一元二次方程的应用(增长率问题经典版)
- 格式:ppt
- 大小:608.00 KB
- 文档页数:16
一元二次方程增长率应用题一、增长率问题的基本公式1. 若初始量为a,平均增长率为x,增长n次后的量为b,则b = a(1 + x)^n。
2. 若初始量为a,平均降低率为x,降低n次后的量为b,则b=a(1 - x)^n。
二、例题解析(一)正向增长率问题例1:某工厂去年1月份的产值为100万元,由于受市场经济的影响,2、3月份的产值逐月下降,平均每月下降率为x。
(1)写出3月份产值y(万元)关于x的函数关系式;(2)如果3月份产值为81万元,求x的值。
解析:1. (1)1月份产值为100万元,2月份产值是在1月份产值基础上下降x,则2月份产值为100(1 - x)万元。
3月份产值是在2月份产值基础上又下降x,所以3月份产值y = 100(1 - x)(1 - x)=100(1 - x)^2。
2. (2)已知3月份产值为81万元,即y = 81,那么100(1 - x)^2=81。
- 首先将方程两边同时除以100得到(1 - x)^2=(81)/(100)。
- 然后开平方可得1 - x=±(9)/(10)。
- 当1 - x=(9)/(10)时,x = 1-(9)/(10)=(1)/(10)=0.1 = 10%;- 当1 - x=-(9)/(10)时,x = 1+(9)/(10)=1.9(增长率不能大于1,舍去)。
(二)连续两年增长率问题例2:某公司前年缴税40万元,今年缴税48.4万元。
该公司缴税的年平均增长率为多少?解析:设该公司缴税的年平均增长率为x。
1. 前年缴税40万元,去年缴税是在前年基础上增长x,则去年缴税40(1 + x)万元。
2. 今年缴税是在去年基础上又增长x,所以今年缴税40(1 + x)(1 + x)=40(1 + x)^2万元。
3. 已知今年缴税48.4万元,则40(1 + x)^2=48.4。
- 方程两边同时除以40得(1 + x)^2=1.21。
- 开平方得1 + x=±1.1。
一元二次方程应用专题--增长率学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4−0.5x)=15B.(x+3)(4+0.5x)=15C.(x+4)(3−0.5x)=15D.(x+1)(4−0.5x)=152. 某商场以10元/件的进价新进一批商品,根据以往的销售经验知,当售价定为15元/件时,每天可售出商品200件,且售价每提高2元,每天将减少售出商品10件.商场销售该商品每天的利润为650元,求该商品的售价是多少?若设商品售价为x元/件,则可列出的一元二次方程是( )A.[200−10(x−15)](x−15)=650B.[200−10(x−15)](x−10)=650C.(200−x−152×10)(x−15)=650 D.(200−x−152×10)(x−10)=6503. 某商店出售一种商品,若每件10元,则每天可销售50件,售价每降低1元,可多买6件,要使该商品每天的销售额(总售价)为504元,设每件降低x元,则可列方程为( )A.(50+x)(10−x)=504B.50(10−x)=504C.(10−x)(50+6x)=504D.(10−6x)(50+x)=5044. 某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件.现在采取提高售价,减少销量的方法增加利润,已知这种商品每涨价0.5元,其销量减少10件.(1)若售价为14元,则每天的销量为________件;(2)若售价为x元,则每天的销量为________件(用含x的代数式表示);(3)要使每天获得700元的利润,则售价为________元.5. 平遥牛肉是我国美食文化的精华之一.已知某专卖店平遥牛肉的进价为每份10元,现在的售价是每份16元,每天可卖出120份.据市场调查,每涨价1元,每天要少卖出10份.如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价________元.6. 某商店出传某种商品每件可获利m元,利润率为20%,若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m元,则提价后的利润率为________.7. 某商场今年年初以每件25元的进价购进一批商品.当商品售价为40元时,三月份销售128件,四、五月份该商品的销售量持续走高,在售价不变的前提下,五月份的销量达到200件.假设四、五两个月销售量的月平均增长率不变(1)求四、五两个月销售量的月平均增长率;(2)从六月起,商场采用降价促销方式回馈顾客,经调查发现,该商品每降1元,销售量增加5件,当商品降价多少元时,商场可获利2250元?8. 某商场一专柜销售某种品牌的玩具,每件进价为20元.销售过程中发现,每月销售y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=−10x+500.(1)若每月销售260件,则每件利润是多少?(2)如果该专柜想要每月获得2000元的利润,那么销售单价应定为多少元?(3)设专柜每月获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润多少元?9. 某校上个月进行了义卖活动,某班购进了一批单价为20元的某种商品在课余时间进行义卖,并将所得利润捐给希望工程,经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件,假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数解析式(不要求写出x的取值范围);(2)在不考虑其他因素的情况下,求销售价格定为多少元时,才能使每天获得的利润W最大?10. 某种商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价每上涨1元,则每个月少卖10件.若商场某个月要盈利1250元,求每件商品应上涨多少元?11. 某商贸公司以每千克元的价格购进一种干果,计划以每千克元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示: .(1)求与之间的函数关系式;(2)函数图象中点表示的实际意义是;(3)该商贸公司要想获利元,则这种干果每千克应降价多少元?参考答案与试题解析一元二次方程应用专题--增长率一、 选择题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )ADC二、 填空题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )120200−10⋅x −100.5 151三、 解答题 (本题共计 5 小题 ,每题 10 分 ,共计50分 )7.【答案】(1)25%;(2)降价5元.8.【答案】解:(1)将y =260代入y =−10x +500,得−10x +500=260,解得x =24,24−20=4(元),答:每件利润是4元.(2)设单价定位x 元,则有(x −20)(−10x +500)=2000,即x 2−70x +1200=0,(x −30)(x −40)=0,解得x 1=30,x 2=40,答:销售单价应定为30元或40元.(3)w =(x −20)(−10x +500)=−10x 2+700x −10000,当x =−b 2a =−7002×(−10)=35时取最大值,此时w =(35−20)(−10×35+500)=2250(元).答:销售单价定为35元时,每月可获得最大利润,为2250元.9.【答案】解:(1)设销售件数y 与销售价格x 满足的一次函数解析式为y =kx +b ,代入(24, 36),(29, 21),则{24k +b =36,29k +b =21,解得k =−3, b =108,∴ y =−3x +108.(2)W =(x −20)(−3x +108)=−3x 2+168x −2160=−3(x −28)2+192.∵ a =−3,∴当x=28时,W取得最大值,最大值为192.∴当销售价格定为28元时,才能使每天获得的利润最大,最大利润为192元.10.【答案】解:设每件商品的售价上涨x元,(200−10x)(60+x−50)=1250,即x2−10x−75=0,解得x1=15,x2=−5(舍去),答:每件商品应上涨15元.11.【答案】(1)y=10x+100;(2)当x为0,y=100,即这种干果没有降价,以每千克60元的价格销售时,销售量是100千克;(3)商贸公司要想获利2090元,则这种干果每千克应降价9元.。
z一元二次方程应用题经典题型汇总一、增长率问题例1 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.解设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n.二、商品定价例2 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,解这个方程,得a1=25,a2=31.因为21×(1+20%)=25.2,所以a2=31不合题意,舍去.所以350-10a=350-10×25=100(件).答需要进货100件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.三、储蓄问题例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)解设第一次存款时的年利率为x.则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0.解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去.答第一次存款的年利率约是2.04%.说明这里是按教育储蓄求解的,应注意不计利息税.四、趣味问题例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0.解这个方程,得x1=-1.8(舍去),x2=1.所以x+1.4+0.1=1+1.4+0.1=2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.五、古诗问题例5 读诗词解题:(通过列方程式,算出周瑜去世时的年龄).大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为x,则十位数字为x-3.则根据题意,得x2=10(x-3)+x,即x2-11x+30=0,解这个方程,得x=5或x=6.当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x=6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.六、象棋比赛例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.解设共有n个选手参加比赛,每个选手都要与(n-1)个选手比赛一局,共计n(n-1)局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为n(n -1)局.由于每局共计2分,所以全部选手得分总共为n(n-1)分.显然(n-1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0,2,6,故总分不可能是1979,1984,1985,因此总分只能是1980,于是由n(n-1)=1980,得n2-n-1980=0,解得n1=45,n2=-44(舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题,都可以仿照些方法求解.七、情景对话例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?解设该单位这次共有x名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.则根据题意,得[1000-20(x-25)]x=27000.整理,得x2-75x+1350=0,解这个方程,得x1=45,x2=30.当x=45时,1000-20(x-25)=600<700,故舍去x1;当x2=30时,1000-20(x-25)=900>700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游.说明求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论.八、等积变形例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m)(1)设计方案1(如图2)花园中修两条互相垂直且宽度相等的小路.(2)设计方案2(如图3)花园中每个角的扇形都相同.以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由.解都能.(1)设小路宽为x,则18x+16x-x2=×18×15,即x2-34x+180=0,解这个方程,得x=,即x≈6.6.(2)设扇形半径为r,则3.14r2=×18×15,即r2≈57.32,所以r≈7.6.说明等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变;或形变积也变,但重量不变,等等.九、动态几何问题例9 如图4所示,在△ABC中,∠C=90?/SPAN>,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.解因为∠C=90?/SPAN>,所以AB===10(cm).(1)设x s后,可使△PCQ的面积为8cm2,所以AP=x cm,PC=(6-x)cm,CQ=2x cm.则根据题意,得·(6-x)·2x=8.整理,得x2-6x+8=0,解这个方程,得x1=2,x2=4.所以P、Q同时出发,2s或4s后可使△PCQ的面积为8cm2.(2)设点P出发x秒后,△PCQ的面积等于△ABC面积的一半.则根据题意,得(6-x)·2x=××6×8.整理,得x2-6x+12=0.由于此方程没有实数根,所以不存在使△PCQ的面积等于ABC面积一半的时刻.说明本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度×时间.十、梯子问题例10 一个长为10m的梯子斜靠在墙上,梯子的底端距墙角6m.(1)若梯子的顶端下滑1m,求梯子的底端水平滑动多少米?(2)若梯子的底端水平向外滑动1m,梯子的顶端滑动多少米?(3)如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解依题意,梯子的顶端距墙角=8(m).(1)若梯子顶端下滑1m,则顶端距地面7m.设梯子底端滑动x m.则根据勾股定理,列方程72+(6+x)2=102,整理,得x2+12x-15=0,解这个方程,得x1≈1.14,x2≈-13.14(舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动x m.则根据勾股定理,列方程(8-x)2+(6+1)2=100.整理,得x2-16x+13=0.解这个方程,得x1≈0.86,x2≈15.14(舍去).所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.(3)设梯子顶端向下滑动x m时,底端向外也滑动x m.则根据勾股定理,列方程 (8-x)2+(6+x)2=102,整理,得2x2-4x=0,解这个方程,得x1=0(舍去),x2=2.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11 如图5所示,我海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A 出发,经B到C匀速巡航.一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1)F位于D的正南方向,则DF⊥BC.因为AB⊥BC,D为AC的中点,所以DF=AB =100海里,所以,小岛D与小岛F相距100海里.(2)设相遇时补给船航行了x海里,那么DE=x海里,AB+BE=2x海里,EF=AB+BC-(AB+BE)-CF=(300-2x)海里.在Rt△DEF中,根据勾股定理可得方程x2=1002+(300-2x)2,整理,得3x2-1200x+100000=0.解这个方程,得x1=200-≈118.4,x2=200+(不合题意,舍去).所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程.十二、图表信息例12 如图6所示,正方形ABCD的边长为12,划分成12×12个小正方形格,将边长为n (n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)×(n-1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n的取值不同,•完成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n 2 3 4 5 6使用的纸片张数(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.①当n=2时,求S1∶S2的值;②是否存在使得S1=S2的n值?若存在,请求出来;若不存在,请说明理由.解(1)依题意可依次填表为:11、10、9、8、7.(2)S1=n2+(12-n)[n2-(n-1)2]=-n2+25n-12.①当n=2时,S1=-22+25×2-12=34,S2=12×12-34=110.所以S1∶S2=34∶110=17∶55.②若S1=S2,则有-n2+25n-12=×122,即n2-25n+84=0,解这个方程,得n1=4,n2=21(舍去).所以当n=4时,S1=S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13 将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.解(1)设剪成两段后其中一段为x cm,则另一段为(20-x)cm.则根据题意,得+=17,解得x1=16,x2=4,当x=16时,20-x=4,当x=4时,20-x=16,答这段铁丝剪成两段后的长度分别是4cm和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为y cm,则另一段为(20-y)cm.则由题意得+=12,整理,得y2-20y+104=0,移项并配方,得(y-10)2=-4<0,所以此方程无解,即不能剪成两段使得面积和为12cm2.说明本题的第(2)小问也可以运用求根公式中的b2-4ac来判定.若b2-4ac≥0,方程有两个实数根,若b2-4ac<0,方程没有实数根,本题中的b2-4ac=-16<0即无解.十四、平分几何图形的周长与面积问题例14 如图7,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E•在下底边BC上,点F在腰AB上.(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积;(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分?若存在,求此时BE的长;若不存在,请说明理由.解(1)由已知条件得,梯形周长为12,高4,面积为28.过点F作FG⊥BC于G,过点A作AK⊥BC于K.则可得,FG=×4,所以S△BEF=BE·FG=-x2+x(7≤x≤10).(2)存在.由(1)得-x2+x=14,解这个方程,得x1=7,x2=5(不合题意,舍去),所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE=7.(3)不存在.假设存在,显然有S△BEF∶S多边形AFECD=1∶2,即(BE+BF)∶(AF+AD+DC)=1∶2.则有-x2+x=,整理,得3x2-24x+70=0,此时的求根公式中的b2-4ac=576-840<0,所以不存在这样的实数x.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分.说明求解本题时应注意:一是要能正确确定x的取值范围;二是在求得x2=5时,并不属于7≤x≤10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15 在如图8中,每个正方形有边长为1 的小正方形组成:图8(1)观察图形,请填写下列表格:正方形边长 1 3 5 7 …n(奇数)黑色小正方形个数…正方形边长 2 4 6 8 …n(偶数)黑色小正方形个数…(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数..n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.解(1)观察分析图案可知正方形的边长为1、3、5、7、…、n时,黑色正方形的个数为1、5、9、13、2n-1(奇数);正方形的边长为2、4、6、8、…、n时,黑色正方形的个数为4、8、12、16、2n(偶数).(2)由(1)可知n为偶数时P1=2n,所以P2=n2-2n.根据题意,得n2-2n=5×2n,即n2-12n=0,解得n1=12,n2=0(不合题意,舍去).所以存在偶数n=12,使得P2=5P1.说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解.综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而专业资料整理分享将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.完美WORD格式编辑。
增长率问题一元二次方程例题大家好!今天我们来聊聊增长率问题,这个话题可能听上去有点严肃,但别担心,我们会用简单的例子和直白的语言,把它讲得清清楚楚。
还记得数学课上那些让人头疼的方程吗?没错,今天我们就要用一元二次方程来解决实际问题,一起来看看怎么搞定这些数学难题吧!1. 增长率的概念1.1 增长率是什么?首先,我们得搞清楚“增长率”到底是什么。
简单来说,增长率就是一个量在一段时间内增加的速度。
比如说,你的口袋里有100块钱,你在一个月内又挣了20块钱,那么这20块钱就是你在这个月里的“增长”,增长率就是20块钱占原来100块钱的比例。
听起来是不是还蛮简单的?1.2 怎么计算增长率?增长率的计算公式是:[ text{增长率} = frac{text{新增量}}{text{原有量}} times 100% ]。
比如,你的存款从1000块钱增加到1200块钱,那么增长率就是:[ frac{1200 1000}{1000} times 100% = 20% ] 。
所以,你的存款增长了20%。
2. 一元二次方程介绍2.1 什么是一元二次方程?一元二次方程是指方程中含有一个未知数的二次方程。
比如说,方程 [ ax^2 + bx+ c = 0 ] 就是一个典型的一元二次方程,其中 ( x ) 是未知数,( a )、( b ) 和 ( c ) 是常数。
乍一看,可能觉得这个方程有点复杂,不过别担心,我们会用实际问题来拆解它。
2.2 一元二次方程怎么解?解一元二次方程有几种方法,比如因式分解法、配方法和求根公式法。
其中,求根公式法最为常见。
它的公式是这样的:[ x = frac{b pm sqrt{b^2 4ac}}{2a} ] 听上去有点拗口,但实际上,代入数值后,我们就可以找到方程的解了。
3. 实际应用举例3.1 增长率问题与方程的结合好啦,现在我们来看看一个实际应用的例子,看看增长率问题如何和一元二次方程结合起来解决。
z 一元二次方程应用题经典题型汇总一、增长率问题例 1 恒利商厦九月份的销售额为200 万元,十月份的销售额下降了20% ,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6 万元,求这两个月的平均增长率.解设这两个月的平均增长率是X.,则根据题意,得200(1 —20%)(1+ x)2= 193.6 ,即(1+x)2= 1.21,解这个方程,得x i = 0.1 , X2=— 2.1 (舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2= n求解,其中m v n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1 —x)2= n即可求解,其中m >n.二、商品定价例2 益群精品店以每件21 元的价格购进一批商品, 该商品可以自行定价, 若每件商品售价a元,则可卖出(350 —10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400 元,需要进货多少件?每件商品应定价多少?解根据题意,得(a—21)(350 —10a) = 400,整理,得a2—56a+775 = 0 ,解这个方程,得a1 = 25 , a2 = 31.因为21 p+20%) = 25.2,所以a2=31不合题意,舍去.所以350 —10 a= 350 —10 X25 = 100 (件).答需要进货100 件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率•(假设不计利息税)解设第一次存款时的年利率为X.则根据题意,得[1000(1+ x)- 500](1+0.9 x) = 530.整理,得90X2+145 x —3 = 0.解这个方程,得X i~0.0204 = 2.04% , X21.63.由于存款利率不能为负数,所以将X2~—1.63 舍去.答第一次存款的年利率约是 2.04%.说明这里是按教育储蓄求解的,应注意不计利息税四、趣味问题例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得2(x+0.1+ x+1.4+0.1) x= 1.8,整理,得x2+0.8 x—1.8 = 0.解这个方程,得X1 = — 1.8 (舍去),X2= 1.所以x+1.4+0.1 = 1 + 1.4+0.1 = 2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解例5 读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为X,则十位数字为x - 3.则根据题意,得x2= 10(x —3)+ x,即X2-11X+30 = 0,解这个方程,得x= 5或x= 6.当x = 5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x = 6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.六、象棋比赛例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979 , 1980 , 1984 , 1985.经核实,有一位同学统计无误•试计算这次比赛共有多少个选手参加•解设共有n个选手参加比赛,每个选手都要与(n —1)个选手比赛一局,共计n(n —1)1局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为2 n(n —1)局由于每局共计2分,所以全部选手得分总共为n(n —1)分•显然(n—1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0, 2 , 6,故总分不可能是1979 , 1984 , 1985,因此总分只能是1980,于是由n(n —1) = 1980,得n2—n —1980 = 0 ,解得n1 = 45 , n2=—44 (舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题, 法求解• 七、情景对话例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元•请问该单位 这次共有多少员工去天水湾风景区旅游?解设该单位这次共有 x 名员工去天水湾风景区旅游 •因为1000 >25 = 25000 V 27000,所以员工人数一定超过 25人.则根据题意,得[1000 — 20(x — 25)] x = 27000.整理,得 x 2 — 75X +1350 = 0,解这个方程,得 x i = 45 , X 2= 30.当 x = 45 时,1000 — 20( x — 25) = 600 V 700,故舍去 x i ;当 X 2= 30 时,1000 — 20(x — 25) = 900 >700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游说明 求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论都可以仿照些如果人数不超过25人 如果人数超过25人,每増加1 人人均放游费用降低20元 旦人均册费用不得低于700人均旅游费用海1000元.八、等积变形例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为 原来荒地面积的三分之二•(精确到0.1m )(1 )设计方案1 (如图2)花园中修两条互相垂直且宽度相等的小路(2)设计方案2 (如图3)花园中每个角的扇形都相同 .以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由 解 都能.(1)设小路宽为 X ,则 18x +16x — x 2=^ X18 X15,即 x 2— 34X +180 = 0 ,解这个方程,得x = 2 ,即x ~ 6.6.(2)设扇形半径为 r ,则 3.14 r 2 =X18 X15 ,即卩 r 2疋 57.32,所以 r ~7.6.明 等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变; 积也变,但重量不变,等等九、动态几何问题例9 如图 4所示,在△ ABC 中,/ C = 90?/SPAN> , AC = 6cm , BC = 8cm ,点 P 从 点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动(1)如果P 、Q 同时出发,几秒钟后,可使△ PCQ 的面积为8平方厘米?X ,或形变(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△ PCQ 的面积等于△ ABC 的面积的一半•若存在,求出运动的时间;若不存在,说明理由(1 )设 x s 后,可使△ PCQ 的面积为 8cm 2,所以 AP = x cm , PC = (6 — x )cm , CQ =2x cm.则根据题意,得(6 — x ) 2x = 8.整理,得X 2— 6x +8 = 0,解这个方程,得 x i = 2, X 2=4. 所以P 、Q 同时出发,2s 或4s 后可使△ PCQ 的面积为8cm 2.(2)设点P 出发x 秒后,△ PCQ 的面积等于△ ABC 面积的一半•1 1 1则根据题意,得 2(6 — x ) 2x =2 x2 x6 X8.整理,得 x 2— 6x +12 = 0.由于此方程没有实数根,所以不存在使厶 PCQ 的面积等于ABC 面积一半的时刻•说明 本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度x 时间.十、梯子问题例10 一个长为10m 的梯子斜靠在墙上,梯子的底端距墙角6m.(1) 若梯子的顶端下滑1m ,求梯子的底端水平滑动多少米? (2) 若梯子的底端水平向外滑动 1m ,梯子的顶端滑动多少米?(3 )如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解 依题意,梯子的顶端距墙角 =8 (m ).(1 )若梯子顶端下滑1m ,则顶端距地面7m.设梯子底端滑动x m.因为/ C = 90?/SPAN>,所以AB ="汙\取匸=用卜『=10(cm )(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ ABC的则根据勾股定理,列方程72+(6+ x)2= 102,整理,得x2+12 x—15 = 0 ,解这个方程,得X i~ 1.14 , X213.14 (舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动x m.则根据勾股定理,列方程(8 —X)2+(6+1)2= 100.整理,得X2—16X+13 = 0.解这个方程,得X1~ 0.86 , X2 ~ 15.14 (舍去).所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.(3)设梯子顶端向下滑动x m时,底端向外也滑动x m.则根据勾股定理,列方程(8 —X)2+(6+X)2= 102,整理,得2x2—4x = 0,解这个方程,得X1 = 0 (舍去),X2= 2.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11如图5所示,我海军基地位于A处,在其正南方向200 海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC 的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航•一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1) F位于D的正南方向,贝U DF丄BC•因为AB丄BC, D为AC的中点,所以DF =2 AB = 100海里,所以,小岛D与小岛F相距100海里.(2 )设相遇时补给船航行了x海里,那么DE = x海里,AB+BE= 2x海里,EF= AB+BC -(AB+ BE)—CF= (300 - 2x)海里.在Rt△ DEF中,根据勾股定理可得方程x2= 100 2+(300 - 2x)2,整理,得3x2-1200 x+100000 = 0.lOtK/6 10(K/6解这个方程,得X1 = 200 —孑 ~ 118.4 , X2 = 200+3 (不合题意,舍去)•所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程十二、图表信息例12 如图6所示,正方形ABCD的边长为12,划分成12 X12个小正方形格,将边长为n (n 为整数,且2w n< 11 )的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n Xi的纸片正好盖住正方形ABCD左上角的n刈个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n - 1) X n —1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n的取值不同,冼成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n23456使用的纸片张数(2 )设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S i,未被盖住的面积为S2.①当n = 2时,求S i : S2的值;解(1 )依题意可依次填表为: 11、10、9、8、7.②是否存在使得S i = S2的n值?若存在,请求出来;若不存在,请说明理由(2) S1 = n2+(12 - n)[n2—(n - 1)2] = - n2+25 n - 12.①当n = 2 时,S1 = - 22+25 X2 - 12 = 34 , S2= 12 X12 - 34 = 110.所以S1 : S2 = 34 : 110 = 17 : 55.1②若S1 = S2,则有—n2+25 n —12 =? X122,即n2—25 n +84 = 0 ,解这个方程,得n1 = 4 , n2= 21 (舍去).所以当n = 4时,S1= S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于 12cm 2吗?若能,求出两段铁丝的长度; 若不能, 请说明理由解(1)设剪成两段后其中一段为 x cm ,则另一段为(20 — x ) cm.当 x = 16 时,20 — x = 4,当 x = 4时,20 — x = 16 , 答 这段铁丝剪成两段后的长度分别是4cm 和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为 y cm ,则另一段为(20 — y ) cm.则由题意得I 4丿+1 4丿=12,整理,得 y 2— 20 y +104 = 0,移项并配方,得(y — 10) 2 =—4v 0,所以此方程无解,即不能剪成两段使得面积和为12cm 2.说明 本题的第(2 )小问也可以运用求根公式中的 b 2 — 4ac 来判定 若b 2 — 4ac >0,方程有两个实数根,若 b 2— 4ac v 0,方程没有实数根,本题中的b 2 — 4ac =— 16 v 0即无解.十四、平分几何图形的周长与面积问题例14 如图7,在等腰梯形 ABCD 中,AB = DC = 5 , AD = 4 , BC = 10.点E?^下底边BC 上,点F 在腰AB 上.(1 )若EF 平分等腰梯形 ABCD 的周长,设BE 长为X ,试用含x 的代数式表示 △ BEF 的面积; (2) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时分成1 : 2的两部分?若存在,求此时BE 的长;若不存在,请说明理由则根据题意,得 =17,解得 X i = 16X 2 = 4 ,Be K解(1 )由已知条件得,梯形周长为12,高4,面积为28.过点F作FG丄BC于G,过点A作AK丄BC于K.12 - K则可得,FG= 总,込24所以S A BEF=BEFG=—§ x2+ x (7 < x < 10).2 24(2)存在.由 (1 )得—5 x2+ 5 x = 14,解这个方程,得x i = 7, X2 = 5 (不合题意,舍去),所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE= 7.(3)不存在•假设存在,显然有S A BEF : S多边形AFECD = 1 : 2,2 16 28即(BE+BF):(AF+AD + DC) = 1 : 2.则有一5 x2+ 5 x =3 ,整理,得3x2—24x+70 = 0,此时的求根公式中的b2—4ac = 576 —840 V 0,所以不存在这样的实数X.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1 : 2的两部分.说明求解本题时应注意:一是要能正确确定x的取值范围;二是在求得X2 = 5时,并不属于7 < X W 10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15 在如图8中,每个正方形有边长为1的小正方形组成:(1 )观察图形,请填写下列表格:正方形边长 13黑色小正方形个数 正方形边长 24黑色小正方形个数(2 )在边长为n (n > 1)的正方形中,设黑色小正方形的个数为个数为P 2,问是否存在偶数.n ,使P 2= 5P i ?若存在,请写出 n 的值;若不存在,请说明 理由.解(1)观察分析图案可知正方形的边长为 1、3、5、7、…、n 时,黑色正方形的个 数为1、5、9、13、2n — 1 (奇数);正方形的边长为2、4、6、8、…、n 时,黑色正方形 的个数为4、& 12、16、2n (偶数)•(2 )由(1 )可知n 为偶数时P 1 = 2 n ,所以P 2= n 2— 2n .根据题意,得n 2 — 2 n = 5 x 2n ,即n 2 —12 n = 0,解得n 1= 12 , n 2 = 0 (不合题意,舍去).所以存在偶数n = 12,使得P 2 =5P 1.n (奇数)n (偶数)P i ,白色小正方形的说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.。
2022-2023学年浙教版八年级数学下册精选压轴题培优卷专题04 增长率问题(一元二次方程的应用)姓名:___________班级:___________考号:___________一、选择题(每题2分,共20分) 1.(本题2分)(2023春·八年级课时练习)某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,设平均每次增长的百分数为x ,那么x 应满足的方程是( )A . 40%10%2x += B .()()()2100140%110%1x +++= C .()()()2140%110%1x +++=D .()()()210040%10010%1001x +++= 2.(本题2分)(2022春·安徽合肥·八年级校考阶段练习)共享单车的投放,方便了市民的出行.某公司一期投放A 型号的单车,二期又投放了B 型号的单车.已知B 型号的单车的单价比A 型号的单价提高的百分率是B 型号的投放数量比A 型号投放数量的增长率的2倍,这样二期总投入是一期总投入的2倍,设B 型号的投放数量比A 型号投放数量的增长率为x ,则下列方程正确的是( )A .132x +=B .(1)(12)2x x ++=C .(1)(12)3x x ++=D .(1)(1)22x x ++= 3.(本题2分)(2021秋·上海·八年级期中)某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x ,则由题意列方程应为( )A .2200(1)1000x +=B .200+200×2x =1000C .200+200×3x =1000D .22001(1)(1)1000x x ⎡⎤++++=⎣⎦4.(本题2分)(2022春·浙江温州·八年级统考期末)温州某镇居民人均可支配收入逐年增长,从2019年的5.2万元增长到2021年的6万元.设这两年该镇居民人均可支配收入的年平均增长率为x ,根据题意可以列方程为( )A .()5.2126x +=B .()25.216x +=C .()5.216x +=D .()25.216x +=5.(本题2分)(2022春·浙江金华·八年级校联考期中)电影《长津湖》讲述了一段波澜壮阔的历史,一上映就获得全国人民的追捧,全国第一天票房约3亿元,假设以后每天票房按相同的增长率增长,第三天的票房收入约4亿元,若把增长率设为x ,则下列方程正确的是( )A .(1+x )2=4B .3(1+x )2=4C .3(1+x )3=4D .(1+x )3=4 6.(本题2分)(2023春·八年级课时练习)在“双减政策”的推动下,某校学生课后作业时长有了明显的减少.去年上半年平均每周作业时长为a 分钟,经过去年下半年和今年上半年两次整改后,现在平均每周作业时长比去年上半年减少了70%,设每半年平均每周作业时长的下降率为x ,则可列方程为( )A .()2170%a x a -=B .()2170%a x a += C .()2130%a x a -= D .()230%1x a a += 7.(本题2分)(2021春·八年级课时练习)某市2017年国内生产总值(GDP )比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是A .12%7%%x +=B .()()()112%17%21%x ++=+C .12%7%2%x +=D .()()()2112%17%1%x ++=+ 8.(本题2分)(2020春·山东威海·八年级统考期中)今年“十一”长假某湿地公园迎来旅游高峰,第一天的游客人数是1.2万人,第三天的游客人数为2.3万人,假设每天游客增加的百分率相同且设为x ,则根据题意可列方程为( )A .2.3 (1+x )2=1.2B .1.2(1+x )2=2.3C .1.2(1﹣x )2=2.3D .1.2+1.2(1+x )+1.2(1+x )2=2.39.(本题2分)(2021春·广东深圳·八年级深圳外国语学校校考期末)若国家对某种药品分两次降价,该药品的原价是25元,降价后的价格是16元,平均每次降价的百分率均为x ,则可列方程为( )A .225(1)16x -=B .225(1)16x +=C .216(1)25x -=D .216(1)25x +=10.(本题2分)(2021春·广西南宁·八年级校考期中)由于新冠疫情影响,某口罩加工厂改进技术,扩大生产,从10月份开始,平均每个月生产量的增长率为50%,已知第四季度的生产量为2375万个,设10月份口罩的生产量为x 万个,则可列方程( )A .2(150%)2375x +=B .2(150%)2375x x ++=C .2(150%)(150%)2375x x x ++++=D .2(150%)(150%)2375x x +++=二、填空题(每题2分,共18分)11.(本题2分)(2023春·浙江·八年级专题练习)为了加快发展新能源和清洁能源,助力实现“双碳”目标,大力发展高效光伏发电关键零部件制造.青岛某工厂今年第一季度生产某种零件的成本是20万元,由于技术升级改进,生产成本逐季度下降,第三季度的生产成本为16.2万元,设该公司每个季度的下降率都相同.则该公司每个季度的下降率是__________.12.(本题2分)(2022秋·上海长宁·八年级上海市第三女子初级中学校考期中)某件商品在9月份的价格为100元,经过两个月后的价格为121元,如果这件商品价格每月的增长率相同,则这个增长率为______.13.(本题2分)(2022秋·上海静安·八年级上海市市西中学校考期中)某工程队承包了一项污水处理工程,原计划每天铺设污水管道1250米,因准备工作不充分,第一天铺设了原计划的80%,从第二天开始,该工程队加快了铺设速度,第三天铺设了1440米.若该工程队第二天、第三天每天的铺设长度比前一天增长的百分数相同,设这个百分数为x,列出方程____________.14.(本题2分)(2022春·辽宁大连·八年级统考期末)2022年北京冬奥会吉祥物“冰墩墩”深受大家的喜爱.某特许零售店冰墩墩毛绒玩具的销售日益火爆.据统计,该店2021年10月的销量为3万件,2021年12月的销量为3.63万件.求该店冰墩墩毛绒玩具销量的月平均增长率.15.(本题2分)(2022春·黑龙江哈尔滨·八年级统考期末)在“绿色低碳,节能先行”的倡导下,自行车正逐渐成为人们喜爱的交通工具,据统计,某商城4月份销售自行车100辆,6月份销售了121辆.若该商城2022年4-6月的自行车销量的月平均增长率相同,则商城自行车销量的月平均增长率为________.16.(本题2分)(2022春·黑龙江哈尔滨·八年级统考期末)某公司3月份的利润为200万元,5月份的利润为242万元,则平均每月利润的增长率是______.17.(本题2分)(2023春·八年级课时练习)某网络学习平台2019年的新注册用户数为100万,2021年x>),则x=_________(用百分数表的新注册用户数为169万,设新注册用户数的年平均增长率为x(0示).18.(本题2分)(2021春·上海松江·八年级校考期中)一辆汽车,新车购买价18万元,第一年的折旧率为20%,以后每年的年折旧率为x,如果该车在购买后第三年末的折旧价值为12.25万元,求年折旧率x 的值.那么可以列出关于x的方程式为___.(只列方程,不求解)19.(本题2分)(2022春·安徽滁州·八年级校联考期末)为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对原有的小麦品种进行改良种植研究.在保持去年种植面积不变的情况下,今年预计小麦平均亩产量将在去年的基础上增加a%,因为优化了品种,预计每千克售价将在去年的基础上上涨2a%,全部售出后预计总收入将增加68%,则a的值为 _____.三、解答题(共62分)20.(本题6分)(2021春·浙江杭州·八年级杭州英特外国语学校校考期中)为助力脱贫攻坚,某村在“农村淘宝网店”上销售该村优质农产品,该网店于今年一月底收购一批农产品,二月份销售192袋,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到300袋.(1)求三、四这两个月销售量的月平均增长率.(2)该网店五月降价促销,经调查发现,若该农产品每袋降价4元,销售量可增加20袋,当农产品每袋降价多少元时,这种农产品在五月份可获利3250元?(若农产品每袋进价25元,原售价为每袋40元)21.(本题6分)(2023春·八年级课时练习)新能源汽车节能、环保,越来越受消费者喜爱,我国新能源汽车近几年出口量逐年增加,2020年出口量为20万台,2022年出口量增加到45万台.(1)求2020年到2022年新能源汽车出口量的年平均增长率是多少?(2)按照这个增长速度,预计2023年我国新能源汽车出口量为多少?22.(本题6分)(2023春·八年级课时练习)物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率.(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?23.(本题6分)(2023春·八年级课时练习)乌克兰危机发生之后,外交战线按照党中央的部署紧急行动,在战火粉飞中已将5200多名同胞安全从乌克兰撤离,电影《万里归途》正是“外交为民”的真实写照,如表是该影片票房的部分数据,(注:票房是指截止发布日期的所有售票累计收入)影片《万里归途》的部分统计数据(1)平均每次累计票房增长的百分率是多少?(2)在(1)的条件下,若票价每张40元,求10月11日卖出多少张电影票24.(本题6分)(2022春·浙江绍兴·八年级校联考期中)某玩具销售商试销某一品种的玩具(成本为每个30元),以每个40元销售时,平均每月可销售100个.现为了扩大销售,销售商决定降价销售,在原来8月份平均销售量的基础上,经过市场调查,10月份调整价格后,月销售额达到5760元.已知该玩具价格每下降1元,月销售量将增加10个.(1)求8月份到10月份销售额的月平均增长率.(2)求10月份该玩具的销售量.25.(本题6分)(2022秋·上海奉贤·八年级校联考期中)今年超市以每件25元的进价购进一批商品,当商品售价为40元时,三月份销售256件,四、五月该商品十分畅销,销售量持续上涨,在售价不变的基础上,五月份的销售量达到400件.(1)求四、五这两个月销售量的月平均增长百分率.(2)经市场预测,六月份的销售量将与五月份持平,现商场为了减少库存,采用降价促销方式,经调查发现,该商品每降价1元,月销量增加5件,当商品降价多少元时,商场六月份可获利4250元?26.(本题6分)(2022春·黑龙江哈尔滨·八年级统考期末)“人与自然和谐共生”哈尔滨湿地节系列活动中,某景点接待游客逐渐增多,6月份第一周接待游客200人,第三周接待游客288人,若该景点接待游客数量的周平均增长率相同.(1)求该景点在6月份的第二周接待游客多少人?(2)该景点第四周接待游客数量是第二周接待游客数量的1.8倍,平均每位游客购买1件旅游纪念品.该景点只销售A,B两种旅游纪念品,A种纪念品每件利润5元,B种纪念品每件利润8元,且售出的B种纪念品的数量不多于A种纪念品的3倍,设第四周该景点售出A种旅游纪念品a件,获得的总利润为W元,求W与a的函数关系式,并求出获得的最大利润.27.(本题6分)(2021春·四川成都·八年级统考期末)由于医疗物资极度匮乏,许多工厂都积极宣布生产医疗物资以应对疫情.某工厂及时引进了1条口罩生产线生产口罩,开工第一天生产300万个,第三天生产432万个,若每天生产口罩的个数增长的百分率相同.请解答下列问题.(1)每天增长的百分率是多少?(2)经调查发现,一条生产线最大产能是900万个/天,如果每增加1条生产线,每条生产线的最大产能将减少30万个/天.①现该厂要保证每天生产口罩3900万个,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?②是否能通过增加生产线,使得该厂每天生产口罩9000万个?若能,应该增加几条生产线?若不能,请说明理由.28.(本题6分)(2019秋·八年级课时练习)某人将10000元存入银行,一年后取出5000元,再将余下的本利和再存入银行,但此时银行的年利率已下降3个百分点,且到期后还要缴20%的利息税·第二年到期他取出全部存款共5588元,求银行原来的年利率.29.(本题8分)(2017春·八年级单元测试)随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭.据某市交通部门统计,2008年底该市汽车拥有量为75万辆,而截止到2010年底,该市的汽车拥有量已达108万辆.(1)求2008年底至2010年底该市汽车拥有量的年平均增长率;(2)为了保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2012年底全市汽车拥有量不超过125.48万辆;另据统计,从2011年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假设每年新增汽车数量相同,请你估算出该市从2011年初起每年新增汽车数量最多不超过多少万辆.。
一元二次方程的应用增长率问题一、连续复利公式连续复利公式是描述连续复利增长的一种数学模型,它在金融、投资等领域有着广泛的应用。
一元二次方程在连续复利公式中表现为等比数列求和的数学表达式。
通过解这个方程,可以计算出连续复利增长下的未来值。
二、投资增长模型投资增长模型是描述投资资产随时间增长的一种数学模型。
在这个模型中,一元二次方程可以用来描述投资资产的增长率与时间的关系。
通过解这个方程,可以预测投资资产的未来增长趋势,为投资者提供决策依据。
三、人口增长模型人口增长模型是描述人口随时间增长的一种数学模型。
一元二次方程在这个模型中表现为二次方程的人口增长函数。
通过解这个方程,可以预测未来人口的增长趋势,为政府制定人口政策提供参考。
四、商品价格增长模型商品价格增长模型是描述商品价格随时间变化的一种数学模型。
一元二次方程在这个模型中可以用来描述商品价格的季节性变化、市场供需变化等因素对价格的影响。
通过解这个方程,可以预测未来商品价格的走势,为商家和消费者提供决策依据。
五、化学反应速率方程化学反应速率方程是描述化学反应速率与反应物浓度之间关系的数学模型。
一元二次方程在这个模型中可以用来描述反应速率与反应物浓度之间的非线性关系。
通过解这个方程,可以预测化学反应的速率和反应物的消耗情况。
六、微生物培养问题微生物培养问题涉及到微生物的生长和繁殖过程。
一元二次方程在这个问题中可以用来描述微生物生长速率与培养条件之间的关系。
通过解这个方程,可以优化培养条件和提高微生物的产量。
七、贷款及信用卡利率问题贷款及信用卡利率问题是金融领域中的常见问题。
一元二次方程在这个问题中可以用来描述利率与贷款或信用卡余额之间的关系。
通过解这个方程,可以计算出不同利率下的未来还款金额和偿还时间。
八、股票价格与预期收益股票价格与预期收益是金融市场中的重要问题。
一元二次方程在这个问题中可以用来描述股票价格与预期收益之间的关系。
通过解这个方程,可以预测不同预期收益下的股票价格走势,为投资者提供决策依据。