河南省淮滨高级中学二年级(上期)
- 格式:doc
- 大小:211.00 KB
- 文档页数:53
河南省信阳市淮滨中学2020-2021学年高二物理上学期期末试题含解析一、选择题:本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意1. 如图,A是一个通电圆环,MN是一段直线,它水平地放在环中并与环共面,当有电流i 从N流向M时,MN所受的磁场力的方向将是:A.沿纸面向上B.沿纸面向下C.垂直于纸面向外D.垂直于纸面向里参考答案:A2. (单选)电磁波在真空中的传播速度为,若某电磁波的频率为,则该电磁波在真空中的波长为A. B. C. D. cf参考答案:A本题主要考查光的波速、波长以及频率关系;由,故选项A正确。
3. 如图甲所示,理想变压器原、副线圈的匝数比为10:1,R1=20Ω,R2=30Ω,C为电容器,已知通过R1的正弦式电流如图乙所示,则()A.交变电流的频率为0.02HzB.原线圈输入电压的最大值为200VC.电阻R2的电功率约为6.67WD.通过R3的电流始终为零参考答案:C【考点】变压器的构造和原理;正弦式电流的图象和三角函数表达式.【分析】由电压与匝数成反比可以求得副线圈的电压的大小,电容器的作用是通交流隔直流.【解答】解:A、根据变压器原理可知原副线圈中电流的周期、频率相同,周期为0.02s、频率为50赫兹,A错误.B、由图乙可知通过R1的电流最大值为I m=1A、根据欧姆定律可知其最大电压为U m=20V,再根据原副线圈的电压之比等于匝数之比可知原线圈输入电压的最大值为200V,故B错误;C、根据正弦交流电的峰值和有效值关系并联电路特点可知电阻R2的电流有效值为I==A,电阻R2的电功率为P=I2R2=6.67W,C正确;D、因为电容器有通交流、阻直流的作用,则有电流通过R3和电容器,D错误;故选:C.4.(多选)对下列物理现象的叙述中正确的是▲A.有些非晶体在一定条件下可以转化为晶体B.蔗糖受潮后会粘在一起,没有确定的几何形状,它是非晶体C.由于液体表面层分子间的距离小于液体内部分子间的距离,液体表面存在张力D.液晶既像液体一样具有流动性,又跟某些晶体一样具有光学性质的各向异性参考答案:AD5. 关于日光灯的工作原理,下列说法正确的是A.镇流器的作用是将交流电变为直流电B.在日光灯的启动阶段,镇流器能提供一个瞬时高压,使灯管开始工作C.日光灯正常发光时,启动器的两个触片是分离的D.日光灯发出柔和的白光是由汞原子受到激发后直接辐射的参考答案:BC二、填空题:本题共8小题,每小题2分,共计16分6. 某同学在实验室里熟悉各种仪器的使用。
淮滨县第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 函数y=f ′(x )是函数y=f (x )的导函数,且函数y=f (x )在点p (x 0,f (x 0))处的切线为l :y=g (x )=f ′(x 0)(x ﹣x 0)+f (x 0),F (x )=f (x )﹣g (x ),如果函数y=f (x )在区间[a ,b]上的图象如图所示,且a <x 0<b ,那么( )A .F ′(x 0)=0,x=x 0是F (x )的极大值点B .F ′(x 0)=0,x=x 0是F (x )的极小值点C .F ′(x 0)≠0,x=x 0不是F (x )极值点D .F ′(x 0)≠0,x=x 0是F (x )极值点2. 若偶函数y=f (x ),x ∈R ,满足f (x+2)=﹣f (x ),且x ∈[0,2]时,f (x )=1﹣x ,则方程f (x )=log 8|x|在[﹣10,10]内的根的个数为( ) A .12B .10C .9D .83. 已知,,那么夹角的余弦值( )A .B .C .﹣2D .﹣4. 已知定义在R 上的函数f (x )满足f (x )=,且f (x )=f (x+2),g (x )=,则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为( ) A .12 B .11C .10D .95. 在ABC ∆中,b =3c =,30B =,则等于( )A B . C 或 D .2 6. 已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )A .B .或36+C .36﹣D .或36﹣7. 12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( )A .1B .2C .-1D .-28. 函数f (x )=tan (2x+),则( )A .函数最小正周期为π,且在(﹣,)是增函数B .函数最小正周期为,且在(﹣,)是减函数C .函数最小正周期为π,且在(,)是减函数D .函数最小正周期为,且在(,)是增函数9. 设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A.1i - B.1i + C. 2i + D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力. 10.某工厂生产某种产品的产量x (吨)与相应的生产能耗y (吨标准煤)有如表几组样本数据:0.7,则这组样本数据的回归直线方程是( )A . =0.7x+0.35B . =0.7x+1C . =0.7x+2.05D . =0.7x+0.4511.△ABC 的三内角A ,B ,C 所对边长分别是a ,b ,c ,设向量,,若,则角B 的大小为( )A .B .C .D .12.函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( ) A .0<a ≤ B .0≤a ≤ C .0<a < D .a >二、填空题13.命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是 .14.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.15.已知向量,满足42=,2||=,4)3()(=-⋅+,则与的夹角为 .【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题. 16.若全集,集合,则17.已知函数5()sin (0)2f x x a x π=-≤≤的三个零点成等比数列,则2log a = . 18.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=lnx -mx(m ∈R )在区间[1,e]上取得最小值4,则m =________.三、解答题19.【泰州中学2018届高三10月月考】已知函数()(),,xf x eg x x m m R ==-∈.(1)若曲线()y f x =与直线()y g x =相切,求实数m 的值; (2)记()()()h x f x g x =⋅,求()h x 在[]0,1上的最大值; (3)当0m =时,试比较()2f x e -与()g x 的大小.20.设椭圆C:+=1(a >b >0)过点(0,4),离心率为.1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 6238(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.21.(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x(1(2)若用解析式y=cx2+d作为蔬菜农药残量与用水量的回归方程,求其解析式;(c,a精确到0.01);附:设ωi=x2i,有下列数据处理信息:ω=11,y=38,(ωi-ω)(y i-y)=-811,(ωi-ω)2=374,对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线方程y=bx+a的斜率和截距的最小二乘估计分别为(3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水.(结果保留1位有效数字)22.已知函数f(x)=|2x﹣a|+|x﹣1|.(1)当a=3时,求不等式f(x)≥2的解集;(2)若f(x)≥5﹣x对∀x∈R恒成立,求实数a的取值范围.23.已知函数f(x)=|x﹣10|+|x﹣20|,且满足f(x)<10a+10(a∈R)的解集不是空集.(Ⅰ)求实数a的取值集合A(Ⅱ)若b∈A,a≠b,求证a a b b>a b b a.24.(本小题满分12分)椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,P是椭圆上一点,PF⊥x轴,A,B是C的长轴上的两个顶点,已知|PF|=1,k P A·k PB=-12.(1)求椭圆C的方程;(2)过椭圆C的中心O的直线l交椭圆于M,N两点,求三角形PMN面积的最大值,并求此时l的方程.淮滨县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:∵F(x)=f(x)﹣g(x)=f(x)﹣f′(x0)(x﹣x0)﹣f(x0),∴F'(x)=f'(x)﹣f′(x0)∴F'(x0)=0,又由a<x0<b,得出当a<x<x0时,f'(x)<f′(x0),F'(x)<0,当x0<x<b时,f'(x)<f′(x0),F'(x)>0,∴x=x0是F(x)的极小值点故选B.【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值.2.【答案】D【解析】解:∵函数y=f(x)为偶函数,且满足f(x+2)=﹣f(x),∴f(x+4)=f(x+2+2)=﹣f(x+2)=f(x),∴偶函数y=f(x)为周期为4的函数,由x∈[0,2]时,f(x)=1﹣x,可作出函数f(x)在[﹣10,10]的图象,同时作出函数f(x)=log8|x|在[﹣10,10]的图象,交点个数即为所求.数形结合可得交点个为8,故选:D.3.【答案】A【解析】解:∵,,∴=,||=,=﹣1×1+3×(﹣1)=﹣4,∴cos<>===﹣,故选:A.【点评】本题考查了向量的夹角公式,属于基础题.4.【答案】B【解析】解:∵f(x)=f(x+2),∴函数f(x)为周期为2的周期函数,函数g(x)=,其图象关于点(2,3)对称,如图,函数f(x)的图象也关于点(2,3)对称,函数f(x)与g(x)在[﹣3,7]上的交点也关于(2,3)对称,设A,B,C,D的横坐标分别为a,b,c,d,则a+d=4,b+c=4,由图象知另一交点横坐标为3,故两图象在[﹣3,7]上的交点的横坐标之和为4+4+3=11,即函数y=f(x)﹣g(x)在[﹣3,7]上的所有零点之和为11.故选:B.【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法.属于中档题.5.【答案】C【解析】考点:余弦定理.6.【答案】D【解析】【分析】由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.【解答】解:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或.故选D7.【答案】B【解析】考点:向量共线定理.8.【答案】D【解析】解:对于函数f(x)=tan(2x+),它的最小正周期为,在(,)上,2x+∈(,),函数f(x)=tan(2x+)单调递增,故选:D.9.【答案】A【解析】10.【答案】A【解析】解:设回归直线方程=0.7x+a,由样本数据可得,=4.5,=3.5.因为回归直线经过点(,),所以3.5=0.7×4.5+a,解得a=0.35.故选A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.11.【答案】B【解析】解:若,则(a+b)(sinB﹣sinA)﹣sinC(a+c)=0,由正弦定理可得:(a+b)(b﹣a)﹣c(a+c)=0,化为a2+c2﹣b2=﹣ac,∴cosB==﹣,∵B∈(0,π),∴B=,故选:B.【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题.12.【答案】B【解析】解:当a=0时,f(x)=﹣2x+2,符合题意当a≠0时,要使函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数∴⇒0<a≤综上所述0≤a≤故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a的范围的问题,以及分类讨论的数学思想,属于基础题.二、填空题13.【答案】存在x∈R,x3﹣x2+1>0.【解析】解:因为全称命题的否定是特称命题,所以命题“对任意的x∈R,x3﹣x2+1≤0”的否定是:存在x∈R,x3﹣x2+1>0.故答案为:存在x∈R,x3﹣x2+1>0.【点评】本题考查命题的否定,特称命题与全称命题的否定关系.14.【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.215.【答案】3【解析】16.【答案】{|0<<1}【解析】∵,∴{|0<<1}。
淮滨县高中2018-2019学年高二上学期第二次月考试卷物理班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.如图所示为直升飞机由地面垂直起飞过程的速度时间图象,则关于飞机的运动,下面说法正确的是()0~5sA. 内飞机做匀加速直线运动5~15sB. 内飞机在空中处于悬停状态15~20sC. 内飞机匀减速下降0~25s300mD. 内飞机上升的最大高度为22.一交流电压为u=100sin100πt V,由此表达式可知()A.用电压表测该电压其示数为100 VB.该交流电压的周期为0.02 sC.将该电压加在100 Ω的电阻两端,电阻消耗的电功率为200 WD.t=1/400 s时,该交流电压的瞬时值为100 V3.物体从静止开始做匀加速直线运动,第3秒内通过的位移是3m,则()A. 第3秒内的平均速度是3m/sB. 物体的加速度是1.2m/s2C. 前3秒内的位移是6mD. 3S末的速度是3.6m/s4.如图所示,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流。
A、O、B在M、N的连线上,O为MN的中点,C、D位于MN的中垂线上,且A、B、C、D到O点的距离均相等。
关于以上几点处的磁场,下列说法错误的是()A. O点处的磁感应强度为0B. A、B两点处的磁感应强度大小相等、方向相反C. C、D两点处的磁感应强度大小相等、方向相同D. A、C两点处的磁感应强度的方向不同5.气球以10m/s的速度匀速竖直上升,它上升到15m高处时,一重物由气球里掉落,则下列说法错误的是(不计空气阻力, g=10m/s2):()A. 重物要经过3s才能落到地面B. 重物上升的最大高度是15mC. 到达地面时的速度是20m/sD. 2s末重物再次回到原抛出点6.下图所示是两个不同电阻的I-U图象,则从图象中可知A. 表示小电阻值的图象,且阻值恒定B. 表示小电阻值的图象,且阻值恒定C. 表示大电阻值的图象,且阻值恒定D. 表示大电阻值的图象,且阻值恒定7.在真空中有两个点电荷,二者的距离保持一定。
淮滨县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 以过椭圆+=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A .相交B .相切C .相离D .不能确定2. 设有直线m 、n 和平面α、β,下列四个命题中,正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC .若α⊥β,m ⊂α,则m ⊥βD .若α⊥β,m ⊥β,m ⊄α,则m ∥α3. 下列命题的说法错误的是()A .若复合命题p ∧q 为假命题,则p ,q 都是假命题B .“x=1”是“x 2﹣3x+2=0”的充分不必要条件C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0”4. 已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79),则以下结论正确的是()A .第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B .第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C .第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D .第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定5. 记集合和集合表示的平面区域分别为Ω1,Ω2,{}22(,)1A x y x y =+£{}(,)1,0,0B x y x y x y =+£³³ 若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( )A .B .C .D .12p1p2p13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力.6. 现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有( )A .27种B .35种C .29种D .125种7. 若如图程序执行的结果是10,则输入的x 的值是()A.0B.10C.﹣10D.10或﹣108.函数f(x)=()x2﹣9的单调递减区间为()A.(﹣∞,0)B.(0,+∞)C.(﹣9,+∞)D.(﹣∞,﹣9)9.已知全集I={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么∁I(A∩B)等于()A.{3,4}B.{1,2,5,6}C.{1,2,3,4,5,6}D.∅10.如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x的图象是()A.①B.②C.③D.④11.若向量=(3,m),=(2,﹣1),∥,则实数m的值为()A.﹣B.C.2D.612.i是虚数单位,计算i+i2+i3=()A.﹣1B.1C.﹣i D.i二、填空题13.下列四个命题:①两个相交平面有不在同一直线上的三个公交点②经过空间任意三点有且只有一个平面③过两平行直线有且只有一个平面④在空间两两相交的三条直线必共面其中正确命题的序号是 . 14.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= .15.命题“(0,)2x π∀∈,sin 1x <”的否定是 ▲ .16.(﹣)0+[(﹣2)3]= .17.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .18.在△ABC 中,已知=2,b=2a ,那么cosB 的值是 .三、解答题19.(本小题满分12分)已知过抛物线的焦点,斜率为2:2(0)C y px p =>11A x y (,)和()两点,且.22B x y (,)12x x <92AB =(I )求该抛物线的方程;C (II )如图所示,设为坐标原点,取上不同于的点,以为直径作圆与相交另外一点,O C O S OS C R 求该圆面积的最小值时点的坐标.S20.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<)在某一个周期内的图象时,列表并填入的部分数据如表:x x1x2x3ωx+φ0π2πAsin(ωx+φ)+B00﹣0(Ⅰ)请求出表中的x1,x2,x3的值,并写出函数f(x)的解析式;(Ⅱ)将f(x)的图象向右平移个单位得到函数g(x)的图象,若函数g(x)在区间[0,m](3<m<4)上的图象的最高点和最低点分别为M,N,求向量与夹角θ的大小.21.某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条谜语的概率均为,乙队猜对前两条的概率均为,猜对第3条的概率为.若这两队抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?22.在平面直角坐标系中,过点的直线与抛物线相交于点、两点,设xOy (2,0)C 24y x =A B ,.11(,)A x y 22(,)B x y (1)求证:为定值;12y y (2)是否存在平行于轴的定直线被以为直径的圆截得的弦长为定值?如果存在,求出该直线方程y AC 和弦长,如果不存在,说明理由.23.(本题满分15分)如图是圆的直径,是弧上一点,垂直圆所在平面,,分别为,的中点.AB O C AB VC O D E VA VC (1)求证:平面;DE ⊥VBC (2)若,圆的半径为,求与平面所成角的正弦值.6VC CA ==O 5BE BCD【命题意图】本题考查空间点、线、面位置关系,线面等基础知识,意在考查空间想象能力和运算求解能力.24.(本小题满分12分)已知等差数列的前项和为,且,.{}n a n n S 990S =15240S =(1)求的通项公式和前项和;{}n a n a n n S (2)设,为数列的前项和,若不等式对于任意的恒成立,求实数的1(1)n n a b n =+n S {}n b n n S t <*n ∈N t 取值范围.淮滨县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:设过右焦点F的弦为AB,右准线为l,A、B在l上的射影分别为C、D连接AC、BD,设AB的中点为M,作MN⊥l于N根据圆锥曲线的统一定义,可得==e,可得∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,∵以AB为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|)∴圆M到l的距离|MN|>r,可得直线l与以AB为直径的圆相离故选:C【点评】本题给出椭圆的右焦点F,求以经过F的弦AB为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题.2.【答案】D【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D.3.【答案】A【解析】解:A.复合命题p∧q为假命题,则p,q至少有一个命题为假命题,因此不正确;B.由x2﹣3x+2=0,解得x=1,2,因此“x=1”是“x2﹣3x+2=0”的充分不必要条件,正确;C.对于命题p:∀x∈R,x2+x+1>0 则¬p:∃x∈R,x2+x+1≤0,正确;D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0”,正确.故选:A . 4. 【答案】C【解析】解:∵某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79),∴μ1=90,▱1=86,μ2=93,▱2=79,∴第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定,故选:C .【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础. 5. 【答案】A【解析】画出可行域,如图所示,Ω1表示以原点为圆心, 1为半径的圆及其内部,Ω2表示及其内部,OAB D由几何概型得点M 落在区域Ω2内的概率为,故选A.112P ==p 2p6. 【答案】 B 【解析】排列、组合及简单计数问题.【专题】计算题.【分析】根据题意,可将7台型号相同的健身设备看成是相同的元素,首先分给甲、乙两个社区各台设备,再将余下的三台设备任意分给五个社区,分三种情况讨论分配方案,①当三台设备都给一个社区,②当三台设备分为1和2两份分给2个社区,③当三台设备按1、1、1分成三份时分给三个社区,分别求出其分配方案数目,将其相加即可得答案.【解答】解:根据题意,7台型号相同的健身设备是相同的元素,首先要满足甲、乙两个社区至少2台,可以先分给甲、乙两个社区各2台设备,余下的三台设备任意分给五个社区,分三种情况讨论:①当三台设备都给一个社区时,有5种结果,②当三台设备分为1和2两份分给2个社区时,有2×C52=20种结果,③当三台设备按1、1、1分成三份时分给三个社区时,有C53=10种结果,∴不同的分配方案有5+20+10=35种结果;故选B.【点评】本题考查分类计数原理,注意分类时做到不重不漏,其次注意型号相同的健身设备是相同的元素.7.【答案】D【解析】解:模拟执行程序,可得程序的功能是计算并输出y=的值,当x<0,时﹣x=10,解得:x=﹣10当x≥0,时x=10,解得:x=10故选:D.8.【答案】B【解析】解:原函数是由t=x2与y=()t﹣9复合而成,∵t=x2在(﹣∞,0)上是减函数,在(0,+∞)为增函数;又y=()t﹣9其定义域上为减函数,∴f(x)=()x2﹣9在(﹣∞,0)上是增函数,在(0,+∞)为减函数,∴函数ff(x)=()x2﹣9的单调递减区间是(0,+∞).故选:B.【点评】本题考查复合函数的单调性,讨论内层函数和外层函数的单调性,根据“同増异减”再来判断是关键. 9.【答案】B【解析】解:∵A={1,2,3,4},B={3,4,5,6},∴A∩B={3,4},∵全集I={1,2,3,4,5,6},∴∁I(A∩B)={1,2,5,6},故选B.【点评】本题考查交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.10.【答案】D【解析】解:幂函数y=x为增函数,且增加的速度比价缓慢,只有④符合.故选:D.【点评】本题考查了幂函数的图象与性质,属于基础题.11.【答案】A【解析】解:因为向量=(3,m),=(2,﹣1),∥,所以﹣3=2m,解得m=﹣.故选:A.【点评】本题考查向量共线的充要条件的应用,基本知识的考查.12.【答案】A【解析】解:由复数性质知:i2=﹣1故i+i2+i3=i+(﹣1)+(﹣i)=﹣1故选A【点评】本题考查复数幂的运算,是基础题.二、填空题13.【答案】 ③ .【解析】解:①两个相交平面的公交点一定在平面的交线上,故错误;②经过空间不共线三点有且只有一个平面,故错误;③过两平行直线有且只有一个平面,正确;④在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,故正确命题的序号是③,故答案为:③14.【答案】 5 .【解析】解:P (1,4)为抛物线C :y 2=mx 上一点,即有42=m ,即m=16,抛物线的方程为y 2=16x ,焦点为(4,0),即有|PF|==5.故答案为:5.【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题. 15.【答案】()0,2x π∃∈,sin 1≥【解析】试题分析:“(0,)2x π∀∈,sin 1x <”的否定是()0,2x π∃∈,sin 1≥考点:命题否定【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值x 0,使p (x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立即可,否则就是假命题.16.【答案】 .【解析】解:(﹣)0+[(﹣2)3]=1+(﹣2)﹣2=1+=.故答案为:. 17.【答案】 6 .【解析】解:第一次循环:S=0+=,i=1+1=2;第二次循环:S=+=,i=2+1=3;第三次循环:S=+=,i=3+1=4;第四次循环:S=+=,i=4+1=5;第五次循环:S=+=,i=5+1=6;输出S,不满足判断框中的条件;∴判断框中的条件为i<6?故答案为:6.【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题18.【答案】 .【解析】解:∵=2,由正弦定理可得:,即c=2a.b=2a,∴==.∴cosB=.故答案为:.【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题.三、解答题19.【答案】【解析】【命题意图】本题考查抛物线标准方程、抛物线定义、直线和抛物线位置关系等基础知识,意在考查转化与化归和综合分析问题、解决问题的能力.因为12y y ≠,20y ≠,化简得12216y y y ⎛⎫=-+⎪⎝⎭,所以221222256323264y y y =++≥+=,当且仅当2222256y y =即22y =16,时等号成立. 24y =±圆的直径,因为21y≥64,所以当21y =64即1y =±8时,OS=min OS =,所以所求圆的面积的最小时,点的坐标为.S 168±(,)20.【答案】【解析】解:(Ⅰ)由条件知,,,∴,,∴,.(Ⅱ)∵函数f (x )的图象向右平移个单位得到函数g (x )的图象,∴,∵函数g (x )在区间[0,m](m ∈(3,4))上的图象的最高点和最低点分别为M ,N ,∴最高点为,最低点为,∴,,∴,又0≤θ≤π,∴.【点评】本题主要考查了由y=Asin (ωx+φ)的部分图象确定其解析式,函数y=Asin (ωx+φ)的图象变换,向量夹角公式的应用,属于基本知识的考查.21.【答案】【解析】解:(Ⅰ)设测试成绩的中位数为x ,由频率分布直方图得,(0.0015+0.019)×20+(x ﹣140)×0.025=0.5,解得:x=143.6.∴测试成绩中位数为143.6.进入第二阶段的学生人数为200×(0.003+0.0015)×20=18人.(Ⅱ)设最后抢答阶段甲、乙两队猜对灯谜的条数分别为ξ、η,则ξ~B (3,),∴E (ξ)=.∴最后抢答阶段甲队得分的期望为[]×20=30,∵P (η=0)=,P (η=1)=,P (η=2)=,P (η=3)=,∴E η=.∴最后抢答阶段乙队得分的期望为[]×20=24.∴120+30>120+24,∴支持票投给甲队.【点评】本小题主要考查概率、概率与统计等基础知识,考查推理论证能力、数据处理能力、运算求解能力及应用意识,考查或然与必然的思想,属中档题. 22.【答案】(1)证明见解析;(2)弦长为定值,直线方程为.1x =【解析】(2 ,进而得时为定值.1a =试题解析:(1)设直线的方程为,由AB 2my x =-22,4,my x y x =-⎧⎨=⎩得,∴,2480y my --=128y y =-因此有为定值.111]128y y =-(2)设存在直线:满足条件,则的中点,,x a =AC 112(,22x y E +AC =因此以为直径圆的半径,点到直线的距离AC 12r AC ===E x a =,12||2x d a +=-所以所截弦长为==.=当,即时,弦长为定值2,这时直线方程为.10a -=1a =1x =考点:1、直线与圆、直线与抛物线的位置关系的性质;2、韦达定理、点到直线距离公式及定值问题.23.【答案】(1)详见解析;(2.【解析】(1)∵,分别为,的中点,∴,…………2分D E VA VC //DE AC ∵为圆的直径,∴,…………4分AB O AC BC ⊥又∵圆,∴,…………6分VC ⊥O VC AC ⊥∴,,又∵,∴;…………7分DE BC ⊥DE VC ⊥VC BC C = DE VBC ⊥面(2)设点平面的距离为,由得,解得E BCD d D BCE E BCD V V --=1133BCE BCD DE S d S ∆∆⨯⨯=⨯⨯,…………12分 设与平面所成角为,∵,d =BE BCD θ8BC ==,则.…………15分BE ==sin d BE θ==24.【答案】【解析】【命题意图】本题考查等差数列通项与前项和、数列求和、不等式性质等基础知识,意在考查逻辑n 思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用.。
河南省淮滨县2020版高二上学期语文期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共3题;共6分)1. (2分)下列各选项中,划线的词语使用恰当的一项是()A . 中国国家馆在东方的晨曦里,在美轮美奂的世博园建筑群中,发出耀眼的中国红。
B . 新加坡政府未雨绸缪地采取了行动,抑制了房地产业价格的飞涨。
C . 一些人对中国的茶有偏见,以为茶只是下里巴人解渴的东西,档次不如进口饮料。
D . 卫律推心置腹、威逼利诱,想迫使苏武投降,结果被苏武正气凛然的怒斥所喝退,双方矛盾斗争激烈,场面紧张。
2. (2分)下列各句中,没有语病的一项是()A . 如何才能把学习抓好呢?关键的问题是态度和习惯起决定性的作用,态度端正,学习自然用心,良好的习惯有了,学习就成为自觉的行为。
B . 也许老师会说我幼稚,可是我就是爱看漫画,从骨子里喜欢。
C . 他的父亲已走了半年了,他家的生活是一天比一天困难了。
D . 现代社会需要大批高素质的人才,不仅他们要具备专业的科学素质,而且要有优良的人文素质。
3. (2分)下列针对各个行业的对联,不恰当的一项是()A . 胜友常临可修食谱高朋雅会任选山珍(餐馆饭店用联)B . 架上丹丸长生妙药壶中日月不老仙龄 (医院用联)C . 水陆舟车四通八达城乡客货纷至沓来 (交通运输业用联)D . 技术革新多种多样别开生面潜力挖掘一点一漳各显神通 (公矿企业用联)二、现代文阅读 (共3题;共41分)4. (6分) (2015高二上·长春期中) 阅读下面的文字,完成后面小题。
古典诗文中的“扁舟”意象“扁舟”是中国古典诗文中最常见的意象之一,承载着中国古代文人淡泊世事、悠然自得的情感,形成了独特的“扁舟”情结。
最早的“扁舟”,并非失意文人所特有,也不具备悲凉或者超脱的韵味。
《史记》载:“范蠡既雪会稽之耻,乃乘扁舟浮于江湖。
”这里的“扁舟”有隐遁之味,丝毫没有落魄江湖、身处世外的冷寂色彩。
淮滨县第一中学2018-2019学年高二上学期第二次月考试卷物理班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.已知电场线分布如下图,则以下说法正确的是A. 场强B. 电势C. 把一正电荷从A移到B,电场力做正功D. 同一负电荷在两点受的电场力【答案】BCD【解析】电场线的疏密表示场强大小,则E A>E B,同一负电荷在两点受的电场力,选项A错误,D正确;顺着电场线电势降低,则,选项B正确;把一正电荷从A移到B,电场力的方向与位移同向,则电场力做正功,选项C正确;故选BCD.点睛:明确电场线的疏密程度反映场强的相对大小,电场线的切线方向表示电场强度的方向,顺着电场线电势降低是解答本题的关键.2.如图所示,绝缘粗糙斜面固定在水平地面上,斜面所在空间存在平行于斜面向上的匀强电场E,轻弹簧一端固定在斜面项端,另一端拴接一质量不计的绝缘薄板,一带正电的小滑块,从斜面上的P点由静止释放沿斜面向上运动,并能压缩弹簧至R点(图中未标出)然后返回,则A. 滑块从P点运动到R点过程中,其机械能增量等于电场力与弹簧弹力做功之和B. 滑块从P点运动到R 点过程中,电势能的减少量大于重力势能和弹簧弹性势能的增加量之和C. 滑块返回过程能到达的最低位置位于P点的上方D. 滑块最终停下来,克服摩擦力所做的功等于电势能减少量与重力势能增加量之差【答案】BC【解析】试题分析:由题可知,小滑块从斜面上的P点处由静止释放后,沿斜面向上运动,说明小滑块开始时受到的合力的方向向上,开始时小滑块受到重力、电场力、斜面的支持力和摩擦力的作用;小滑块开始压缩弹簧后,还受到弹簧的弹力的作用.小滑块向上运动的过程中,斜面的支持力不做功,电场力做正功,重力做负功,摩擦力做负功,弹簧的弹力做负功.在小滑块开始运动到到达R 点的过程中,电场力做的功转化为小滑块的重力势能、弹簧的弹性势能以及内能.由以上的分析可知,滑块从P 点运动到R 点的过程中,其机械能增量等于电场力与弹簧弹力做功、摩擦力做功之和,故A 错误;由以上的分析可知,电场力做的功转化为小滑块的重力势能、弹簧的弹性势能以及内能,所以电势能的减小量大于重力势能和弹簧弹性势能的增加量之和,故B 正确;小滑块运动的过程中,由于摩擦力做功,小滑块的机械能与电势能的和增加减小,所以滑块返回能到达的最低位置在P 点的上方,不能在返回P 点,故C 正确;滑块运动的过程中,由于摩擦力做功,小滑块的机械能与电势能的和逐渐减小,所以滑块最终停下时,克服摩擦力所做的功等于电势能的减小量与重力势能增加量、弹性势能增加量之差,故D 错误。
淮滨县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 函数f (x )=kx +bx +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )A .-1B .1C .2D .42. 两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB .akmC .2akmD .akm3. 已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是( )A .(x ≠0)B .(x ≠0)C .(x ≠0)D .(x ≠0)4. 已知a=5,b=log 2,c=log 5,则( )A .b >c >aB .a >b >cC .a >c >bD .b >a >c5. 在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111] A .(0,]6πB .[,)6ππ C. (0,]3π D .[,)3ππ6. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β7. 在正方体1111ABCD A B C D -中,M 是线段11A C 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 8. 下列说法中正确的是( ) A .三点确定一个平面 B .两条直线确定一个平面C .两两相交的三条直线一定在同一平面内D .过同一点的三条直线不一定在同一平面内9. 若函数f (x )=ax 2+bx+1是定义在[﹣1﹣a ,2a]上的偶函数,则该函数的最大值为( )A .5B .4C .3D .210.已知三棱柱111ABC A B C - 的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点, 则异面直线AB 与1CC 所成的角的余弦值为( )A B D .3411.设曲线y=ax 2在点(1,a )处的切线与直线2x ﹣y ﹣6=0平行,则a=( )A .1B .C .D .﹣112.定义运算,例如.若已知,则=( )A .B .C .D .二、填空题13.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .14.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R xf x x a a x=+-∈,若曲线122e e 1x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sinA ,sinB ,sinC 依次成等比数列,c=2a 且•=24,则△ABC 的面积是 .16.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ; ①直线l 的倾斜角为α;②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值; ③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交; ④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2;⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.17. 设函数()xf x e =,()lng x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <; ②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-;③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <.其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.18.长方体ABCD ﹣A 1B 1C 1D 1的棱AB=AD=4cm ,AA 1=2cm ,则点A 1到平面AB 1D 1的距离等于 cm .三、解答题19.(本小题满分12分)一直线被两直线12:460,:3560l x y l x y ++=--=截得线段的中点是P 点, 当P 点为()0,0时, 求此直线方程.20.已知函数y=f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过(4,2)点.(Ⅰ)求函数f (x )的解析式;(Ⅱ)若f (x ﹣1)>f (5﹣x ),求x 的取值范围.21.(本小题满分12分)已知椭圆C 的离心率为2,A 、B 分别为左、右顶点, 2F 为其右焦点,P 是椭圆C 上异于A 、B 的动点,且PA PB 的最小值为-2. (1)求椭圆C 的标准方程;(2)若过左焦点1F 的直线交椭圆C 于M N 、两点,求22F M F N 的取值范围.22.【南京市2018届高三数学上学期期初学情调研】已知函数f (x )=2x 3-3(a +1)x 2+6ax ,a ∈R . (Ⅰ)曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;(Ⅱ)若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围; (Ⅲ)若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a )、m (a ), 记h (a )=M (a )-m (a ),求h (a )的最小值.23.(本题满分15分)设点P 是椭圆14:221=+y x C 上任意一点,过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,B 两点.PA=;(1)求证:PB∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.(2)OAB【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.24.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,4059(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.淮滨县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】【解析】解析:选B.设点P (m ,n )是函数图象上任一点,P 关于(-1,2)的对称点为Q (-2-m ,4-n ),则⎩⎪⎨⎪⎧n =km +b m +14-n =k (-2-m )+b -1-m ,恒成立.由方程组得4m +4=2km +2k 恒成立, ∴4=2k ,即k =2,∴f (x )=2x +b x +1,又f (-2)=-4+b -1=3,∴b =1,故选B. 2. 【答案】D【解析】解:根据题意,△ABC 中,∠ACB=180°﹣20°﹣40°=120°,∵AC=BC=akm ,∴由余弦定理,得cos120°=,解之得AB=akm ,即灯塔A 与灯塔B的距离为akm ,故选:D .【点评】本题给出实际应用问题,求海洋上灯塔A 与灯塔B 的距离.着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题.3. 【答案】B【解析】解:∵△ABC 的周长为20,顶点B (0,﹣4),C (0,4),∴BC=8,AB+AC=20﹣8=12,∵12>8∴点A到两个定点的距离之和等于定值,∴点A的轨迹是椭圆,∵a=6,c=4∴b2=20,∴椭圆的方程是故选B.【点评】本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点.4.【答案】C【解析】解:∵a=5>1,b=log2<log5=c<0,∴a>c>b.故选:C.5.【答案】C【解析】考点:三角形中正余弦定理的运用.6.【答案】D【解析】【分析】由题设条件,平面α∩β=l,m是α内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;综上D选项中的命题是错误的故选D7.【答案】C8.【答案】D【解析】解:对A,当三点共线时,平面不确定,故A错误;对B,当两条直线是异面直线时,不能确定一个平面;故B错误;对C,∵两两相交且不共点的三条直线确定一个平面,∴当三条直线两两相交且共点时,不一定在同一个平面,如墙角的三条棱;故C错误;对D,由C可知D正确.故选:D.9.【答案】A【解析】解:函数f(x)=ax2+bx+1是定义在[﹣1﹣a,2a]上的偶函数,可得b=0,并且1+a=2a,解得a=1,所以函数为:f(x)=x2+1,x∈[﹣2,2],函数的最大值为:5.故选:A.【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力.10.【答案】D【解析】考点:异面直线所成的角.11.【答案】A【解析】解:y'=2ax,于是切线的斜率k=y'|x=1=2a,∵切线与直线2x﹣y﹣6=0平行∴有2a=2∴a=1故选:A【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率.12.【答案】D【解析】解:由新定义可得,====.故选:D.【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.二、填空题13.【答案】6.【解析】解:双曲线的方程为4x2﹣9y2=36,即为:﹣=1,可得a=3,则双曲线的实轴长为2a=6.故答案为:6.【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题.14.【答案】1,e ⎛⎤-∞⎥⎝⎦【解析】结合函数的解析式:122ee1xxy+=+可得:()()122221'1x xxe eye+-=+,令y′=0,解得:x=0,当x>0时,y′>0,当x<0,y′<0,则x∈(-∞,0),函数单调递增,x∈(0,+∞)时,函数y单调递减,则当x =0时,取最大值,最大值为e , ∴y 0的取值范围(0,e ],结合函数的解析式:()()R lnxf x x a a x=+-∈可得:()22ln 1'x x f x x -+=, x ∈(0,e ),()'0f x >,则f (x )在(0,e )单调递增, 下面证明f (y 0)=y 0.假设f (y 0)=c >y 0,则f (f (y 0))=f (c )>f (y 0)=c >y 0,不满足f (f (y 0))=y 0. 同理假设f (y 0)=c <y 0,则不满足f (f (y 0))=y 0. 综上可得:f (y 0)=y 0.令函数()ln xf x x a x x =+-=. 设()ln x g x x =,求导()21ln 'xg x x-=, 当x ∈(0,e ),g ′(x )>0, g (x )在(0,e )单调递增, 当x =e 时取最大值,最大值为()1g e e=, 当x →0时,a →-∞, ∴a 的取值范围1,e⎛⎤-∞ ⎥⎝⎦.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.而解答本题(2)问时,关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.15.【答案】 4 .【解析】解:∵sinA ,sinB ,sinC 依次成等比数列,∴sin 2B=sinAsinC ,由正弦定理可得:b 2=ac ,∵c=2a ,可得:b=a ,∴cosB===,可得:sinB==,∵•=24,可得:accosB=ac=24,解得:ac=32,∴S△ABC =acsinB==4.故答案为:4.16.【答案】②③④【解析】解:对于①:倾斜角范围与α的范围不一致,故①错误;对于②:(x﹣1)sinα﹣(y﹣2)cosα=1,(α∈[0,2π)),可以认为是圆(x﹣1)2+(y﹣2)2=1的切线系,故②正确;对于③:存在定圆C,使得任意l∈L,都有直线l与圆C相交,如圆C:(x﹣1)2+(y﹣2)2=100,故③正确;对于④:任意l1∈L,必存在唯一l2∈L,使得l1∥l2,作图知④正确;对于⑤:任意意l1∈L,必存在两条l2∈L,使得l1⊥l2,画图知⑤错误.故答案为:②③④.【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用.17.【答案】①②④【解析】18.【答案】【解析】解:由题意可得三棱锥B 1﹣AA 1D 1的体积是=,三角形AB1D 1的面积为4,设点A 1到平面AB 1D 1的距离等于h ,则,则h=故点A 1到平面AB 1D 1的距离为.故答案为:.三、解答题19.【答案】16y x =-. 【解析】试题分析:设所求直线与两直线12,l l 分别交于()()1122,,,A x y B x y ,根据因为()()1122,,,A x y B x y 分别在直线12,l l 上,列出方程组,求解11,x y 的值,即可求解直线的方程. 1考点:直线方程的求解. 20.【答案】【解析】解:(Ⅰ)∵g (x )=log a x (a >0,且a ≠1)的图象过点(4,2),∴log a 4=2,a=2,则g (x )=log 2x .…∵函数y=f (x )的图象与g (X )的图象关于x 轴对称,∴.…(Ⅱ)∵f (x ﹣1)>f (5﹣x ),∴,即,解得1<x <3,所以x 的取值范围为(1,3)…【点评】本题考查对数函数的性质的应用,注意真数大于零,属于基础题.21.【答案】(1)22142x y +=;(2)22[2,7)F M F N ∈-. 【解析】试题解析:(1)根据题意知c a =,即2212c a =,∴22212a b a -=,则222a b =, 设(,)P x y ,∵(,)(,)PA PB a x y a x y =-----,2222222221()222a x x a y x a x a =-+=-+-=-,∵a x a -≤≤,∴当0x =时,2min ()22a PA PB =-=-, ∴24a =,则22b =.∴椭圆C 的方程为22142x y +=.1111]设11(,)M x y ,22(,)N x y ,则12x x +=,21224(1)12k x x k -=+,∵211(2,)F M x y =-,222()F N x y =,∴222121212)2(F M F N x x x x k x x =+++2221212(1))22k x x x x k =+++++2222224(1)42(1)2(1)2212k k k k k k --=++-+++ 29712k =-+. ∵2121k +≥,∴210112k<≤+. ∴297[2,7)12k -∈-+.综上知,22[2,7)F M F N ∈-.考点: 1、待定系数法求椭圆的标准方程;2、平面向量的数量积公式、圆锥曲线中的最值问题.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.22.【答案】(1)a =12(2)(-∞,-1-1e ].(3)827【解析】(2)f (x )+f (-x )=-6(a +1)x 2≥12ln x 对任意x ∈(0,+∞)恒成立, 所以-(a +1)≥22ln xx. 令g (x )=22ln xx,x >0,则g '(x )=()3212ln x x -.令g '(x )=0,解得x .当x ∈(0g '(x )>0,所以g (x )在(0当x ∞)时,g '(x )<0,所以g (x ∞)上单调递减.所以g (x )max =g 1e, 所以-(a +1)≥1e ,即a ≤-1-1e,所以a 的取值范围为(-∞,-1-1e].(3)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ),f (1)=3a -1,f (2)=4. 令f ′(x )=0,则x =1或a . f (1)=3a -1,f (2)=4.②当53<a<2时,当x∈(1,a)时,f '(x)<0,所以f(x)在(1,a)上单调递减;当x∈(a,2)时,f '(x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)>f(2),所以M(a)=f(1)=3a-1,m(a)=f(a)=-a3+3a2,所以h(a)=M(a)-m(a)=3a-1-(-a3+3a2)=a3-3a2+3a-1.因为h'(a)=3a2-6a+3=3(a-1)2≥0.所以h(a)在(53,2)上单调递增,所以当a∈(53,2)时,h(a)>h(53)=827.③当a≥2时,当x∈(1,2)时,f '(x)<0,所以f(x)在(1,2)上单调递减,所以M(a)=f(1)=3a-1,m(a)=f(2)=4,所以h(a)=M(a)-m(a)=3a-1-4=3a-5,所以h(a)在[2,+∞)上的最小值为h(2)=1.综上,h(a)的最小值为827.点睛:已知函数最值求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数最值取法,根据最值列等量关系,确定参数值或取值范围;(2)利用最值转化为不等式恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围. 23.【答案】(1)详见解析;(2)详见解析.∴点P 为线段AB 中点,PB PA =;…………7分(2)若直线AB 斜率不存在,则2:±=x AB ,与椭圆2C 方程联立可得,)1,2(2--±t A ,)1,2(2-±t B ,故122-=∆t S OAB ,…………9分若直线AB 斜率存在,由(1)可得148221+-=+k km x x ,144422221+-=k t m x x ,141141222212+-+=-+=k t k x x k AB ,…………11分 点O 到直线AB 的距离2221141kk k m d ++=+=,…………13分 ∴12212-=⋅=∆t d AB S OAB ,综上,OAB ∆的面积为定值122-t .…………15分24.【答案】【解析】解:(1)设抽取x人,则,解得x=2,即年龄在20:39岁之间应抽取2人.(2)设在缴费100:500元之间抽取的5人中,年龄在20:39岁年龄的两人为A ,B ,在40:59岁之间为a ,b ,c ,随机选取2人的情况有(A ,B ),(A ,a ),(A ,b ),(A ,c ),(B ,a ),(B ,b ),(B ,c ),(a,b),(a,c),(b,c),共10种,年龄都在40:59岁之间的有(a,b),(a,c),(b,c),共3种,则对应的概率P=.【点评】本题主要考查分层抽样的应用,以及古典概型的计算,利用列举法是解决本题的关键.。
淮滨县第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知i 为虚数单位,则复数所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限2. 已知函数x x x f 2sin )(-=,且)2(),31(log ),23(ln 3.02f c f b f a ===,则( )A .c a b >>B .a c b >>C .a b c >>D .b a c >>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力. 3. 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0,+∞) B .(0,2) C .(1,+∞)D .(0,1)4. 已知平面向量与的夹角为,且||=1,|+2|=2,则||=( )A .1B .C .3D .25. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β 6. 设0<a <b 且a+b=1,则下列四数中最大的是( )A .a 2+b 2B .2abC .aD .7. 设集合A={x|x+2=0},集合B={x|x 2﹣4=0},则A ∩B=( )A .{﹣2}B .{2}C .{﹣2,2}D .∅8. 已知双曲线kx 2﹣y 2=1(k >0)的一条渐近线与直线2x+y ﹣3=0垂直,则双曲线的离心率是( )A .B .C .4D .9. (文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位 10.下列函数中哪个与函数y=x 相等( )A .y=()2B .y=C .y=D .y=11.与函数 y=x 有相同的图象的函数是( ) A .B .C .D .12.给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为负的是( ) A .①B .②C .③D .④二、填空题13.已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则 n a =_________.14.设x ,y 满足约束条件,则目标函数z=2x ﹣3y 的最小值是 .15.图中的三个直角三角形是一个体积为20的几何体的三视图,则h =__________.16.如果椭圆+=1弦被点A (1,1)平分,那么这条弦所在的直线方程是 .17.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >)的标准差是a = .18.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填A B 方格的数字,则不同的填法共有 种(用数字作答).三、解答题19.(本题满分12分)已知数列}{n a 的前n 项和为n S ,233-=n n a S (+∈N n ). (1)求数列}{n a 的通项公式;(2)若数列}{n b 满足143log +=⋅n n n a b a ,记n n b b b b T ++++= 321,求证:27<n T (+∈N n ). 【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前n 项和.重点突出运算、论证、化归能力的考查,属于中档难度.20.(本题满分15分)已知抛物线C 的方程为22(0)y px p =>,点(1,2)R 在抛物线C 上.(1)求抛物线C 的方程;(2)过点(1,1)Q 作直线交抛物线C 于不同于R 的两点A ,B ,若直线AR ,BR 分别交直线:22l y x =+于M ,N 两点,求MN 最小时直线AB 的方程.【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.21.设,证明:(Ⅰ)当x >1时,f (x )<( x ﹣1);(Ⅱ)当1<x <3时,.22.已知定义在区间(0,+∞)上的函数f(x)满足f()=f(x1)﹣f(x2).(1)求f(1)的值;(2)若当x>1时,有f(x)<0.求证:f(x)为单调递减函数;(3)在(2)的条件下,若f(5)=﹣1,求f(x)在[3,25]上的最小值.23.设A(x0,y0)(x0,y0≠0)是椭圆T:+y2=1(m>0)上一点,它关于y轴、原点、x轴的对称点依次为B,C,D.E是椭圆T上不同于A的另外一点,且AE⊥AC,如图所示.(Ⅰ)若点A横坐标为,且BD∥AE,求m的值;(Ⅱ)求证:直线BD与CE的交点Q总在椭圆+y2=()2上.24.(本小题满分13分)如图,已知椭圆22:14x C y +=的上、下顶点分别为,A B ,点P 在椭圆上,且异于点,A B ,直线,AP BP 与直线:2l y =-分别交于点,M N ,(1)设直线,AP BP 的斜率分别为12,k k ,求证:12k k ⋅为定值; (2)求线段MN 的长的最小值;(3)当点P 运动时,以MN 为直径的圆是否经过某定点?请证明你的结论.【命题意图】本题主要考查椭圆的标准方程及性质、直线与椭圆的位置关系,考查考生运算求解能力,分析问题与解决问题的能力,是中档题.淮滨县第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:==1+i,其对应的点为(1,1),故选:A.2.【答案】D3.【答案】D【解析】解:∵方程x2+ky2=2,即表示焦点在y轴上的椭圆∴故0<k<1故选D.【点评】本题主要考查了椭圆的定义,属基础题.4.【答案】D【解析】解:由已知,|+2|2=12,即,所以||2+4||||×+4=12,所以||=2;故选D.【点评】本题考查了向量的模的求法;一般的,要求向量的模,先求向量的平方.5.【答案】D【解析】【分析】由题设条件,平面α∩β=l,m是α内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;综上D选项中的命题是错误的故选D6.【答案】A【解析】解:∵0<a<b且a+b=1∴∴2b>1∴2ab﹣a=a(2b﹣1)>0,即2ab>a又a2+b2﹣2ab=(a﹣b)2>0∴a2+b2>2ab∴最大的一个数为a2+b2故选A7.【答案】A【解析】解:由A中的方程x+2=0,解得x=﹣2,即A={﹣2};由B中的方程x2﹣4=0,解得x=2或﹣2,即B={﹣2,2},则A∩B={﹣2}.故选A【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.8.【答案】A【解析】解:由题意双曲线kx2﹣y2=1的一条渐近线与直线2x+y+1=0垂直,可得渐近线的斜率为,又由于双曲线的渐近线方程为y=±x故=,∴k=,∴可得a=2,b=1,c=,由此得双曲线的离心率为,故选:A.【点评】本题考查直线与圆锥曲线的关系,解题的关键是理解一条渐近线与直线2x+y+1=0垂直,由此关系求k,熟练掌握双曲线的性质是求解本题的知识保证.9.【答案】C【解析】试题分析:()2222==+=+,故向上平移个单位.log2log2log1logg x x x x考点:图象平移.10.【答案】B【解析】解:A .函数的定义域为{x|x ≥0},两个函数的定义域不同. B .函数的定义域为R ,两个函数的定义域和对应关系相同,是同一函数.C .函数的定义域为R ,y=|x|,对应关系不一致.D .函数的定义域为{x|x ≠0},两个函数的定义域不同.故选B .【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数.11.【答案】D【解析】解:A :y=的定义域[0,+∞),与y=x 的定义域R 不同,故A 错误B :与y=x 的对应法则不一样,故B 错误C :=x ,(x ≠0)与y=x 的定义域R 不同,故C 错误D :,与y=x 是同一个函数,则函数的图象相同,故D 正确故选D【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题12.【答案】B【解析】解::①sin100°>0,②cos (﹣100°)=cos100°<0,③tan (﹣100°)=﹣tan100>0,④∵sin>0,cos π=﹣1,tan<0,∴>0,其中符号为负的是②, 故选:B .【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础.二、填空题13.【答案】1231n --【解析】考点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如1(0,1)n n a qa p p q -=+≠≠的递推数列求通项往往用构造法,利用待定系数法构造成1()n n a m q a m -+=+的形式,再根据等比数例求出{}n a m +的通项,进而得出{}n a 的通项公式. 14.【答案】 ﹣6 .【解析】解:由约束条件,得可行域如图,使目标函数z=2x ﹣3y 取得最小值的最优解为A (3,4), ∴目标函数z=2x ﹣3y 的最小值为z=2×3﹣3×4=﹣6. 故答案为:﹣6.15.【答案】 【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱VA ⊥底面ABC ,且ABC ∆为直角三角形,且5,,6AB VA h AC ===,所以三棱锥的体积为115652032V h h =⨯⨯⨯==,解得4h =.考点:几何体的三视图与体积. 16.【答案】 x+4y ﹣5=0 .【解析】解:设这条弦与椭圆+=1交于P (x 1,y 1),Q (x 2,y 2),由中点坐标公式知x 1+x 2=2,y 1+y 2=2,把P (x 1,y 1),Q (x 2,y 2)代入x 2+4y 2=36,得, ①﹣②,得2(x 1﹣x 2)+8(y 1﹣y 2)=0,∴k==﹣,∴这条弦所在的直线的方程y ﹣1=﹣(x ﹣1),即为x+4y ﹣5=0,由(1,1)在椭圆内,则所求直线方程为x+4y ﹣5=0.故答案为:x+4y ﹣5=0.【点评】本题考查椭圆的方程的运用,运用点差法和中点坐标和直线的斜率公式是解题的关键.17.【答案】2 【解析】试题分析:第一组数据平均数为2)()()()()(,2524232221=-+-+-+-+-∴x x x x x x x x x x x ,22222212345()()()()()8,4,2ax ax ax ax ax ax ax ax ax ax a a -+-+-+-+-=∴=∴=.考点:方差;标准差.18.【答案】 27【解析】解:若A 方格填3,则排法有2×32=18种,若A方格填2,则排法有1×32=9种,根据分类计数原理,所以不同的填法有18+9=27种.故答案为:27.【点评】本题考查了分类计数原理,如何分类是关键,属于基础题.三、解答题19.【答案】【解析】20.【答案】(1)24y x =;(2)20x y +-=.【解析】(1)∵点(1,2)R 在抛物线C 上,22212p p =⨯⇒=,…………2分即抛物线C 的方程为24y x =;…………5分21.【答案】【解析】证明:(Ⅰ)(证法一):记g(x)=lnx+﹣1﹣(x﹣1),则当x>1时,g′(x)=+﹣<0,又g(1)=0,有g(x)<0,即f(x)<(x﹣1);…4′(证法二)由均值不等式,当x>1时,2<x+1,故<+.①令k(x)=lnx﹣x+1,则k(1)=0,k′(x)=﹣1<0,故k(x)<0,即lnx<x﹣1②由①②得当x>1时,f(x)<(x﹣1);(Ⅱ)记h(x)=f(x)﹣,由(Ⅰ)得,h′(x)=+﹣=﹣<﹣=,令g(x)=(x+5)3﹣216x,则当1<x<3时,g′(x)=3(x+5)2﹣216<0,∴g(x)在(1,3)内是递减函数,又由g(1)=0,得g(x)<0,∴h′(x)<0,…10′因此,h(x)在(1,3)内是递减函数,又由h(1)=0,得h(x)<0,于是,当1<x<3时,f(x)<…12′22.【答案】【解析】解:(1)令x1=x2>0,代入得f(1)=f(x1)﹣f(x1)=0,故f(1)=0.…(4分)(2)证明:任取x1,x2∈(0,+∞),且x1>x2,则>1,由于当x>1时,f(x)<0,所以f()<0,即f(x1)﹣f(x2)<0,因此f(x1)<f(x2),所以函数f(x)在区间(0,+∞)上是单调递减函数.…(8分)(3)因为f(x)在(0,+∞)上是单调递减函数,所以f(x)在[3,25]上的最小值为f(25).由f()=f(x1)﹣f(x2)得,f(5)=f()=f(25)﹣f(5),而f(5)=﹣1,所以f(25)=﹣2.即f(x)在[3,25]上的最小值为﹣2.…(12分)【点评】本题主要考查抽象函数的应用,利用赋值法以及函数单调性的定义是解决本题的关键.23.【答案】【解析】(Ⅰ)解:∵BD∥AE,AE⊥AC,∴BD ⊥AC ,可知A(),故,m=2;(Ⅱ)证明:由对称性可知B (﹣x 0,y 0),C (﹣x 0,﹣y 0),D (x 0,﹣y 0),四边形ABCD 为矩形, 设E (x 1,y 1),由于A ,E 均在椭圆T 上,则,由②﹣①得:(x 1+x 0)(x 1﹣x 0)+(m+1)(y 1+y 0)(y 1﹣y 0)=0, 显然x 1≠x 0,从而=,∵AE ⊥AC ,∴k AE •k AC =﹣1,∴,解得,代入椭圆方程,知.【点评】本题主要考查圆锥曲线的定义的应用,关键是利用椭圆的对称性寻求点的坐标间的关系,体现了整体运算思想方法,是中档题.24.【答案】【解析】(1)易知()()0,1,0,1A B -,设()00,P x y ,则由题设可知00x ≠ ,∴ 直线AP 的斜率0101y k x -=,BP 的斜率0201y k x +=,又点P 在椭圆上,所以 20014x y +=,()00x ≠,从而有200012200011114y y y k k x x x -+-⋅===-.(4分)。
河南省信阳市淮滨县第二高级中学高三物理上学期期末试题含解析一、选择题:本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意1. 物理学中研究问题有多种方法,有关研究问题的方法叙述错误的是( )A.在现实生活中不存在真正的质点,将实际的物体抽象为质点是物理学中一种重要的科学研究方法B.探究加速度a与力F、质量m之间的关系时,保持m恒定的情况下,探究a与F的关系, 采用的是控制变量法C.电场强度的定义式,采用的是比值法D.伽利略比萨斜塔上的落体实验,采用的是理想实验法参考答案:D2. “嫦娥二号”探月卫星于2010年10月1日成功发射,目前正在月球上方100km的圆形轨道上运行。
已知“嫦娥二号”卫星的运行周期、月球半径、月球表面重力加速度、万有引力恒量G。
根据以上信息可求出A.卫星所在处的加速度 B.月球的平均密度C.卫星线速度大小 D.卫星所需向心力参考答案:ABC3. 描述电源能量转化本领大小的物理量是()(A)电动势(B)电源的总功率(C)端压(D)电源的输出功率参考答案:A4. 质量均为m的小球,分别用轻绳和轻弹簧连接,处于平衡状态,如图所示,现突然迅速剪断轻绳A1、B1,让小球下落,在剪断轻绳的瞬间,设小球1、2、3、4的加速度分别用a1,a2,a3和a4表示,则() A.a1=g,a2=g,a3=2g,a4=0B.a1=0,a2=2g,a3=0,a4=2gC.a1=g,a2=g,a3=g,a4=gD.a1=0,a2=2g,a3=g,a4=g参考答案:答案:A5. 一质量为m的带电小球,在竖直方向的匀强电场中以水平速度抛出,小球的加速度方向竖直向下、大小为g,空气阻力不计。
小球在下落h的过程中,关于其能量的变化,下列说法中正确的是()A. 动能增加了B. 电势能增加C. 重力势能减少了D. 机械能减少了参考答案:BD试题分析:根据动能定理研究动能的变化和重力做功与重力势能的关系,电势能的变化.电场力做负功,机械能减小,根据能量守恒可知机械能减小量等于小球电势的增加量.高度下降,重力势能减小.根据动能定理:小球动能的变化量等于合力做功,,动能增加了,A错误.小球的重力做正功mgh,重力势能减小mgh,根据能量守恒定律得:小球电势能增加,B正确C错误;重力势能减小mgh,动能增加,则机械能减小,D正确.二、填空题:本题共8小题,每小题2分,共计16分6. 一水平放置的水管,距地面高h=l.8m,管内横截面积S=2cm2。
河南省淮滨高级中学二年级(上期)班会课程(示范课材料汇编)主编:马明友副主编:陈乐银刘建新成员:朱凯宋德龙丁超王恩春雷然目录淮滨高级中学二年级班会课程开发实施方案陈乐银刘建新 (1)班会观摩课活动评分标准陈乐银刘建新 (4)淮滨高中二年级上期班会课程开发分工表陈乐银刘建新 (5)班会主题:学法指导——高二学习方法指导刘建新 (6)班会主题:团队精神教育——众人划桨开大船宋德龙 (8)班会主题:就寝管理——我的寝室我的家丁超 (18)班会主题:励志教育——追梦,我的2014 朱凯 (22)班会主题:挫折教育——双周考质量分析会雷然 (26)班会主题:计划与今天——振奋精神战期末快快乐乐迎新年王恩春 (33)班会主题:期末考前复习动员——看我笑傲2013 刘建新 (42)——自信沉稳,细心有序李华 (51)淮滨高级中学二年级班会课程开发实施方案班会课是班主任对全体学生开展德育的重要途径,是学校德育的主阵地。
原有的班会课设置只是班主任老师利用班会课对学生进行思想教育和处理班级最近出现的一些问题。
在实施过程中,存在以下三方面的突出问题:首先是每节班会课没有明确的德育目标,缺乏针对性。
其次是德育内容空洞,形式单一,德育主体缺失。
第三,班会课的随意性。
基于此,加强和改进学校班会课建设,特别是结合本校学生实际开设贴近学生生活的班会课校本课程,引导学生自主体验和感悟,促使其不断转变价值观念,实现其自主发展是我们要探索和解决的迫切问题。
一、班会课程化的基本要求:1、指导思想班会课程化以科学发展观为指导,以培养以“一个目标(学会做人)”、“两个态度(学会生活、学会感恩)”、“三个素质(学会学习、学会创新、学会处事)”为目标,不断增强班会课程化的科学性、规范性、实效性,切实提升德育工作的针对性。
2、基本原则科学性原则。
围绕主题科学地安排班会的每一个环节,使之贴近学生实际,注意层次性,符合学生年龄特征和认知规律。
教育性原则。
每一节班会都应有明确的教育目的。
贯彻这项原则,还要结合时政形势,适时开展活动,使班会紧扣时代的脉搏,增强教育效果。
自主性原则。
正确处理班主任主导作用和学生主体作用的关系。
一节班会,班主任的作用主要应表现在把握班会的方向和主题,提出设计构想意图以及创造必要条件。
要发挥学生的主动性和创造性,激活他们参加班会的兴趣和需要,使他们以主人翁的态度参与班会活动。
趣味性原则。
寓教育于趣味性活动中,学生的兴趣多样而强烈,班会中可以开展各种趣味性活动,寓教于乐,满足学生身心发展的要求。
艺术性原则。
艺术性是班会达到预期目的的桥梁。
班会中,要在表现形式上讲究艺术,可用丰富多彩的文艺形式去感染学生,寓教育于美的享受之中,寓理于情,以情感人,由情悟理,促进道德内化。
同时,教师还要讲究语言的教育艺术,以言传情,打动学生,与学生心灵沟通,达到更佳的教育效果。
3、班会课程化的教案要求:(1)班会必须有主持人。
主持人尽量用学生,老师可以在旁提供帮(2)班会背景:阐明最近学生中存在的倾向性思想问题和学生与社会、家庭、学校之间存在的现实问题。
(3)班会目的:阐明班会要达到的预期效果。
(4)班会前的准备:根据班会内容安排的各项工作要准备就绪。
(5)班会过程:说明整体班会课程的程序或步骤,并做详细记录。
(6)班主任作用:根据班会主题,协调和组织本班学生进行好班会,达到班会目的。
(7)班会反思:班会要与教育目的相结合,总结经验。
(8)班会时间:一节课。
二、加强班会课程化的管理1、双向管理,加强落实。
双向管理分政教处管理和年级管理两个层面,以学生为主,班主任为辅。
年级确定主题后,上报政教处后,再交由班主任发动学生主动选取主题,创意设计预案,主持运行。
主题班会的策划主持过程,既是接受教育的过程,又是锻炼综合能力的实践,还是团队协作精神的培养锻造。
班主任自始至终要到位,不缺位。
班主任在内容上把关,资料上辅助,以平等身份参与。
只有师生两方面积极性的充分发挥,班会才能常开常新,活力永存。
2、有的放矢,灵活机动。
以班会为交汇点,整合学科课程与生活的德育资源(包括社会新闻、文学综艺、文化讲坛等),实施固定主题与自选主题的灵活互补。
固定主题要重点落实,力避随意化。
自选主题要贴合本班学生实际,把握好教学与学生结合的关系,把问题最小化,尽量消灭在萌芽状态。
3、多面对照,知行结合。
班会过程中引用的典型案例要做到古今中外对照,讲述道理要做到正反剖析对照等,同时力争达到知与行相结合的效果。
4、宽松多彩,寓教于乐。
班会呈现的方式方法可多种多样,或讲述聆听、或观摩欣赏、或表演品评、或研讨辩论、或出访座谈、或结合节日庆典、或请学校领导参与、或请家长代表客串、或邀请社会名流演说,总之以事实说话,避免枯燥说教。
班会的情境氛围要宽松,随主题需要选配合适的背景音乐和画面,调动所有学生参与互动,营造一种交流休息的氛围,在轻松闲适的气氛中思想得到洗礼,心灵得以放飞,精神得以滋补。
三、加强领导,全面推进班会课程化班主任要充分认识到学校对班会课程化的高度重视,班会课程开发是学校重点工作之一。
学校领导和政教处要建立听评课制度,结合学校实际,制定具体的实施方案,帮助年级把推进班会课程化、班会课程开发工作落到实处,确保班会课程化的质量和效果。
开展班会课程化教学专题研究是提升班会效能的前提和保障。
学校要以年级组为单位成立调研小组,年级要设立试点班,开展专题研究,及时总结经验,推广好的做法,发挥以点带面和示范、辐射作用。
年级组要每周检查班主任的班会教案设计情况,建立巡课制度。
政教处领导要深入课堂对班会进行听课评课,发现问题,及时反馈,及时指导,及时整改;代课老师每学期至少要在所带班级上一次班会课;听评课要从场景布置、主题、方案、主持、班主任组织指导、内容、学生参与情况以及效果等七个方面对班会进行量化评估,以便扬长避短,促使班会课逐步走向规范化、科学化。
附表1:《班会观摩课活动评分标准》附表2:《二年级上期班会课程开发分工表》班会观摩课活动评分标准淮滨高中二年级上期班会课程开发分工表开发人:仇艳飞雷然王湘军刘建新示范人:刘建新授课时间:2012年9月班会主题:学法指导高二学习方法指导各位老师、同学们下午好!高二是高中学习的关键时期,不仅课程任务重,而且很大程度上决定高中的学习效果,是否能考上理想的大学,在相同的时间内,谁若能脱颖而出,赢得胜利,必须有良好的学习方法,实现高效学习,做一名智慧型的学生。
加强自主学习意识高二阶段学习成绩的进步很大程度上取决于学习的自觉性,也是提高自学水平为高三打基础的重要时期。
只要你自己懂得主动学习,知道自己每天该干什么,该如何处理各科学习,那么,你在高三时期的学习将更加轻松自如。
学习上的自主意识不可能有外界的力量强加于你,只有自己才能够让自己的学习行为产生自觉性,因此变“要我学为我要学”在高二时期显得更为重要。
打好基础,注重能力高二阶段是打基础的关键一年,除了要把高一所学的知识和技能及时应用到高二的学习之上,还得把高中的全部知识和技能逐步吸收和掌握,为高三复习打好基础。
在这个目标达到后,有余力的学生可以适当提高层次,多做些能力题,以提高自己的分析问题、解决问题和探究问题的能力。
只要在学习过程中重视思考问题和探究问题,你的能力就会在不知不觉中得到提高,为高三复习阶段深化知识网络结构提供基础。
明确学习目标,有计划地学习也许你在高一阶段学习目标不是很明确,但进入高二时期,你的学习目标就应该逐步清晰和明朗起来,否则学习就会缺乏动力。
高二时期的学习目标主要体现在班级或年级里你应该达到或者超过什么水平,以及你在高中毕业时将要达到什么水平,学到什么知识和技能,考上什么类型的大学等。
这在大多数班级都建有学生成长档案,有的还将目标上墙,为实现目标,我们必须有计划的学习,李校长曾经教导我们:每天晚上都要写下第二天应该做的事情,在第二天坚决地把它落实,让自己的每一天都是独立的、完整的、尽善尽美的。
我也曾对我的学生讲:“我要让今天的我让我自己都感动。
”每一位师生都应该坚持做好计划与今天有。
克服松懈的思想在高二时期,往往会出现思想松懈的现象,主要表现在以下三个方面:一、会因为缺乏新鲜感、陌生感而失去了学习的兴趣和热情,二、会为高一的努力没有达到预期的目标而自暴自弃,从而在高二阶段对学习失去了信心。
三、会因为觉得高二离高考还有一段时间,到了高三再努力也不晚,高中阶段,学习本来就是很苦的,学习过程中要承受“两苦”(心苦,辛苦)能承受才能苦尽甘来。
勤于思考做一名智慧型学生在学习过程中,如果不进行主动的思考,而仅仅是被动地接受知识,就不是一种有策略的学习,也不会取得好的效果。
“勤于思考”有两方面的含义。
一是要注意知识前后的联系,通过理解知识而掌握知识,而不要死记硬背。
通过理解而进行的学习是意义学习,而死记硬背的学习是机械学习。
心理学研究表明,意义学习更牢固、不容易遗忘,并且容易发生迁移,在以后的学习中能举一反三、触类旁通。
学习的有策略,才是一名智慧型学生。
勇于发问学习本身是离不开发问的。
好奇是一种可贵的品质。
如果没有好奇、如果从不发问,人就不会成长,社会就不会发展。
有时,父母、老师或者同学会对你的问题感到不耐烦,那是他们的不对,你并没有错。
千万别因为他们的错误行为而放弃自己的正确行为。
所以,你一定要继续保持发问的勇气!有时你可能对于提问有很多顾虑。
比如,担心别人说自己笨,担心问这个问题很傻,担心问多了老师会不耐烦……不要顾虑这些,只要你有不懂的地方,请勇敢地举起你的手!走自己的路,让别人去说吧,笑到最后的人,才是笑的最美的人。
决不能让问题越积越多,到后无从下手,悔之已晚!善于练习没有经过练习的知识是不会牢固的。
在必要的时候,还应该进行强化训练,以增加运用知识的熟练程度。
“善于练习”,你要善于分配练习的时间,安排练习的量,提高练习的效率,比如:每天对自己的练习进行计划,做到限时训练、高效解题。
及时总结高中已过去一年,我们中间很多同学曾抱怨过我们的作业太多,没有时间消化。
但是我们再回想一下,我们每天计划你是否有强烈的总结意识,并把它写入计划中,对自己当天所学的知识,以及以往的知识进行及时的复习总结呢?答案是,没有。
你作业一旦做完,你会把你感兴趣的资料书拿出来,继续做题,长期会成为做题的机器。
即便是在你睡觉前躺在床上,你也懒得回忆当天所学的知识。
及时的反思与总结能有效的降低知识的遗忘,利于知识深化理解和构建体系。
坚持体育锻炼,保持愉快的心情身体是"学习"的本钱。
没有一个好的身体,再大的能耐也无法发挥。
因而,再繁忙的学习,也不可忽视放松锻炼。
有的同学为了学习而忽视锻炼,身体越来越弱,学习越来越感到力不从心。
这样怎么能提高学习效率呢?每天有个好心情,做事干净利落,学习积极投入,效率自然高。