析:试题分析:负数的绝对值等于它的相反数,|-2015|=2015,故选A考点:绝对值9.A解析:根据相反数和绝对值的定义,分别化简每一对数值,然后做出判断,详解:A .-(-5)=5,-|-5|=-5,5和-5互为相反数,故A 正确;B .|-5|=5,|+5|=5,故B 错误;C .-(-5)=5,|-5|=5,故C 错误;D .|a|=|-a|,故D 错误.故选A考点:相反数;绝对值.10.A解析:试题分析:∵|-5|=5,|5|=5,∴一个数的绝对值是5,那么这个数是±5.故选A . 考点:绝对值.11.B解析:试题分析:根据正数的绝对值是本身,0的绝对值为0,负数的绝对值是其相反数.可得﹣1的绝对值等于其相反数1,故选B .考点:绝对值12.D解析:先根据绝对值的定义求出x 的值,再分别代入计算即可.详解: ∵4x =,∴4x =±,当x=4时,448x x +=+=;当x=-4时,440x x +=-=; ∴x x +等于0或8.故选D.点睛:本题考查绝对值的概念,解题的关键是正确理解绝对值的定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.13.A解析:分析:根据差的绝对值是大数减小数,可得答案.的绝对值是故选A .点睛:本题考查了实数的性质,差的绝对值是大数减小数.14.B解析:根据题意,利用绝对值的性质即可得出答案.详解:解:-2的绝对值是2.故选B.点睛:本题主要考查了绝对值的性质,即一个正数的绝对值是它本身,0的绝对值是0,一个负数的绝对值是它的相反数.15.C解析:根据绝对值的定义判断即可.详解:因为3.14-π <0,所以∣3.14-π∣=-(3.14-π)= 3.14π- ,故选C.点睛:本题考查绝对值的性质,如果a<0,那么∣a∣=-a ,如果a>0,那么∣a∣=a,∣0∣=0,熟练掌握绝对值的性质是解题关键.16.D解析:一个数的绝对值等于它的相反数,则这个数一定小于或等于0.详解:因为|x|=﹣x,所以x一定小于或等于0.故选D.点睛:理解绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.17.C解析:分别根据绝对值的定义求出各选项的值即可.详解:A项,根据负数的绝对值等于它的相反数,所以|﹣2|=2.故A项不符合题意.B项,+2和-2的绝对值相同.故B项不符合题意.是两个数.故C项符合题意.C项,-+2=-2,而-2D项,--3=-3,+-3=-3().故D项不符合题意.故本题正确答案为C.点睛:本题主要考查绝对值的概念,熟悉掌握是关键.18.A解析:根据一个数的绝对值是非负数即可得出详解:-3的绝对值是3故答案为3点睛:本题考查了绝对值,需要注意一个正数和0的绝对值是它本身,一个负数的绝对值是它的相反数19.C解析:直接利用绝对值的性质得出答案.详解:解:实数故选C.点睛:此题主要考查了绝对值,正确把握绝对值的定义是解题关键.20.C解析:根据绝对值的定义解答即可.详解:|-3|=3故选C点睛:本题考查的是绝对值,理解绝对值的定义是关键.21.C解析:首先根据题意可得|a|=3.2,再由绝对值等于一个正数的数有两个可得答案.详解:−|a|=−3.2,|a|=3.2,a=±3.2,故选C.点睛:此题考查绝对值,解题关键在于掌握其性质.22.C解析:首先要计算-32=-9,再根据绝对值的意义即可解决,负数的绝对值是它的相反数.详解:解:︱-32︱=︱-9︱=9,故选:C.点睛:本题考查了平方和绝对值,要注意此题的运算顺序,应先化简平方,再计算绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.23.D解析:根据绝对值以及相反数的意义分别进行判断即可.详解:-+=-,所以A选项的计算正确;A.22-+=-,所以B选项的计算正确;B.()22-+=-,所以C选项的计算正确;C.()22--=-,所以D选项的计算错误.D. 22故选:D.点睛:考查绝对值以及相反数的意义,掌握绝对值以及相反数的定义是解题的关键.24.A解析:根据数轴可以得到点A表示的数,从而可以求出这个数的绝对值,本题得以解决.详解:由数轴可得,点A表示的数是﹣3,∵|﹣3|=3,∴数轴上点A所表示的数的绝对值为3.故选A.点睛:本题考查数轴和绝对值,解答本题的关键是明确数轴的特点,会求一个数的绝对值.25.A解析:试题解析:30,20,x y -≥-≥ 320,x y -+-= 30,20.x y ∴-=-= 3, 2.x y ∴== 5.x y ∴+= 故选A.。
七年级数学上册 1.2.4 绝对值(2)基础闯关全练1.(2017重庆中考A 卷)在数-3,2,0,-4中,最大的数是( )A.-3B.2C.0D.-42.(2019河北石家庄二中月考)已知点M 、N 、P 、Q 在数轴上的位置如图所示,则其中对应的数的绝对值最大的点是 ( )A.MB.NC.PD.Q3.(独家原创试题)下列式子中,成立的是 ( )A.-|-8|>7B.-6<|-6|C.-|-7| =7D.|-10.5|<10.54.下列比较两个数的大小错误的是 ( )A .3>-1B .-2>-3C .D . 5.比较下列各组数的大小.(1);(2) -(-4)和-|-4|;(3). 6.如图所示,在数轴上有A ,B ,C ,D 四个点.(1)写出数轴上的点A ,B ,C ,D 表示的数;(2)将点A ,B ,C ,D 表示的数按从小到大的顺序用“<”连接起来。
能力提升全练1.(2018四川攀枝花中考)如图,实数-3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是 ( )A.MB.NC.PD.Q2.下列比较大小正确的是 ( )A . B.-(-21)<+(-21)C .D .3.(2018江西南昌二中期中)如图,数轴上的A 、B 、C 三点所表示的数分别为a 、b 、c ,其中AB=BC ,如果|a|>|c|>|b|,那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间3121>4332-<-C .点B 与点C 之间D .点C 的右边三年模拟全练一、选择题1.(2019山东济南二十七中月考,2,★☆☆)实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是 ( )A.aB.bC.cD.d2.(2019福建厦门五校联考,3,★★☆)下列说法正确的是( )A .如果a=b ,那么a= |b|B .如果|a|=|b|,那么a=bC .如果a >|b|,那么a >bD .如果a >b ,那么|a|>|b|二、填空题3.(2019甘肃临泽二中月考,12,★☆☆)比较大小: (1)32-_______43-; (2)-(-5)__________-|-5|. 五年中考全练一、选择题1.(2016北京中考,3,★★☆)数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A.a >-2B.a <-3C.a >-bD.a <-b二、填空题1.(2016重庆中考B 卷,13,★★☆)在21-,0,-1,1这四个数中,最小的数是_________. 核心素养全练1.阅读下面的材料:点A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点之间的距离表示为|AB|,当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图①,|AB|=|OB|=|b|=|a -b|.当A 、B 两点都不在原点时: (i)如图②,点A 、B 都在原点的右边:|AB|=|OB|-|OA|=|b|-|a|;(ii)如图③,点A 、B 都在原点的左边:|AB|=|OB|-|OA|=|b|-|a|;(iii)如图④,点A 、B 在原点的两边:|AB|=|OA|+|OB|=|a|+|b|.回答下列问题:(1)数轴上表示2和5的两点之间的距离是________,数轴上表示-2和-5的两点之间的距离是_____,数轴上表示1和-3的两点之间的距离是____;(2)数轴上表示x 和-1的两点A 和B 之间的距离|AB|=2,那么x 为_____.答案基础闯关全练1.B 易知2是正数,-3,-4是负数,根据“正数大于一切负数”和“正数都大于0”知2最大,故选B .2.D 解法一:点N 、M 、P 、Q 中,点Q 离原点的距离最远,即点Q 对应的数的绝对值最大,故选D .解法二:由题中数轴可知,点N 、M 、P 、Q 表示的数分别约为-3.8、-1.5、1、5.2,它们的绝对值分别是3.8、1.5、1、5.2,故选D .3.B 选项A 中,-|-8|=-8<7,所以A 不符合题意;选项B 中,|-6|=6,-6<6,所以B 符合题意;选项C 中,-|-7| =-7≠7,所以C 不符合题意;选项D 中,|-10.5|=10.5,所以D 不符合题意,故选B .4.D 因为,所以,故D 错误,故选D . 5.解析 (1),所以.(2)-(-4)=4,-|-4|=-4,4>-4,所以-(-4)>-|-4|.(3),所以. 6.解析 (1)点A 表示2,点B 表示-3,点C 表示23 ,点D 表示27. (2).能力提升全练 1.B 绝对值最小的数对应的点离原点的距离最近,在M 、N 、P 、Q 四个点中,点N 离原点的距离最近,故选B .2.A 因为-(-21)=21,+(-21)=-21,所以-(-21)>+(-21);因为,所以;因为,所以,故选A .3.C 解法一:∵|a|>|c|>|b|,∴点A 到原点的距离最大,点C 到原点的距离其次,点B 到原点的距离最小,又∵AB=BC ,∴原点O 在点B 与点C 之间,且靠近点B 的地方.解法二:若原点在A 点左侧,则|c|>|b|>|a|,与已知矛盾,因此排除A 选项;若原点在点A 与点B 之间,则|c|最大,因此排除B 选项;若原点在点B 与点C 之间,则|a|最大,此时,若原点靠近点B ,则|c|>|b|,因此选项C 符合要求;若原点在点C 的右边,则|a|>|b|>|c|,与已知矛盾,因此排除D 选项.三年模拟全练1.A 由题中数轴可知,实数a 到原点的距离最大,所以实数a 的绝对值最大,故选A .2.C 选项A ,如果a=b ,那么a= |b|或a=-|b|,错误;选项B ,如果|a|= |b|,那么a=b 或a= -b ,错误;选项C ,如果a >|b|,那么a >b ,正确;选项D ,如果a >b ,当a=1,b=-2时,|a|<|b|,错误,故选C .3.答案(1)> (2)>解析 (1)因为,所以.(2)因为-(-5)=5,-|-5|=-5,所以-(-5)>-|-5|.五年中考全练1.D 由数轴可知,-3<a <-2,1<b <2,所以选项A ,B 错误;因为1<b <2,所以-2<-b <-1,所以a <-b ,所以选项C 错误,D 正确.故选D .2.答案 -1解析 解法一:如图所示,把各数表示在数轴上,可知表示-1的点在表示其他各数的点的左边,故最小的数是-1.解法二:在21-,0,-1,1这四个数中,21-与-1是负数,因为|21-|<|-1|,所以21->-1,又0与正数都大于负数,故最小的数是-1.核心素养全练1.答案 (1)3;3;4 (2)-3或1解析 (1)因为表示2和5的两点都在原点的右边,所以它们之间的距离为|5|-|2|=5-2=3;因为表示-2和-5的两点都在原点的左边,所以它们之间的距离为|-5|-|-2|=5-2=3;因为表示1和-3的两点在原点的两边,所以它们之间的距离为|1|+|-3|=1+3=4.(2)如果表示x 的点在表示-1的点的左边,由|AB|=2,得x= -3;如果表示x 的点在表示-1的点的右边,由|AB| =2,得x=1.。
2019-2020年七年级上册和绝对值有关的问题典型例题(含答案)
一、知识结构框图:
数
二、绝对值的意义:
(1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。
(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;
③零的绝对值是零。
也可以写成:
()
()
() ||0
a a
a a
a a
⎧
⎪⎪
=⎨
⎪
-
⎪⎩
当为正数
当为0
当为负数
说明:(Ⅰ)|a|≥0即|a|是一个非负数;
(Ⅱ)|a|概念中蕴含分类讨论思想。
三、典型例题
例1.(数形结合思想)已知a、b、c在数轴上位置如图:
则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( A ) A.-3a B. 2c-a C.2a-2b D. b
解:| a | + | a+b | + | c-a | - | b-c |=-a-(a+b)+(c-a)+b-c=-3a
分析:
解绝对值的问题时,往往需要脱去绝对值符号,化成一般的有理数计算。
脱去绝对值
的符号时,必须先确定绝对值符号内各个数的正负性,再根据绝对值的代数意义脱去绝对值符号。
这道例题运用了数形结合的数学思想,由a 、b 、c 在数轴上的对应位置判断绝对值符号内数的符号,从而去掉绝对值符号,完成化简。
例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++
的值( C )
A .是正数
B .是负数
C .是零
D .不能确定符号
解:由题意,x 、y 、z 在数轴上的位置如图所示:
所以
分析:数与代数这一领域中数形结合的重要载体是数轴。
这道例题中三个看似复杂的不等关系借助数轴直观、轻松的找到了x 、y 、z 三个数的大小关系,为我们顺利化简铺平了道路。
虽然例题中没有给出数轴,但我们应该有数形结合解决问题的意识。
例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?
分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的两侧”意味着甲乙两数符号相反,即一正一负。
那么究竟谁是正数谁是负数,我们应该用分类讨论的数学思想解决这一问题。
解:设甲数为x ,乙数为y 由题意得:y x 3=,
(1)数轴上表示这两数的点位于原点两侧:
若x 在原点左侧,y 在原点右侧,即 x<0,y>0,则 4y=8 ,所以y=2 ,x= -6
若x 在原点右侧,y 在原点左侧,即 x>0,y<0,则 -4y=8 ,所以y=-2,x=6
(2)数轴上表示这两数的点位于原点同侧:
若x 、y 在原点左侧,即 x<0,y<0,则 -2y=8 ,所以y=-4,x=-12
若x 、y 在原点右侧,即 x>0,y>0,则 2y=8 ,所以y=4,x=12 0
)()(=--+-+=--+++y x z y z x y
x z y z x
1
)1(+=--x x 2010
20081861641421⨯++⨯+⨯+⨯
例4.(整体的思想)方程x x -=-20082008 的解的个数是( D )
A .1个
B .2个
C .3个
D .无穷多个
分析:这道题我们用整体的思想解决。
将x-2008看成一个整体,问题即转化为求方程a a -=的解,利用绝对值的代数意义我们不难得到,负数和零的绝对值等于它的相反数,所以零和任意负数都是方程的解,即本题的答案为D 。
例5.(非负性)已知|a b -2|与|a -1|互为相互数,试求下式的值.
()()()()()()
1111
112220072007ab a b a b a b ++++++++++ 分析:利用绝对值的非负性,我们可以得到:|a b -2|=|a -1|=0,解得:a=1,b=2 于是()()()()()()1111112220072007ab a b a b a b ++++++++++
200920082009
11200912008141313121212009
2008143132121=-=-++-+-+=⨯++⨯+⨯+=
在上述分数连加求和的过程中,我们采用了裂项的方法,巧妙得出了最终的结果.同学们可
以再深入思考, 如果题目变成求 值,你有办法求解吗?有兴趣的同学可以在课下继续探究。
例6.(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,
2-与6-,4-与3.
并回答下列各题:
(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:____相等 .
(2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距离
可以表示为 .
分析:点B 表示的数为―1,所以我们可以在数轴上找到点B 所在的位置。
那么点A 呢?因
为x 可以表示任意有理数,所以点A 可以位于数轴上的任意位置。
那么,如何求出A 与B 两点间的距离呢?
结合数轴,我们发现应分以下三种情况进行讨论。
当x<-1时,距离为-x-1, 当-1<x<0时,距离为x+1, 当x>0,距离为x+1 综上,我们得到A 与B 两点间的距离可以表示为1+x
(3)结合数轴求得23x x -++的最小值为 5 ,取得最小值时x 的取值范围为 -3≤x_≤2______. 分析:2-x 即x 与2的差的绝对值,它可以表示数轴上x 与2之间的距离。
)3(3--=+x x 即x 与-3的差的绝对值,
它也可以表示数轴上x 与-3之间的距离。
如图,x 在数轴上的位置有三种可能:
图1 图2 图3
图2符合题意
(4) 满足341>+++x x 的x 的取值范围为 x<-4或x>-1
分析: 同理1+x 表示数轴上x 与-1之间的距离,4+x 表示数轴上x 与-4之间的距离。
本题即求,当x 是什么数时x 与-1之间的距离加上x 与-4之间的距离会大于3。
借助数轴,我们可以得到正确答案:x<-4或x>-1。
说明:借助数轴可以使有关绝对值的问题转化为数轴上有关距离的问题,反之,有关数轴上的距离问题也可以转化为绝对值问题。
这种相互转化在解决某些问题时可以带来方便。
事实上,B A - 表示的几何意义就是在数轴上表示数A 与数B 的点之间的距离。
这是一个很
有用的结论,我们正是利用这一结论并结合数轴的知识解决了(3)、(4)这两道难题。
四、小结
1.理解绝对值的代数意义和几何意义以及绝对值的非负性
2.体会数形结合、分类讨论等重要的数学思想在解题中的应用。