高三数学函数的单调性
- 格式:ppt
- 大小:375.00 KB
- 文档页数:24
2023年高三数学《函数的单调性与奇偶性》知识梳理与专项练习(含答案解析)知识梳理一 函数的单调性1. 单调性的定义一般地,设函数()f x 的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数;如果对于定义域I 内某个区间D 上的任意两个自变量12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数。
2.单调性的注意事项1. 函数的单调性要针对区间而言,因此它是函数的局部性质;对于连续函数,单调区间可闭可开,即“单调区间不在一点处纠结”;单调区间不能搞并集。
2. 若函数()f x 满足1212()[()()]0x x f x f x −−>,则函数在该区间单调递增;若满足1212()[()()]0x x f x f x −−<,则函数在该区间单调递减。
3. 函数单调性的判断方法主要有:(1) 定义法:在定义域内的某个区间D 上任取12,x x 并使得12x x <,通过作差比较1()f x 与2()f x 的大小来判断单调性。
(2) 性质法:若函数()f x 为增函数,()g x 为增函数,()h x 为减函数,()x ϕ为减函数,则有①()()f x g x +为增函数,②()()f x h x −为增函数, ③()()h x x ϕ+为减函数,④()()h x g x −为减函数。
(3) 图像法:对于含绝对值或者分段函数经常使用数形结合的思想,通过函数的图象来判断函数的单调性。
二 函数的奇偶性一.函数奇偶性的定义:(1)对于函数()f x 的定义域内任意一个x ,都有()()x f x f =− ⇔函数()f x 是偶函数; (2)对于函数()f x 的定义域内任意一个x ,都有()()x f x f −=− ⇔函数()f x 是奇函数。
年级高三学科数学版本人教版(文)内容标题函数的单调性编稿老师孙力【本讲教育信息】一. 教学内容:函数的单调性1. 概念:设函数)(xf的定义域为I(1)增函数:如果对于属于定义域I内某个区间上的任意两个自变量的值21,xx,当21xx<时,都有)()(21xfxf<,那么称函数)(xf在这个区间上是增函数。
(2)减函数:如果对于属于定义域I内某个区间的任意两个自变量的值21,xx,当21xx<时,都有)()(21xfxf>,则称)(xf在这个区间上是减函数。
(3)单调区间:如果函数)(xfy=在某个区间是增函数或减函数,则称函数)(xfy=在这一区间上具有(严格的)单调性,该区间叫做)(xfy=的单调区间。
注:①中学单调性是指严格单调的,即不能是)()(21xfxf≤或)()(21xfxf≥②单调性刻画的是函数的“局部”性质。
如xy1=在)0,(-∞与),0(+∞上是减函数,不能说xy1=在),0()0,(+∞⋃-∞上是减函数。
③单调性反映函数值的变化趋势,反映图象的上升或下降2. 单调性的判定方法(定义法、复合函数单调性结论,函数单调性性质,导数,图象)(1)定义法[例1] 证明函数1)(31-=xxf在R上是增函数证:设21xx<,则3223123113212131231121)()(xxxxxxxxxfxf++-=-=-而分子021<-=xx分母043)21(3222312311322312311321>++=+⋅+=xxxxxxx故0)()(21<-xfxf得证补:讨论函数22)(x xaxf-=的单调性)10(≠<a解:设1>a时,对任Rx∈,022>-xxa,设121<<xx2112222212)()(x x x x a x f x f +--=,而)](2)[(221212211222x x x x x x x x +--=+--0> 即)()(12x f x f >故在)1,(-∞单增,同理在),1(+∞单减 当10<<a 时,同理在(1,∞-)单减,在(1,∞+)单增[例2] 讨论xx x f +=1)(的单调性解:设21x x <,则)11)((11)()(2112112212x x x x x x x x x f x f --=+-+=-21212112)()1)((x x x x x x x x +--=(1)当1021≤<<x x 时,1021<<x x ,0)()(12<-x f x f (2)当211x x <≤时,211x x <,0)()(12>-x f x f 故)(x f 在]1,0(上是减函数,在),1[+∞上是增函数[例3] 试求函数xpx x f +=)((p 0≠)的单调区间 分析:考虑到212112112212)()()()(x x p x x x x x px x p x x f x f --=+-+=-以下分类讨论 (1)当p 0>时① 若p x x -≤<21,则0)()(12>-x f x f ,)(x f 增 ② 若021<<≤-x x p ,则0)()(12<-x f x f ,)(x f 减③ 若p x x ≤<<210,则0)()(12<-x f x f ,)(x f 减④ 若21x x p <≤,则0)()(12>-x f x f ,)(x f 增(2)当0<p 时① 若021<<x x ,则0)()(12>-x f x f 增 ② 若210x x <<,则0)()(12>-x f x f 增综上所述,0>p 时,)(x f 在)0,[p -或],0(p 上是减函数)(x f 在],(p --∞或),[+∞p 上是增函数时,在或上是增函数在)0,[p-及],0(p上分别单调递减另法,利用导数21)(xpxf-=')(122pxx-=(1)若0>p则))((1)(2pxpxxxf-+='(2)若0<p,则0)(>'xf下证高考分式函数试题类型与解法研究[例4] 讨论分式函数xbaxxf+=)(的单调性(0≠ab)以下只研究0,0>>ba与0,0<>ba两种情形对于0,0><ba与0,0<<ba可利用对称性得到。
高三函数单调性知识点归纳函数是高中数学中的重要概念之一,而了解函数的单调性则是学好高中数学的基础。
函数的单调性描述了函数在定义域上值的增减情况,它对于研究函数图像的走势、解函数方程等问题具有重要作用。
本文将对高三函数单调性的知识点进行归纳总结。
一、单调递增与单调递减函数的单调性分为单调递增和单调递减。
如果在函数的定义域上,对于任意的x1和x2(x1<x2),有f(x1)≤f(x2),则称函数f(x)为单调递增函数;如果对于任意的x1和x2(x1<x2),有f(x1)≥f(x2),则称函数f(x)为单调递减函数。
二、导数与函数单调性的关系函数的导数与函数的单调性之间有密切的联系。
对于可导函数f(x),以下两个定理对于函数的单调性给出了重要的结果:1. 定理1:若在[a,b]上,函数f(x)的导数f'(x)≥0(或f'(x)≤0),则f(x)在[a,b]上单调递增(或单调递减)。
2. 定理2:若在(a,b)上,函数f(x)的导数f'(x)>0(或f'(x)<0),则f(x)在(a,b)上单调递增(或单调递减)。
这两个定理可以帮助我们通过导数的正负来推测函数的单调性。
三、函数图像与单调性通过观察函数的图像,我们也可以判断函数的单调性。
对于函数f(x),以下两个规律可以帮助我们了解函数图像与单调性之间的关系:1. 规律1:若函数f(x)在[a,b]上的增量f(x2)-f(x1)>0(或<0),则f(x)在[a,b]上单调递增(或单调递减)。
2. 规律2:若函数f(x)在(a,b)上的增量f(x2)-f(x1)>0(或<0),则f(x)在(a,b)上单调递增(或单调递减)。
通过观察函数图像上的增量的正负,我们可以推测函数的单调性。
四、函数零点与单调性函数的零点(也叫根)与函数的单调性也有一定的联系。
对于函数f(x),以下定理给出了函数的零点与单调性之间的关系:定理3:若函数f(x)在[a,b]上单调递增(或单调递减),且[a,b]上有一个零点c,则c是f(x)在[a,b]上的唯一零点。
函数的单调性和奇偶性一、学习目标1.理解函数的单调性概念:能根据函数单调性定义证明函数在给定区间上的增减性。
2.会判定函数的单调性:会求单调区间。
3.准确掌握一次函数、二次函数的单调性。
4.解奇函数、偶函数的概念及图像物征:能判断某些函数的奇偶性:二、例题分析第一阶梯[例1]什么叫函数f (x)在区间[a,b]上是增函数(减函数)?[解]设任意的x1,x2∈[a,b],当x1<x2时:都有f(x1)<f(x2),那么就说f(x)在区间[a,b]上是增函数。
设任意的x1:x2∈[a,b],当x1<x2时:都有f(x1)>f(x2):都有f(x1)>f(x2):那么就说f(x)在区间[a,b] 上是减函数。
[评注]1.f(x)在某个区间上是增函数或减函数:那么就说函数f(x)在这一区间具有(严格的)单调性:这一区间叫做f(x)的单调区间。
2.函数的单调性相对于区间而言:这个区间当然是函数定义域的子集。
例如:的定义域A=(-∞:0)∪(0:+∞),那么:下列说法正确的是(把正确说法的代号都填上)①f(x)在其定义域A上是增函数②f(x)是单调函数③f(x)在区间(-∞:0)上是增函数④f(x)在区间(0:+∞)上是减函数⑤f(x)的单调增区间有(-∞:0):(0:+∞)答:正确说法是③、⑤:其它说法都是错误的:我们着重论证说法①是错误的:设x1=1,x2=1,则x1,x2∈A,但[例2]怎样根据函数单调性定义:证明函数的增减性?试举一例。
[解]根据单调性定义证明函数增减性的步骤是:(1)设x1,x2:即设x1、x2是该区间上的任意二值:且x1<x2(2)比较f(x1)和f(x2)的大小:通常采用作差法:即作差f(x1)-f(x2):变形:定号。
(也可以用“作商”等其它比较法)(3)作出结论:根据单调性定义:作出增函数或减函数的结论。
例:根据函数单调性定义证明在区间(0:2]上是减函数。
函数的单调性、奇偶性、对称性、周期性一、函数的单调性 1.单调性的定义一般地,设函数()f x 的定义域为I :如果对于定义域I 内的某个区间D 上的任意两个自变量值1x 、2x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数,区间D 我们称为函数()f x 的单调增区间;如果对于定义域I 内的某个区间D 上的任意两个自变量值1x 、2x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数,区间D 我们称为函数()f x 的单调减区间。
2.单调函数与严格单调函数设()f x 为定义在I 上的函数,若对任何12,x x I ∈,当12x x <时,总有(ⅰ) )()(21x x f f ≤,则称()f x 为I 上的增函数,特别当且仅当严格不等式12()()f x f x <成立时称()f x 为I 上的严格单调递增函数。
(ⅱ) )()(21x x f f ≥,则称()f x 为I 上的减函数,特别当且仅当严格不等式12()()f x f x >成立时称()f x 为I 上的严格单调递减函数。
2.函数单调的充要条件★若()f x 为区间I 上的单调递增函数,1x 、2x 为区间内两任意值,那么有:1212()()0f f x x x x ->-或1212)[()()]0f f x x x x -->(★若()f x 为区间I 上的单调递减函数,1x 、2x 为区间内两任意值,那么有:1212()()0f f x x x x-<-或1212)[()()]0f f x x x x --<(3.函数单调性的判断(证明) (1)作差法(定义法) (2)作商法4.复合函数的单调性的判定对于函数()y f u =和()u g x =,如果函数()u g x =在区间(,)a b 上具有单调性,当(),x a b ∈时(),u m n ∈,且函数()y f u =在区间(,)m n 上也具有单调性,则复合函数(())y f g x =在区间(),a b 具有单调性。
高三函数单调性知识点函数的单调性是数学中一个重要的概念,它用来描述函数在某个区间上的增减情况。
在高三数学中,函数的单调性是一个重要的知识点,掌握了函数的单调性,可以帮助我们更好地理解函数的性质和特点。
下面将介绍高三函数单调性的相关知识点。
一、函数的单调性的定义对于定义在区间[a, b]上的函数f(x),如果对于任意的x1,x2 ∈[a, b],当 x1 < x2 时,有f(x1) < f(x2),则称函数f(x)在区间[a, b]上是递增的;如果对于任意的x1,x2 ∈ [a, b],当 x1 < x2 时,有f(x1) > f(x2),则称函数f(x)在区间[a, b]上是递减的。
二、函数单调性的判定方法1. 导数法对于可导的函数,可以通过导数的正负来判定函数的单调性。
若在区间[a, b]上f'(x) > 0,则函数f(x)在该区间上是递增的;若在区间[a, b]上f'(x) < 0,则函数f(x)在该区间上是递减的。
2. 一阶差分法对于离散的函数,可以通过一阶差分来判定函数的单调性。
若对于离散函数f(x),当x1 < x2时,有f(x2) - f(x1) > 0,则函数f(x)在该区间上是递增的;若对于离散函数f(x),当x1 < x2时,有f(x2) - f(x1) < 0,则函数f(x)在该区间上是递减的。
三、函数单调性的性质1. 递增函数与递减函数的区别递增函数是指在定义域的任意区间上,函数值随着自变量的增加而增加;递减函数是指在定义域的任意区间上,函数值随着自变量的增加而减小。
递增函数和递减函数统称为单调函数。
2. 单调性与极值点的关系对于定义在区间[a, b]上的函数f(x),如果函数在(a, b)内具有极值点,那么函数在该点附近不具有单调性。
3. 单调递增与严格单调递增函数在某个区间上是递增的,并不一定是严格递增的。
函数的单调性从近两年高考试题来看,函数单调性的判断和应用以及函数最值问题是高考的热点,各种类型都有,难度中等偏高,客观题主要考查函数的单调性或最值的灵活确定与简单应用,主观题注重综合考查函数性质,以及数学思想方法. 一、要点精讲 1.单调性对于给定区间I 上的函数()x f 及属于这个区间I 的任意两个自变量1x ,2x ,当21x x <时,如果都有()()21x f x f <(()()21x f x f >),那么就说()x f 在给定区间上是增函数(减函数);这个区间就叫做这个函数的单调递增(减)区间。
2. 判断函数单调性的方法 ⑴ 定义法⑵ 在公共定义域内: 增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数;增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数。
⑶ 利用复合函数的单调性:同增异减⑷ 奇函数在其对称区间上的单调性相同;偶函数在其对称区间上的单调性相反; ⑸ 互为反函数的两个函数在各自定义域上有相同的单调性;3.求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等 4、函数的最值:二、双基达标1.下列函数中,在区间(0,1)上为增函数的是( )A .y =tan xB .y =1xC .y =2-xD .y =-x 2-4x +12.若函数2)1(2)(2+-+=x a x x f 在区间(-∞,4]上是减函数,则实数a 的取值范围是( ) A .a ≤-3 B .a ≥-3 C .a ≤3 D .a ≥3 解:x 对=1-a ,由在(-∞,4]上是减函数,故1-a ≥4. ∴a ≤-3. 3.函数y =5-4x -x 2的递增区间是( )A .(-∞,-2)B .[-5,-2]C .[-2,1]D .[1,+∞)解:定义域为{x |-5≤x ≤1}.函数的递增区间为[-5,-2].4.若f (x )为R 上的减函数,则满足f (1-a )<f (2a 2)的实数a 的取值范围是________. 解:∵f (x )在R 为减函数,∴1-a >2a 2,即2a 2+a -1<0. ∴-1<a <12.5.若f (x )=ax +1x +2在区间(-2,+∞)上是增函数,则a 的取值范围是________. 解:∵f (x )=a +1-2a x +2在(-2,+∞)是增函数,∴1-2a <0,即a >12.6、⑴ 函数3422)(-+-=x x x f 的递增区间为(],2-∞;⑵ 函数()()3,1)34(log )(221∈-+-=x x x x f 的递减区间为(]1,2 三.典例解析热点一:函数的单调性的定义1. 1x ,2x 是()x f 定义域内的两个值,且21x x <,有()()21x f x f >,则是 (A )增函数 (B )减函数 (C )常数函数 (D )增减性不定 2、有下列几个命题:①函数y =2x 2+x +1在(0,+∞)上不是增函数; ②函数y =11+x 在(-∞,-1)∪(-1,+∞)上是减函数; ③函数y =245x x -+的单调区间是[-2,+∞);④已知f (x )在R 上是增函数,若a +b >0,则有f (a )+f (b )>f (-a )+f (-b ). 其中正确命题的序号是___________________.④解:①函数y =2x 2+x +1在(0,+∞)上是增函数,∴①错;②虽然(-∞,-1)、(-1,+∞)都是y =11+x 的单调减区间,但求并集以后就不再符合减函数定义,∴②错;③要研究函数y =245x x -+的 单调区间,首先被开方数5+4x -x 2≥0,解得-1≤x ≤5,由于[-2,+∞)不是上述区间的子区间,∴③ 错;④∵f (x )在R 上是增函数,且a >-b ,∴b >-a ,f (a )>f (-b ),f (b )>f (-a ),f (a )+f (b )>f (-a )+f (-b ),因此④是正确的.3、下列函数f (x )中,满足“对任意x 1,x 2∈(-∞,0),当x 1<x 2时,都有f (x 1)<f (x 2)”的函数是( ) A .f (x )=-x +1 B .f (x )=x 2-1 C .f (x )=2xD .f (x )=ln(-x )解:f (x )=-x +1为减函数,f (x )=x 2-1在(-∞,1)上为减函数;f (x )=2x为增函数,f (x )=ln(-x )为减函数,由条件知f (x )在(-∞,0)上为增函数,故排除A 、B 、D 选C. 热点二:判断证明函数的单调性3.(2010北京)给定函数①21x y =,②y =log 12(x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数的序号是( ) A .①②B .②③C .③④D .①④解:易知y =x 12在(0,1)递增,故排除A 、D 选项;又y =log 12(x +1)的图象是由y =log 12x 的图象向左平移一个单位得到的,其单调性与y =log 12x 相同为递减的,所以②符合题意,故选B.4、⑴判断并证明函数)1,0(11log )(≠>+-=a a xxx f a的单调性 ⑵当a >1时,求使f (x )>0的x 的取值范围. 解:(1)定义域为{x |-1<x <1}.(2)因为当a >1时,f (x )在定义域{x |-1<x <1}内是增函数,所以f (x )>0⇔x +11-x>1.解得0<x <1.所以使f (x )>0的x 的取值范围是{x |0<x <1}. 5、判断函数xx e e x f -+=)(在区间),0(+∞上的单调性.解法一 设0<x 1<x 2,则f (x 1)-f (x 2)=e x 1+e -x 1-e x 2-e -x 2=(e x 2-e x 1)(1e x 1+x 2-1),∵0<x 1<x 2,∴e x 2-e x 1>0,又e>1,x 1+x 2>0,∴e x 1+x 2>1,故1e x 1+x 2-1<0,∴f (x 1)-f (x 2)<0,由单调函数的定义知函数f (x )在区间(0,+∞)上为增函数. 解法二 对f (x )=e x+e -x求导得f ′(x )=e x -e -x , ∵x >0 ∴e x >1,0<e -x<1 ∴f ′(x )>0在(0,+∞)恒成立,故f (x )在(0,+∞)上为增函数. 6、论函数f (x )=21++x ax (a ≠21)在(-2,+∞)上的单调性.解:设x 1、x 2为区间(-2,+∞)上的任意两个值,且x 1<x 2,则f (x 1)-f (x 2)=21212211++-++x ax x ax =)2)(2()2)(1()2)(1(211221++++-++x x x ax x ax =)2)(2()21)((2112++--x x a x x . ∵x 1∈(-2,+∞),x 2∈(-2,+∞)且x 1<x 2, ∴x 2-x 1>0,x 1+2>0,x 2+2>0. ∴当1-2a >0,即a <21时,f (x 1)>f (x 2),该函数为减函数; 当1-2a <0,即a >21时,f (x 1)<f (x 2),该函数为增函数. 法二:分离分式法7、已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a 、b ∈[-1,1],a +b ≠0时, 有ba b f a f ++)()(>0.判断函数f (x )在[-1,1]上是增函数还是减函数,并证明你的结论.解:任取x 1、x 2∈[-1,1],且x 1<x 2,则-x 2∈[-1,1].又f (x )是奇函数,于是f (x 1)-f (x 2)=f (x 1)+f (-x 2)=)()()(2121x x x f x f -+-+·(x 1-x 2).据已知)()()(2121x x x f x f -+-+>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在[-1,1]上是增函数.8.已知定义在R 上的函数f (x )对任意实数x 1,x 2满足f (x 1+x 2)=f (x 1)+f (x 2)+2,当x >0时,有f (x )>-2.求证:f (x )在(-∞,+∞)上是增函数.证明:设x 1<x 2,则Δx =x 2-x 1>0, 令x 2=Δx +x 1.则f (x 2)-f (x 1)=f (Δx +x 1)-f (x 1) =f (Δx )+f (x 1)+2-f (x 1) =f (Δx )+2.∵Δx >0,∴f (Δx )>-2. ∴f (Δx )+2>0,即f (x 2)-f (x 1)>0. ∴f (x )在(-∞,+∞)上是增函数.热点二:求函数的单调区间 9、求下列函数的单调区间.(1) y =-x 2+2|x |+3;(2) y =x +9x(x >0).解:(1)∵y =-x 2+2|x |+3=⎩⎪⎨⎪⎧-x 2+2x +3 x ≥0-x 2-2x +3x <0,即y =⎩⎪⎨⎪⎧-x -12+4 x ≥0-x +12+4 x <0.由图知,单调递增区间是(-∞,-1)和[0,1].递减区间是(-1,0)和(1,+∞).(2) y ′=1-9x 2=x 2-9x 2=x -3x +3x2, 令y ′≥0,即:(x -3)(x +3)≥0 得:x ≥3或x ≤-3(舍去),∴单调递增区间为[3,+∞). 令y ′<0即(x -3)(x +3)<0,又x >0,得:0<x <3, ∴单调递减区间为(0,3).10.定义在R 上的函数f (x )是偶函数,且f (x )=f (2-x ).若f (x )在区间[1,2]上是减函数,则f (x )( ) A .在区间[-2,-1]上是增函数,在区间[3,4]上是增函数 B .在区间[-2,-1]上是增函数,在区间[3,4]上是减函数 C .在区间[-2,-1]上是减函数,在区间[3,4]上是增函数 D .在区间[-2,-1]上是减函数,在区间[3,4]上是减函数解:∵f (x )=f (2-x ),∴f (x +1)=f (1-x ).∴x =1为函数f (x )的一条对称轴.又f(x+2)=f[2-(x+2)]=f(-x)=f(x),∴2是函数f(x)的一个周期.根据已知条件画出函数简图的一部分,如右:由图象可以看出,在区间[-2,-1]上是增函数,在区间[3,4]上是减函数.题型四:函数的单调性的应用11.(09辽宁)已知偶函数在区间单调增加,则满足<的x 取值范围是(A )(,) (B) [,) (C)(,) (D) [,) 由于f(x)是偶函数,故f(x)=f(|x|) ∴得f(|2x -1|)<f(),再根据f(x)的单调性得|2x -1|< 解得<x <12、已知)(x f y =是定义在R 上的偶函数,且)(x f 在(0,+∞)上是减函数,如果01<x ,02>x 且|,|||21x x <则有( )(A )0)()(21>-+-x f x f (B )0)()(21<+x f x f (C )0)()(21>---x f x f (D )0)()(21<-x f x f13、已知)(x f 是定义在R 上的偶函数,且在),0[+∞上为增函数,0)31(=f ,则不等式0)(log 81>x f 的解集为 ( )(A ))21,0( (B )),2(+∞ (C )),2()1,21(+∞⋃ (D )),2()21,0(+∞⋃ 14. 函数y =log a (2-ax )在[0,1]上是减函数,则a 的取值范围是A.(0,1)B.(0,2)C.(1,2)D.(2,+∞)解:题中隐含a >0,∴2-ax 在[0,1]上是减函数.∴y =log a u 应为增函数,且u = 2-ax在[0,1]上应恒大于零.∴⎩⎨⎧>->.02,1a a ∴1<a <2.15.已知函数⎩⎪⎨⎪⎧a -2x -1x ≤1log a x x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为( )A .(1,2)B .(2,3)C .(2,3]D .(2,+∞)解:(数形结合)∵f (x )在R 上单调增,∴⎩⎪⎨⎪⎧a >1a -2>0a -2×1-1≤log a 1,∴2<a ≤3,故选C.()f x [0,)+∞(21)f x -1()3f 13231323122312231313132316、已知函数f (x )=⎩⎪⎨⎪⎧12x x ≤0,log 2x +2 x >0.若f (x 0)≥2,则x 0的取值范围是____________.解:当x 0≤0时,f (x 0)≥2化为(12)x 0≥2,即:(12)x 0≥(12)-1,∴x 0≤-1,当x 0>0时,f (x 0)≥2化为log 2(x 0+2)≥2,即log 2(x 0+2)≥log 24,∴x 0+2≥4,∴x 0≥2,∴x 0的取值范围是(-∞,-1]∪[2,+∞). 法二:数形结合17.(09天津)已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞) 解:∵x ≥0时,f (x )=x 2+4x =(x +2)2-4单调递增,且f (x )≥0;当x <0时,f (x )=4x -x 2=-(x -2)2+4单调递增,且f (x )<0,∴f (x )在R 上单调递增,由f (2-a 2)>f (a )得2-a 2>a ,∴-2<a <1. 18. 若a <0,>1,则 ( )A .a >1,b >0B .a >1,b <0 C. 0<a <1, b >0 D. 0<a <1, b <0 解:由得由得,所以选D 项。
函数的单调性、奇偶性、对称性、周期性10大题型命题趋势函数的性质是函数学习中非常重要的内容,对于选择题和填空题部分,重点考查基本初等函数的单调性,利用性质判断函数单调性及求最值、解不等式、求参数范围等,难度较小,属于基础题;对于解答题部分,一般与导数结合,考查难度较大。
满分技巧一、单调性定义的等价形式: 1、函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x f x f x x .2、函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x f x f x x .二、判断函数奇偶性的常用方法1、定义法:若函数的定义域不是关于原点对称,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断()f x −与()f x ±之一是否相等.2、验证法:在判断()f x −与()f x 的关系时,只需验证()f x −()f x ±=0及()1()f x f x −=±是否成立. 3、图象法:奇(偶)函数等价于它的图象关于原点(y 轴)对称.4、性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.5、分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x −与()f x 的关系.首先要特别注意x 与x −的范围,然后将它代入相应段的函数表达式中,()f x 与()f x −对应不同的表达式,而它们的结果按奇偶函数的定义进行比较. 三、常见奇、偶函数的类型1、()x x f x a a −=+(00a a >≠且)为偶函数;2、()x x f x a a −=−(00a a >≠且)为奇函数;3、()2211x x x x x xa a a f x a a a −−−−==++(00a a >≠且)为奇函数; 4、()log ab xf x b x−=+(00,0a a b >≠≠且)为奇函数;5、())log a f x x =±(00a a >≠且)为奇函数;6、()f x ax b ax b ++−为偶函数;7、()f x ax b ax b +−−为奇函数; 四、函数的周期性与对称性常用结论1、函数的周期性的常用结论(a 是不为0的常数)(1)若()()+=f x a f x ,则=T a ; (2)若()()+=−f x a f x a ,则2=T a ; (3)若()()+=−f x a f x ,则2=T a ; (4)若()()1+=f x a f x ,则2=T a ; (5)若()()1+=−f x a f x ,则2=T a ; (6)若()()+=+f x a f x b ,则=−T a b (≠a b ); 2、函数对称性的常用结论(1)若()()+=−f a x f a x ,则函数图象关于=x a 对称;(2)若()()2=−f x f a x ,则函数图象关于=x a 对称; (3)若()()+=−f a x f b x ,则函数图象关于2+=a bx 对称; (4)若()()22−=−f a x b f x ,则函数图象关于(),a b 对称; 3、函数的奇偶性与函数的对称性的关系(1)若函数()f x 满足()()+=−f a x f a x ,则其函数图象关于直线=x a 对称,当0=a 时可以得出()()=−f x f x ,函数为偶函数,即偶函数为特殊的线对称函数; (2)若函数()f x 满足()()22−=−f a x b f x ,则其函数图象关于点(),a b 对称,当0=a ,0=b 时可以得出()()−=−f x f x ,函数为奇函数,即奇函数为特殊的点对称函数; 4、函数对称性与周期性的关系(1)若函数()f x 关于直线=x a 与直线=x b 对称,那么函数的周期是2−b a ; (2)若函数()f x 关于点(),0a 对称,又关于点(),0b 对称,那么函数的周期是2−b a ; (3)若函数()f x 关于直线=x a ,又关于点(),0b 对称,那么函数的周期是4−b a . 5、函数的奇偶性、周期性、对称性的关系(1)①函数()f x 是偶函数;②函数图象关于直线=x a 对称;③函数的周期为2a . (2)①函数()f x 是奇函数;②函数图象关于点(),0a 对称;③函数的周期为2a . (3)①函数()f x 是奇函数;②函数图象关于直线=x a 对称;③函数的周期为4a . (4)①函数()f x 是偶函数;②函数图象关于点(),0a 对称;③函数的周期为4a .其中0≠a ,上面每组三个结论中的任意两个能够推出第三个。
高三函数单调性知识点汇总函数是数学中一个重要的概念,而函数的单调性是研究函数性质的一个重要方面。
在高三数学学习中,掌握函数的单调性是非常关键的。
本文将对高三函数单调性的相关知识点进行汇总介绍,帮助同学们更好地理解和应用。
一、函数的单调性概念函数的单调性是指函数在定义域上的取值随自变量的增减而增大或减小的特性。
如果函数在定义域上始终递增,则称其为递增函数;如果函数在定义域上始终递减,则称其为递减函数。
二、函数的单调性判断方法1. 导数法:对于连续可导的函数,可以通过求导数的正负来判断函数的单调性。
对于函数f(x),若f'(x)>0,则函数递增;若f'(x)<0,则函数递减。
2. 一阶差分法:对于离散的函数,可以通过计算相邻函数值之间的差来判断函数的单调性。
如果这些差值始终大于0,则函数递增;如果这些差值始终小于0,则函数递减。
3. 函数图像法:对于给定函数的图像,可以通过观察图像的趋势来判断函数的单调性。
如果图像从左向右逐渐上升,则函数递增;如果图像从左向右逐渐下降,则函数递减。
三、函数单调性的应用1. 利用函数的单调性寻找极值点:对于递增函数,极大值点对应函数曲线的拐点;对于递减函数,极小值点对应函数曲线的拐点。
2. 利用函数的单调性求不等式的解集:对于不等式 f(x)>0 或f(x)<0,可以先求出函数的零点,再根据函数的单调性确定满足条件的解集。
3. 利用函数的单调性进行证明:在数学证明中,可以根据函数的单调性来推导出一些结论,从而完成证明过程。
四、函数的单调性与其他概念的关系1. 函数的单调性与导数之间的关系:对于可导函数,函数递增则导数大于0,函数递减则导数小于0。
2. 函数的单调性与函数的增减性之间的关系:函数的单调性是函数的增减性的一种特殊情况。
函数的增减性包括递增、递减和不增不减三种情况,而函数的单调性只考虑递增和递减两种情况。
3. 函数的单调性与函数的凹凸性之间的关系:对于二阶可导函数,函数的凹凸性与函数的单调性有密切关系。
高三数学函数的单调性及最值知识点总结高三数学函数的单调性、最值知识点一单调性的定义:1、对于给定区间D上的函数fx,若对于任意x1,x2∈D,当x1fx2,则称fx是区间D上的减函数。
2、如果函数y=fx在区间上是增函数或减函数,就说函数y=fx在区间D上具有严格的单调性,区间D称为函数fx的单调区间。
如果函数y=fx在区间D上是增函数或减函数,区间D称为函数fx的单调增或减区间3、最值的定义:最大值:一般地,设函数y=fx的定义域为I,如果存在实数M,满足:①对于任意的x∈I,都有fx≤M;②存在x0∈I,使得fx0=M;那么,称M是fx的最大值.最小值:一般地,设函数y=fx的定义域为I,如果存在实数M,满足:①对于任意的x∈I,都有fx≥M;②存在x0∈I,使得fx0=M;那么,称M是fx的最小值判断函数fx在区间D上的单调性的方法:1定义法:其步骤是:①任取x1,x2∈D,且x1②作差fx1-fx2或作商,并变形;③判定fx1-fx2的符号,或比较与1的大小;④根据定义作出结论。
2复合法:利用基本函数的单调性的复合。
3图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。
高三数学函数的单调性、最值知识点二函数的单词性函数的单调性也叫函数的增减性.函数的单调性是对某个区间而言的,它是一个局部概念.单调性的单词区间若函数y=fx在某个区间是增函数或减函数,则就说函数在这一区间具有严格的单调性,这一区间叫做函数的单调区间.此时也说函数是这一区间上的单调函数。
在单调区间上,增函数的图像是上升的,减函数的图像是下降的。
注:在单调性中有如下性质↑增函数↓减函数↑增函数+↑增函数= ↑增函数↑增函数-↓减函数=↑增函数↓减函数+↓减函数=↓减函数↓减函数-↑增函数=↓减函数用定义证明函数的单词性步骤1取值即取x1,x2是该区间崆的任意两个值且x1<x22作差变形即求fx1-fx2,通过因式分解,配方、有理化等方法3定号即根据给定的区间和x2-x1的符号确定fx1-fx2的符号4判断根据单词性的定义得出结论判断函数fx在区间D上的单调性的方法1定义法:其步骤是:①任取x1,x2∈D,且x1②作差fx1-fx2或作商,并变形;③判定fx1-fx2的符号,或比较与1的大小;④根据定义作出结论。