第08讲 函数的单调性(学生版) 备战2021年新高考数学微专题讲义
- 格式:docx
- 大小:79.83 KB
- 文档页数:9
2021年高考数学函数的单调性必考知识点高中数学知识点:函数的单调性一般地,设函数fx的定义域为I:如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1fx2.那么就是fx在这个区间上是减函数。
高中数学知识点:函数的单调区间单调区间是指函数在某一区间内的函数值Y,随自变量X增大而增大或减小恒成立。
如果函数y=fx在某个区间是增函数或减函数。
那么就说函数y=fx在这一区间具有严格的单调性,这一区间叫做y=fx的单调区间。
高中数学知识点:函数的单调图像高中数学知识点:函数的单调性的应用高中数学知识点:求函数单调性的基本方法解:先要弄清概念和研究目的,因为函数本身是动态的,所以判断函数的单调性、奇偶性,还有研究函数切线的斜率、极值等等,都是为了更好地了解函数本身所采用的方法。
其次就解题技巧而言,当然是立足于掌握课本上的例题,然后再找些典型例题做做就可以了,这部分知识仅就应付解题而言应该不是很难。
最后找些考试试卷题目来解,针对考试会出的题型强化一下,所谓知己知彼百战不殆。
1、把握好函数单调性的定义。
证明函数单调性一般初学最好用定义用定义谨防循环论证,如果函数解析式异常复杂或者具有某种特殊形式,可以采用函数单调性定义的等价形式证明。
另外还请注意函数单调性的定义是[充要命题]。
2、熟练掌握基本初等函数的单调性及其单调区间。
理解并掌握判断复合函数单调性的方法:同增异减。
3、高三选修课本有导数及其应用,用导数求函数的单调区间一般是非常简便的。
还应注意函数单调性的应用,例如求极值、比较大小,还有和不等式有关的问题。
高中数学知识点:例题判断函数的单调性y = 1/ x的平方-2x-3。
设x^2-2x-3=t,令x^2-2x-3=0,解得:x=3或x=-1,当x>3和x<-1时,t>0,当-1所以得到x^2-2x-1对称轴是1。
第8讲:函数的单调性一、课程标准1.理解函数的单调性、最大(小)值及其几何意义2.掌握求函数的单调性的方法·3.能处理函数的最值问题。
二、基础知识回顾1. 函数单调性的定义(1)一般地,对于给定区间上的函数f(x),如果对于属于这个区间的任意两个自变量x1、x2,当x1<x2时,都有f(x1)<f(x2)(或都有f(x1)>f(x2),那么就说f(x)在这个区间上是增函数(或减函数).(2)如果函数y=f(x)在某个区间上是增函数(或减函数),那么就说f(x)在这个区间上具有(严格的)单调性,这个区间叫做f(x)的单调区间;若函数是增函数则称该区间为增区间,若函数为减函数则称该区间为减区间.2. 函数单调性的图像特征对于给定区间上的函数f(x),若函数图像从左向右连续上升,则称函数在该区间上单调递增;若函数图像从左向右连续下降,则称函数在该区间上单调递减.3. 复合函数的单调性对于函数y=f(u)和u=g(x),如果当x∈(a,b)时,u∈(m,n),且u=g(x)在区间(a,b)上和y=f(u)在区间(m,n)上同时具有单调性,则复合函数y=f(g(x))在区间(a,b)上具有单调性,并且具有这样的规律:增增(或减减)则增,增减(或减增)则减.4. 函数单调性的常用结论(1)对∀x1,x2∈D(x1≠x2),f(x1)-f(x2)x1-x2>0⇔f(x)在D上是增函数;f()x1-f()x2x1-x2<0⇔f(x)在D上是减函数.(2)对勾函数y=x+ax(a>0)的增区间为(-∞,-a]和[a,+∞),减区间为(-a,0)和(0,a).(3)在区间D上,两个增函数的和是增函数,两个减函数的和是减函数.(4)函数f(g(x))的单调性与函数y=f(u)和u=g(x)的单调性的关系是“同增异减”5.常用结论1.若函数f(x),g(x)在区间I上具有单调性,则在区间I上具有以下性质:(1)当f (x ),g (x )都是增(减)函数时,f (x )+g (x )是增(减)函数;(2)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (3)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反;(4)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”. 2.增函数与减函数形式的等价变形:∀x 1,x 2∈[a ,b ]且x 1≠x 2,则 (x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是减函数. 三、自主热身、归纳总结1、函数y =x 2-5x -6在区间[2,4]上是( ) A .递减函数 B .递增函数C .先递减再递增函数D .先递增再递减函数【答案】C【解析】作出函数y =x 2-5x -6的图象(图略)知开口向上,且对称轴为x =52,在[2,4]上先减后增.故选C.2、函数y =1x -1在[2,3]上的最小值为( ) A .2 B.12 C.13 D .-12【答案】B【解析】 因为y =1x -1在[2,3]上单调递减,所以y min =13-1=12.故选B. 3、设函数f(x)在R 上为增函数,则下列结论一定正确的是(D ) A. y =1f (x )在R 上为减函数 B. y =|f (x )|在R 上为增函数C. y =-1f (x )在R 上为增函数 D. y =-f (x )在R 上为减函数 【答案】D.【解析】 如f (x )=x 3,则y =1f (x )的定义域为(-∞,0)∪(0,+∞),在x =0时无意义,A 、C 错;y =|f (x )|是偶函数,在R 上无单调性,B 错.故选D.4、对数函数log (0a y x a =>且1)a ≠与二次函数2(1)y a x x =--在同一坐标系内的图象不可能是( )A .B .C .D .【答案】BD .【解析】:若1a >,则对数函数log a y x =在(0,)+∞上单调递增,二次函数2(1)y a x x =--开口向上,对称轴102(1)x a =>-,经过原点,可能为A ,不可能为B .若01a <<,则对数函数log a y x =在(0,)+∞上单调递减,二次函数2(1)y a x x =--开口向下,对称轴102(1)x a =<-,经过原点,可能为C ,不可能为D .故选:BD .5、已知函数2()361f x x x =--,则( ) A .函数()f x 有两个不同的零点B .函数()f x 在(1,)-+∞上单调递增C .当1a >时,若()x f a 在[1x ∈-,1]上的最大值为8,则3a =D .当01a <<时,若()x f a 在[1x ∈-,1]上的最大值为8,则13a =【答案】ACD .【解析】因为二次函数对应的一元二次方程的判别式△2(6)43(1)480=--⨯⨯-=>, 所以函数()f x 有两个不同的零点,A 正确;因为二次函数()f x 图象的对称轴为1x =,且图象开口向上, 所以()f x 在(1,)+∞上单调递增,B 不正确;令x t a =,则22()()3613(1)4x f a g t t t t ==--=--. 当1a >时,1t a a,故()g t 在1[,]a a 上先减后增,又112a a +>,故最大值为g (a )23618a a =--=,解得3a =(负值舍去). 同理当01a <<时,1a t a ,()g t 在1[,]a a 上的最大值为2136()18g a a a=--=, 解得13a =(负值舍去).故选:ACD .6、函数y =|-x 2+2x +1|的单调递增区间是 ;单调递减区间是 . 【答案】(1-2,1),(1+2,+∞);(-∞,1-2),(1,1+2).【解析】作出函数y =|-x 2+2x +1|的图像如图所示.由图像可知,函数y =|-x 2+2x +1|的单调增区间为(1-2,1),(1+2,+∞);单调递减区间是(-∞,1-2),(1,1+2).故应分别7、已知f(x)=xx -a (x≠a),若a >0且f(x)在(1,+∞)上是减函数,则实数a 的取值范围是 . 【答案】(0,1]【解析】 任设1<x 1<x 2,则f(x 1)-f(x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1) (x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f(x 1)-f(x 2)>0,只需(x 1-a)(x 2-a)>0恒成立.∴a≤1. 综上所述,a 的取值范围是(0,1].8、函数y =x 2+x -6的单调递增区间为__________,单调递减区间为____________. 【答案】 (1)B (2)[2,+∞) (-∞,-3]【解析】 (1)y =|x 2-3x +2|=⎩⎪⎨⎪⎧x 2-3x +2,x ≤1或x ≥2,-(x 2-3x +2),1<x <2. 如图所示,函数的单调递增区间是⎣⎡⎦⎤1,32和[2,+∞).(2)令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数. 令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数, ∴y =x 2+x -6的单调递减区间为(-∞,-3],单调递增区间为[2,+∞).三、例题选讲考点一 函数的单调区间 例1、求下列函数的单调区间 (1)y =-x 2+2|x|+1; (2)f(x)=x 2-2x -3; (3)212log (32)y x x =-+【解析】(1)由2221,0-x 21,0x x x x x ⎧-++⎪⎨-+⎪⎩≥,<,即22(1)2,0-1)2,0.x x y x x ⎧--+⎪=⎨++⎪⎩≥(<画出函数图像如图所示,单调增区间为(-∞,-1],[0,1],单调减区间为[-1,0], [1,+∞).(2)f(x)=x 2-2x -3的定义域为(-∞,-1]∪[3,+∞).令t =x 2-2x -3,∵t =x 2-2x -3在x ∈(-∞,-1]上是减函数,在x ∈[3,+∞)为增函数,又y =t 在t ∈(0,+∞)上是增函数,∴函数f(x)=x 2-2x -3的单调减区间是(-∞,-1],单调递增区间是[3,+∞). (3)令u =x 2-3x +2,则原函数可以看成12log y u =与u =x 2-3x +2的复合函数.由x 2-3x +2>0,解得x <1或x >2.∴函数的定义域为(-∞,1)∪(2,+∞). 又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是减函数,在(2,+∞)上是增函数.而12log y u =在(0,+∞)上是减函数,∴的单调减区间为(2,+∞),单调增区间为(-∞,1).变式1、(2019·河北石家庄二中模拟)函数f (x )=|x 2-3x +2|的单调递增区间是( )A.⎣⎡⎭⎫32,+∞ B.⎣⎡⎦⎤1,32和[2,+∞)C .(-∞,1]和⎣⎡⎦⎤32,2D.⎝⎛⎦⎤-∞,32和[2,+∞)【答案】B【解析】y =|x 2-3x +2|=⎩⎪⎨⎪⎧x 2-3x +2,x ≤1或x ≥2,-x 2-3x +2,1<x <2.如图所示,函数的单调递增区间是⎣⎡⎦⎤1,32和[2,+∞).变式2、已知函数f (x )=log a (-x 2-2x +3)(a >0且a ≠1),若f (0)<0,则此函数的单调递增区间是( )A.(-∞,-1]B.[-1,+∞)C.[-1,1)D.(-3,-1]212log (32)y x x =-+212log (32)y x x =-+【答案】C【解析】令g (x )=-x 2-2x +3,由题意知g (x )>0,可得-3<x <1,故函数的定义域为{x |-3<x <1}.根据f (0)=log a 3<0,可得0<a <1,又g (x )在定义域(-3,1)内的减区间是[-1,1),∴f (x )的单调递增区间为[-1,1).变式3、.函数y =|x |(1-x )的单调递增区间是________. 【答案】 ⎣⎢⎡⎦⎥⎤0,12【解析】 y =|x |(1-x )=⎩⎨⎧x (1-x ),x ≥0,-x (1-x ),x <0 =⎩⎨⎧-x 2+x ,x ≥0,x 2-x ,x <0,函数的大致图象如图所示.由图易知函数的单调递增区间是⎣⎢⎡⎦⎥⎤0,12.方法总结:求函数的单调区间的常用方法与判断函数的单调性的方法类似,有定义法、图像法、利用常见函数的单调性、导数法等.值得引起高度重视的是:(1)函数的单调区间是函数定义域的子区间,所以求单调区间,必须先求出定义域; (2)对于基本初等函数的单调区间,可以直接利用已知结论求解;(3)如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间. 考点二 复合函数的单调区间例2、(2019·黑龙江大庆实验中学模拟)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞) D .(4,+∞)【答案】D【解析】函数y =x 2-2x -8=(x -1)2-9图象的对称轴为直线x =1,由x 2-2x -8>0,解得x >4或x <-2,所以(4,+∞)为函数y =x 2-2x -8的一个单调递增区间.根据复合函数的单调性可知,函数f (x )=ln(x 2-2x -8)的单调递增区间为(4,+∞).变式1、函数y =log 12(-x 2+x +6)的单调增区间为( )A.⎝⎛⎭⎫12,3B.⎝⎛⎭⎫-2,12C.(-2,3)D.⎝⎛⎭⎫12,+∞【答案】 A【解析】 由-x 2+x +6>0,得-2<x <3,故函数的定义域为(-2,3),令t =-x 2+x +6,则y =log 12t ,易知其为减函数,由复合函数的单调性法则可知本题等价于求函数t =-x 2+x +6在(-2,3)上的单调递减区间.利用二次函数的性质可得t =-x 2+x +6在定义域(-2,3)上的单调递减区间为⎝⎛⎭⎫12,3,故选A.变式2、函数f (x )=2x -x 2的单调递增区间为( ) A.⎝⎛⎦⎤-∞,12B.⎣⎡⎦⎤0,12C.⎣⎡⎭⎫12,+∞D.⎣⎡⎦⎤12,1【答案】B【解析】令t =x -x 2,由x -x 2≥0,得0≤x ≤1,故函数的定义域为[0,1].因为g (t )=2t 是增函数,所以f (x )的单调递增区间即t =x -x 2的单调递增区间.利用二次函数的性质,得t =x -x 2的单调递增区间为⎣⎡⎦⎤0,12,即原函数的单调递增区间为⎣⎡⎦⎤0,12.故选B.方法总结:求复合函数的单调性,首先要注意复合函数的定义域,其次要确定函数是有哪些基本函数复合而成,根据同增异减的性质确定复合函数的单调性。
微专题----函数单调性常见题型及解题方法总结【特别提醒】1.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反.2.“对勾函数”y =x +ax (a >0)的单调增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ].3、函数的单调性是对某个区间而言的,所以受到区间的限制,如函数xy 1=分别在)0,(-∞和),0(+∞内都是单调递减的,但是不能说它在整个定义域即),0()0,(+∞-∞ 内是单调递减的,只能说函数xy 1=的单调递减区间为)0,(-∞和),0(+∞。
即:多个单调区间之间用“和”或“,”,不能用“ ”。
【对勾函数】一.对勾函数by ax x=+)0,0(>>b a 的图像与性质:1.定义域:(-∞,0)∪(0,+∞)2.值域:(-∞,-√ab]U[√ab,+∞)3.奇偶性:奇函数,函数图像整体呈两个“对勾”的形状,且函数图像关于原点呈中心对称,即0)()(=-+x f x f4.图像在一、三象限,当0x >时,b y a x x =+≥2√ab (当且仅当x =取等号),即)(x f 在x=ab时,取最小值ab2由奇函数性质知:当x<0时,)(x f 在x=ab -时,取最大值ab 2-5.单调性:增区间为(∞+,ab ),(a b -∞-,),减区间是(0,a b ),(a b-,0)【判断函数单调性方法技巧】(1)定义法:一般步骤为设元→作差→变形→判断符号→得出结论.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性.(3)导数法:先求导数,利用导数值的正负确定函数的单调区间.(在区间(,)a b 内,若总有()0f x '>,则()f x 为增函数;反之,若()f x 在区间(,)a b 内为增函数,则()0f x '≥,(4)性质法:①对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及f (x )±g (x )增减性质进行判断;(5)在选择填空题中还可用数形结合法、特殊值法等等,(6)复合函数法:复合函数单调性的特点是同增异减,注意定义域【求函数最值(值域)方法技巧】(1)二次函数法:根据二次函数性质求最值或范(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)单调性法:先确定函数的单调性,再由单调性求最值.(4)换元法:如三角换元或者带根号的式子换元(5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值.(6)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(7)三角函数有界性:根据1cos 1-,1sin 1-≤≤≤≤x x 求参数或者变量范围(8)分离常数法(9)判别式法(10)数形结合法一、单选题1.(复合函数单调性:同增异减,注意定义域)函数()2ln 23y x x =-++的减区间是()A .(]1,1-B .[)1,3C .(],1-∞D .[)1,+∞2.(抽象函数的的应用;注意求函数的解析式或找出最值的关系)定义域为R 的函数()f x 满足()()12f x f x +=,且当(]0,1x ∈时,()2f x x x =-,则当(]2,1x ∈--时,()f x 的最小值为()A .116-B .18-C .14-D .03.(函数的奇偶性单调性,构造函数,注意定义域)已知函数()1ln 11xf x x x+=++-,且()()12f a f a ++>,则a 的取值范围是A .1,2⎛⎫-+∞ ⎪⎝⎭B .11,2⎛⎫--⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭D .1,12⎛⎫-⎪⎝⎭4.(函数的奇偶性、单调性、比大小)已知()f x 是定义在R 上的偶函数,且在(,0]-∞上是增函数,设(ln ),a f π=5(log 2),b f =-12(),c f e -=则,,a b c 的大小关系是A .b c a<<B .a b c<<C .c b a<<D .a c b<<5.(函数的奇偶性、单调性、函数图像)设f(x)为奇函数,且在(-∞,0)内是减函数,f (2)=0,则f(x)x<0的解集为()A .(-∞,-2)∪(2,+∞)B .(-∞,2)∪(0,2)C .(-2,0)∪(2,+∞)D .(-2,0)∪(0,2)6.(函数奇偶性、构造函数、单调性、比大小)已知()f x 是定义在R 上的奇函数,对任意两个不相等的正数12,x x ,都有211212()()0x f x x f x x x -<-,记0.20.2(4.1)4.1f a =, 2.12.1(0.4)0.4f b =,0.20.2(log 4.1)log 4.1f c =,则()A .a c b<<B .a b c<<C .c b a<<D .b c a<<7.(构造函数、单调性)已知,(0,)2παβ∈,sin sin 0βααβ->,则下列不等式一定成立的是()A .2παβ+<B .2παβ+=C .αβ<D .αβ>8.(奇偶性、单调性、参变分离解不等式)已知函数31()sin 31x x f x x x -=+++,若[2,1]x ∃∈-,使得2()()0f x x f x k ++-<成立,则实数k 的取值范围是()A .(1,)-+∞B .(3,)+∞C .(0,)+∞D .(,1)-∞-二、填空题9.(双变量求最值)已知函数()223f x x x a =-+,()21g x x =-.若对任意[]10,3x ∈,总存在[]22,3x ∈,使得()()12f x g x ≤成立,则实数a 的值为____.10.(结合导数构造函数解不等式)设定义域为R 的函数()f x 满足()()f x f x '>,则不等式()()121x ef x f x -<-的解集为__________.11.(分段函数单调性,注意端点值)已知函数2152(1)()24log (1)a a x x x f x xx -⎧+-<⎪=⎨⎪≥⎩是(),-∞+∞上的增函数,则实数a 的取值范围为_____.12.(构造函数、依据单调性解不等式)已知函数()f x 是奇函数,且120x x ≤<时,有1212()()1f x f x x x -<-,(2)1f -=,则不等式3()x f x x -≤≤的解集为____.13.(偶函数解不等式,注意加绝对值)已知函数()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增,若()30f -=,实数a 满足()250f a -≤,则a 的最小值为________.14.(反比例类型函数的单调性)若2()2f x x ax =-与21()1ax g x x -+=+在区间[1,2]上都是减函数,则实数a 的取值范围是__________.15.(结合奇偶性单调性解不等式)已知函数()12cos 2xx f x e x e π⎛⎫=--- ⎪⎝⎭,其中e 为自然对数的底数,若()()()22300f a f a f +-+<,则实数a 的取值范围为___________.16.下列命题:①集合{},,a b c 的子集个数有8个;②定义在R 上的奇函数()f x 必满足(0)0f =;③()()2()21221f x x x =+--既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤1()f x x=在()(),00,-∞⋃+∞上是减函数,其中真命题的序号是______________(把你认为正确的命题的序号都填上).17.(构造函数、结合导数求单调性、解不等式)已知()()y f x xR =的导函数为()f x ',若()()32f x f x x --=,且当0x ≥时()23f x x '>,则不等式()2()1331f x f x x x -->-+的解集是__________.三、解答题18.(常见函数的性质、恒成立问题的求解方法和灵活运用分类讨论思想)已知函数212()log (1)f x x =+,2()6g x x ax =-+.(Ⅰ)若()g x 为偶函数,求a 的值并写出()g x 的增区间;(Ⅱ)若关于x 的不等式()0<g x 的解集为{|23}x x <<,当1x >时,求()1g x x -的最小值;(Ⅲ)对任意的1[1,)x ∈+∞,2[2,4]x ∈-,不等式12()()f x g x ≤恒成立,求实数a 的取值范围.参考答案1.B 【解析】【分析】利用一元二次不等式的解法求出函数的定义域,在定义域内求出二次函数的减区间即可.【详解】令2t x 2x 30=-++>,求得1x 3-<<,故函数的定义域为()1,3-,且y lnt =递增,只需求函数t 在定义域内的减区间.由二次函数的性质求得2t (x 1)4=--+在定义域内的减区间为[)1,3,所以函数()2y ln x 2x 3=-++的减区间是[)1,3,故选B.【点睛】本题主要考查对数函数的性质、复合函数的单调性,属于中档题.复合函数的单调性的判断可以综合考查两个函数的单调性,因此也是命题的热点,判断复合函数单调性要注意把握两点:一是要同时考虑两个函数的的定义域;二是同时考虑两个函数的单调性,正确理解“同增异减”的含义(增增→增,减减→增,增减→减,减增→减).2.A 【解析】【分析】(](]21201x x ,,∈--⇒+∈,由1224f x f x f x f x +=⇒+=()()()(),结合题意01x ∈(,]时,2f x x x =-(),即可求得()f x 的最小值.【详解】当(]2,1∈--时,(]201x ,+∈,2222232f x x x x x ∴+=+-+=++()()(),又()12f x f x +=(),()2[11]214f x f x f x f x ()()()∴+=++=+=,()243221f x x x x ∴=++-<≤-(),22113132(,2144216f x x x x x ∴=++=+--<≤-()()(),∴当32x =-时,f(x)取得最小值-116-.故选A.【点睛】本题考查抽象函数及其应用,着重考查转化思想与理解能力,求得21324f x x x =++()()是关键,也是难点,属于中档题.3.C 【解析】【分析】根据题意,由函数的解析式求出函数的定义域,设g (x )=f (x )﹣1,分析可得g (x )为奇函数且在(﹣1,1)上为增函数,据此f (a )+f (a +1)>2⇒()111111a a a a ⎧-⎪-+⎨⎪-+⎩<<<<>,解可得a 的取值范围,即可得答案.【详解】根据题意,函数f (x )=ln 11x x ++-x +1,有11xx+->0,解可得﹣1<x <1,即函数f (x )的定义域为(﹣1,1),设g (x )=f (x )﹣1=ln 11x x ++-x ,则g (﹣x )=ln 11x x -++(﹣x )=﹣[ln 11xx++-x ]=﹣g (x ),则函数g (x )为奇函数;分析易得:g (x )=ln11xx++-x 在(﹣1,1)上为增函数,f (a )+f (a +1)>2⇒f (a )﹣1>﹣[f (a +1)﹣1]⇒g (a )>﹣g (a +1)⇒g (a )>g (﹣a ﹣1)⇒()111111a a a a ⎧-⎪-+⎨⎪-+⎩<<<<>,解可得:12-<a <0,即a 的取值范围为(12-,0);故选:C .【点睛】本题考查函数的奇偶性与单调性的综合应用,关键构造新函数g (x )=f (x )﹣1,属于中档题.4.D 【解析】【分析】首先比较自变量的大小,然后结合函数的奇偶性确定函数在区间()0,+∞上的单调性,最后利用单调性比较函数值的大小即可.【详解】注意到ln 1π>,510log 2log 2<<=,且112=<<,据此可得:125ln log 2eπ->>,函数为偶函数,则:()()125ln ,log 2,a f b f c f e π-⎛⎫=== ⎪⎝⎭,由偶函数的性质可知:函数在区间()0,+∞上单调递减,故()()125ln log 2f f e f π-⎛⎫<<- ⎪⎝⎭,即a c b <<.故选D .【点睛】本题主要考查函数的单调性,函数的奇偶性,实数比较大小的方法等知识,意在考查学生的转化能力和计算求解能力.5.A 【解析】【分析】利用函数的奇偶性与单调性,结合函数图象求解即可.【详解】∵f x 为奇函数,且在−∞,0内是减函数,所以函数在0,+∞上单调递减.∵f 2=0,∴f −2=−f 2=0,故函数f x 的图象如图所示:<0,可得x ⋅f x <0,即x 和f x 异号,由图象可得x <−2,或x >2,f(x)x<0的解集为−∞,−2∪2,+∞,故选A .【点睛】本题主要考查抽象函数的奇偶性与单调性的应用,属于难题.将奇偶性与单调性综合考查是,一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.6.A 【解析】设120x x <<,则12211212()()()()0f x f x x f x x f x x x ->⇒>所以函数()()f x g x x=在(0,)+∞上单调递减,因为()f x 是定义在R 上的奇函数,所以()g x 是定义在R 上的偶函数,因此()0.20.24.14.1f a =0.2(4.1)(1)g g =<,()2.12.10.40.4f b =2.12(0.4)(0.4)(0.5)g g g =>>,()0.20.2log 4.1log 4.1f c =0.251(log 4.1)(log 4.1)((1),())2g g g g ==∈,即a c b<<,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行7.C 【解析】【分析】构造函数()sin ,0,2x f x x x π⎛⎫=∈ ⎪⎝⎭,原不等式等价于()(),f f αβ>两次求导可证明()sin x f x x =在0,2π⎛⎫⎪⎝⎭上递减,从而可得结论.【详解】由题意,sin sin βααβ>,sin sin αβαβ∴>,设()sin ,0,2x f x x x π⎛⎫=∈ ⎪⎝⎭,()2cos sin '0,2x x x f x x x π-⎛⎫∴=∈ ⎪⎝⎭,设()cos sin ,0,2g x x x x x π⎛⎫=-∈ ⎪⎝⎭,()'cos sin cos sin 0g x x x x x x x ∴=--=-<,()g x ∴在0,2π⎛⎫ ⎪⎝⎭单调递减,且()()00g x g <=,()'0f x ∴<,所以()sin x f x x =在0,2π⎛⎫ ⎪⎝⎭递减,()()sin sin ,f f αβαβαβ>⇔> αβ∴<,故选C.【点睛】本题主要考查利用导数研究函数的单调性,属于难题.利用导数判断函数单调性的步骤:(1)求出()'f x ;(2)令()'0f x >求出x 的范围,可得增区间;(3)令()'0f x <求出x 的范围,可得减区间.8.A【解析】由题函数()31sin 31x x f x x x -=+++的定义域为R,且()()()()3131sin sin ,3131x x x x f x x x x x f x --⎛⎫---=+-+-=-++=- ⎪++⎝⎭即函数()f x 为及奇函数,且()()22ln 331cos 031xx f x x ⋅=++'+>在[]2,1x ∈-上恒成立,即函数函数()f x 在[]2,1x ∈-上单调递增,若[]2,1x ∃∈-,使得()()20f x x f x k ++-<成立,即()()()()222f x x f x k f x x f k x x x k x+<--⇒+<-⇒+<-则问题转化为[]2,1x ∃∈-,22k x x >+,即()2min 2,k x x>+在[]2,1x ∈-上22y x x=+得最小值为-1,故实数k 的取值范围是()1,-+∞.故选A.9.13-【解析】【分析】将问题转化为()()max max f x g x ≤,根据二次函数和分式的单调性可求得()f x 在[]0,3上的最小值和最大值及()g x 在[]2,3上的最大值;分别讨论()f x 最大值小于零、最小值小于零且最大值大于零、最小值大于零三种情况,得到()f x 每种情况下的最大值,从而得到不等式,解不等式求得结果.【详解】不等式()()12f x g x ≤恒成立可转化为:()()maxmax f x g x ≤当[]0,3x ∈时,()()min 113f x f a ==-+,()()max 333f x f a==+当[]2,3x ∈时,()()max 22g x g ==①若330a +≤,即1a ≤-时,()max 1313f x a a=-+=-132a ∴-≤,解得:13a ≥-(舍)②若13033a a -+≤<+,即113a -<≤时,()()(){}max max 1,3f x f f =-又()113f a -=-,()333f a=+当1333a a ->+,即113a -<<-时,()max 13f x a =-132a ∴-≤,解得:13a ≥-(舍)当1333a a -≤+,即1133a -≤≤时,()max 33f x a =+332a ∴+≤,解得:13a ≤-13a ∴=-③若130a -+>,即13a >时,()max 3333f x a a =+=+332a ∴+≤,解得:13a ≤-(舍)综上所述:13a =-本题正确结果:13-【点睛】本题考查恒成立和能成立综合应用的问题,关键是能够将不等式转化为两个函数最值之间的大小关系,从而根据函数的单调性求得函数的最值,通过最值的比较构造不等式求得结果.10.(1,)+∞【解析】【分析】根据条件构造函数F (x )()x f x e =,求函数的导数,利用函数的单调性即可得到结论.【详解】设F (x )()x f x e =,则F ′(x )()()'x f x f x e -=,∵()()f x f x '>,∴F ′(x )>0,即函数F (x )在定义域上单调递增.∵()()121x e f x f x -<-∴()()2121x x f x f x e e --<,即F (x )<F (2x 1-)∴x 2x 1-<,即x>1∴不等式()()121x e f x f x -<-的解为()1,+∞故答案为:()1,+∞【点睛】本题主要考查函数单调性的判断和应用,根据条件构造函数是解决本题的关键.11.532a ≤≤【解析】【分析】因为函数2152(1)()24log (1)a a x x x f x xx -⎧+-<⎪=⎨⎪≥⎩是(),-∞+∞上的增函数,所以当1x ≥,时()log a f x x =是增函数,当1x <,()215224a f x x x -=+-也是增函数,且max min ()(1)()(1)f x x f x x <≤≥,从而可得答案。
函数的单调性与奇偶性知识集结知识元函数的单调性与奇偶性知识讲解1.奇偶性与单调性的综合【知识点的认识】对于奇偶函数综合,其实也并谈不上真正的综合,一般情况下也就是把它们并列在一起,所以说关键还是要掌握奇函数和偶函数各自的性质,在做题时能融会贯通,灵活运用.在重复一下它们的性质①奇函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f (﹣x)=﹣f(x),其图象特点是关于(0,0)对称.②偶函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=f(x),其图象特点是关于y轴对称.【解题方法点拨】参照奇偶函数的性质那一考点,有:①奇函数:如果函数定义域包括原点,那么运用f(0)=0解相关的未知量;②奇函数:若定义域不包括原点,那么运用f(x)=﹣f(﹣x)解相关参数;③偶函数:在定义域内一般是用f(x)=f(﹣x)这个去求解;④对于奇函数,定义域关于原点对称的部分其单调性一致,而偶函数的单调性相反例题:如果f(x)=为奇函数,那么a=.解:由题意可知,f(x)的定义域为R,由奇函数的性质可知,f(x)==﹣f(﹣x)⇒a=1【命题方向】奇偶性与单调性的综合.不管出什么样的题,能理解运用奇偶函数的性质是一个基本前提,另外做题的时候多多总结,一定要重视这一个知识点.例题精讲函数的单调性与奇偶性例1.(2021春∙沙坪坝区校级月考)下列函数为奇函数且值域为R的是()A.y=x+B.y=xD.y=ln(x+)C.y=【答案】D【解析】题干解析:根据题意,依次分析选项:对于A,y=x+,为奇函数,但其值域为(-∞,-2]∪[2,+∞),不符合题意;对于B,y==,为偶函数,不符合题意;对于C,y=,为奇函数,其值域为(-1,1),不符合题意;对于D,y=ln(x+),为奇函数且值域为R,符合题意;例2.(2021春∙南关区校级月考)下列函数,既是偶函数,又在(-∞,0)上单调递增的是()A.f(x)=-(x-1)2B.C.f(x)=3|x|D.f(x)=cos x【答案】B【解析】题干解析:根据题意,依次分析选项:对于A,f(x)=-(x-1)2,为二次函数,不是偶函数,不符合题意;对于B,f(x)=log2,既是偶函数,又在(-∞,0)上单调递增,符合题意;对于C,f(x)=3|x|,是偶函数但在(-∞,0)上单调递减,不符合题意;对于D,f(x)=cos x是余弦函数,是偶函数但在(-∞,0)上不是单调函数,不符合题意;例3.(2021∙栖霞市模拟)已知函数f(x)和f(x+2)都是定义在R上的偶函数,当x∈[0,2]时,f (x)=2x,则=()A.2 B.D.C.【答案】B【解析】题干解析:∵f(x)和f(x+2)都是定义在R上的偶函数,∴f(-x+2)=f(x+2)=f(x-2),即f(x+4)=f(x),则f(x)的周期T=4,则=f()=f(1010-)=f(252×4+2-)=f(2-)=f()=2=2∙=2,当堂练习单选题练习1.(2021秋∙张家口期末)已知是(-∞,+∞)上的减函数,那么a的取值范围是()A.B.C.(0,1)D.【答案】A【解析】题干解析:因为f(x)为(-∞,+∞)上的减函数,所以有,解得≤a<,练习2.(2021∙3月份模拟)已知函数f(x)=(x2-2x)sin(x-1)+x+1在[-1,3]上的最大值为M,最小值为m,则M+m=()A.4 B.2 C.1 D.0【答案】A【解析】题干解析:∵f(x)=(x2-2x)sin(x-1)+x+1=[(x-1)2-1]sin(x-1)+x-1+2令g(x)=(x-1)2sin(x-1)-sin(x-1)+(x-1),而g(2-x)=(x-1)2sin(1-x)-sin(1-x)+(1-x),∴g(2-x)+g(x)=0,则g(x)关于(1,0)中心对称,则f(x)在[-1,3]上关于(1,2)中心对称。
第8讲:函数的单调性一、课程标准1.理解函数的单调性、最大(小)值及其几何意义2.掌握求函数的单调性的方法·3.能处理函数的最值问题。
二、基础知识回顾1. 函数单调性的定义(1)一般地,对于给定区间上的函数f(x),如果对于属于这个区间的任意两个自变量x1、x2,当x1<x2时,都有f(x1)<f(x2)(或都有f(x1)>f(x2),那么就说f(x)在这个区间上是增函数(或减函数).(2)如果函数y=f(x)在某个区间上是增函数(或减函数),那么就说f(x)在这个区间上具有(严格的)单调性,这个区间叫做f(x)的单调区间;若函数是增函数则称该区间为增区间,若函数为减函数则称该区间为减区间.2. 函数单调性的图像特征对于给定区间上的函数f(x),若函数图像从左向右连续上升,则称函数在该区间上单调递增;若函数图像从左向右连续下降,则称函数在该区间上单调递减.3. 复合函数的单调性对于函数y=f(u)和u=g(x),如果当x∈(a,b)时,u∈(m,n),且u=g(x)在区间(a,b)上和y=f(u)在区间(m,n)上同时具有单调性,则复合函数y=f(g(x))在区间(a,b)上具有单调性,并且具有这样的规律:增增(或减减)则增,增减(或减增)则减.4. 函数单调性的常用结论(1)对∀x1,x2∈D(x1≠x2),f(x1)-f(x2)x1-x2>0⇔f(x)在D上是增函数;f()x1-f()x2x1-x2<0⇔f(x)在D上是减函数.(2)对勾函数y=x+ax(a>0)的增区间为(-∞,-a]和[a,+∞),减区间为(-a,0)和(0,a).(3)在区间D上,两个增函数的和是增函数,两个减函数的和是减函数.(4)函数f(g(x))的单调性与函数y=f(u)和u=g(x)的单调性的关系是“同增异减”5.常用结论1.若函数f(x),g(x)在区间I上具有单调性,则在区间I上具有以下性质:(1)当f (x ),g (x )都是增(减)函数时,f (x )+g (x )是增(减)函数;(2)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反;(3)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反;(4)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”.2.增函数与减函数形式的等价变形:∀x 1,x 2∈[a ,b ]且x 1≠x 2,则(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.三、自主热身、归纳总结1、函数y =x 2-5x -6在区间[2,4]上是( )A .递减函数B .递增函数C .先递减再递增函数D .先递增再递减函数2、函数y =1x -1在[2,3]上的最小值为( )A .2 B.12C.13 D .-123、设函数f(x)在R 上为增函数,则下列结论一定正确的是(D )A. y =1f (x )在R 上为减函数B. y =|f (x )|在R 上为增函数C. y =-1f (x )在R 上为增函数D. y =-f (x )在R 上为减函数4、对数函数log (0a y x a =>且1)a ≠与二次函数2(1)y a x x =--在同一坐标系内的图象不可能是()A .B .C .D .5、已知函数2()361f x x x =--,则( )A .函数()f x 有两个不同的零点B .函数()f x 在(1,)-+∞上单调递增C .当1a >时,若()x f a 在[1x ∈-,1]上的最大值为8,则3a =D .当01a <<时,若()x f a 在[1x ∈-,1]上的最大值为8,则13a =6、函数y =|-x 2+2x +1|的单调递增区间是 ;单调递减区间是 .7、已知f(x)=x x -a (x≠a),若a >0且f(x)在(1,+∞)上是减函数,则实数a 的取值范围是 .8、函数y =x 2+x -6的单调递增区间为__________,单调递减区间为____________.三、例题选讲考点一 函数的单调区间例1、求下列函数的单调区间(1)y =-x 2+2|x|+1;(2)f(x)=x 2-2x -3;(3)212log (32)y x x =-+变式1、(2019·河北石家庄二中模拟)函数f (x )=|x 2-3x +2|的单调递增区间是( )A.⎣⎡⎭⎫32,+∞B.⎣⎡⎦⎤1,32和[2,+∞) C .(-∞,1]和⎣⎡⎦⎤32,2D.⎝⎛⎦⎤-∞,32和[2,+∞)变式2、已知函数f (x )=log a (-x 2-2x +3)(a >0且a ≠1),若f (0)<0,则此函数的单调递增区间是( )A.(-∞,-1]B.[-1,+∞)C.[-1,1)D.(-3,-1]变式3、.函数y =|x |(1-x )的单调递增区间是________.方法总结:求函数的单调区间的常用方法与判断函数的单调性的方法类似,有定义法、图像法、利用常见函数的单调性、导数法等.值得引起高度重视的是:(1)函数的单调区间是函数定义域的子区间,所以求单调区间,必须先求出定义域;(2)对于基本初等函数的单调区间,可以直接利用已知结论求解;(3)如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间.考点二 复合函数的单调区间例2、(2019·黑龙江大庆实验中学模拟)函数f (x )=ln(x 2-2x -8)的单调递增区间是( )A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞)变式1、函数y =log 12(-x 2+x +6)的单调增区间为( )A.⎝⎛⎭⎫12,3B.⎝⎛⎭⎫-2,12C.(-2,3)D.⎝⎛⎭⎫12,+∞变式2、函数f (x )=2x -x 2的单调递增区间为( )A.⎝⎛⎦⎤-∞,12B.⎣⎡⎦⎤0,12C.⎣⎡⎭⎫12,+∞D.⎣⎡⎦⎤12,1方法总结:求复合函数的单调性,首先要注意复合函数的定义域,其次要确定函数是有哪些基本函数复合而成,根据同增异减的性质确定复合函数的单调性。
考点三 函数单调性的证明与判断例3、判断函数f(x)=x 1+x 2在区间[1,+∞)上的单调性并证明你的结论.变式1、已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.变式2、试讨论函数f(x)=ax x 2+1(a >0)在(0,+∞)上的单调性,并证明你的结论.方法总结: 1. 判断函数的单调性,通常的方法有:(1)定义法;(2)图像法;(3)利用常见函数的单调性;(4)导数法.而要证明一个函数的单调性,基本方法是利用单调性定义或导数法.2. 应用函数单调性的定义证明函数的单调性,其基本步骤如下: 取值→作差→变形→确定符号→得出结论其中,变形是十分重要的一步,其目的是使得变形后的式子易于判断符号,常用的方法是(1)分解因式;(2)配方;(3)通分约分等.考点四 函数单调性的应用例4、已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.变式1、(2019·安徽皖南八校第三次联考)已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥1,1,x <1,则满足f (2x +1)<f (3x -2)的实数x 的取值范围是( )A .(-∞,0]B .(3,+∞)C .[1,3)D .(0,1)变式2、已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x的取值范围是( )A.⎝⎛⎭⎫13,23B.⎣⎡⎭⎫13,23C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23变式3、如果函数f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.变式4、【2019年天津理科06】已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为( ) A .a <c <bB .a <b <cC .b <c <aD .c <a <b方法总结 1.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. 2.求解函数不等式,其实质是函数单调性的逆用,由条件脱去“f ”.3.利用单调性求参数的取值(范围)的思路是:根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.对于分段函数,要注意衔接点的取值.五、优化提升与真题演练1、【2019年新课标1理科03】已知a =log 20.2,b =20.2,c =0.20.3,则( )A .a <b <cB .a <c <bC .c <a <bD .b <c <a 2、【2017年新课标1理科05】函数f (x )在(﹣∞,+∞)单调递减,且为奇函数.若f (1)=﹣1,则满足﹣1≤f (x ﹣2)≤1的x 的取值范围是( )A .[﹣2,2]B .[﹣1,1]C .[0,4]D .[1,3]3、已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)4、函数22()log (34)f x x x =--的单调减区间为( ) A .(,1)-∞- B .3(,)2-∞- C .3(,)2+∞D .(4,)+∞5、【2019年新课标3理1】设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则( ) A .f (log 3)>f (2)>f (2)B .f (log 3)>f (2)>f (2)C .f (2)>f (2)>f (log 3)D .f (2)>f (2)>f (log 3)6、【2017年浙江05】若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M ﹣m ( ) A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关 7、(多选)已知f (x )是定义在[0,+∞)上的函数,根据下列条件,可以断定f (x )是增函数的是( ) A .对任意x ≥0,都有f (x +1)>f (x )B .对任意x 1,x 2∈[0,+∞),且x 1≥x 2,都有f (x 1)≥f (x 2)C .对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0D .对任意x 1,x 2∈[0,+∞),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>08、(2019·重庆南开中学模拟)若f (x )=⎩⎪⎨⎪⎧3a -1x +4a ,x <1,-ax ,x ≥1是定义在R 上的减函数,则a 的取值范围为________.9、定义在[-2,2]上的函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为________. 10、设函数f (x )=ax +1x +2a 在区间(-2,+∞)上是增函数,那么a 的取值范围是________..11、设函数f (x )=⎩⎨⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.12、已知f (x )=x x -a (x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.。