平均变化率与一元二次方程
- 格式:doc
- 大小:1.13 MB
- 文档页数:7
第2课时 营销问题及平均变化率问题与一元二次方程教学目标:知识技能目标通过探索,学会解决有关营销的问题和平均比变化率的问题.过程性目标经历探索过程,培养合作学习的意识,体会数学与实际生活的联系.情感态度目标 通过合作交流进一步感知方程的应用价值,培养学生的创新意识和实践能力,通过交流互动,逐步培养合作的意识及严谨的治学精神.重点和难点:重点:列一元二次方程解决实际问题.难点:寻找实际问题中的相等关系.教学过程:一、创设情境 我们经常从电视新闻中听到或看到有关增长率的问题,例如今年我市人均收入Q 元,比去年同期增长x %;环境污染比去年降低y %;某厂预计两年后使生产总值翻一番……由此我们可以看出,增长率问题无处不在,无时不有,这节课我们就一起来探索增长率问题.二、探究归纳例1 阳江市市政府考虑在两年后实现市财政净收入翻一番,那么这两年中财政净收入的平均年增长率应为多少?分析 翻一番,即为原净收入的2倍.若设原值为1,那么两年后的值就是2.解 设原值为1,平均年增长率为x ,则根据题意得2)1(12=+⨯x解这个方程得 12,1221--=-=x x . 因为122--=x 不合题意舍去,所以%4.4112≈-=x .答 这两年的平均增长率约为41.4%.探索 若调整计划,两年后的财政净收入值为原值的1.5倍、1.2倍、…,那么两年中的平均年增长率相应地调整为多少?又若第二年的增长率为第一年的2倍,那么第一年的增长率为多少时可以实现市财政净收入翻一番?归纳:平均增长率(或平均减少率)问题:原数(1 + 平均增长率)n= 。
(n 为相距时间)原数(1 - 平均减少率)n = 。
例2、某商店经销一种销售成本为每千克40元的水产品,椐市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克。
针对这种水产品的销售情况,要使月销售利润达到8000元,销售单价应定为多少?(月销售利润=月销售量×销售单价-月销售成本.)课堂练习1.某工厂准备在两年内使产值翻一番,求平均每年增长的百分率.(精确到0.1%)2、某种服装,平均每天可销售20件,若每件降价1元,则每天可多售5件。
第2课时利用一元二次方程解决营销问题及平均变化率问题1.某种纪念品原价是168元,连续两次降价x%后售价为128元。
下列所列方程中正确的是()A 、168(1+x)2=128 B、168(1-x)2=128 C、128(1+x)2=168 D、128(1-x)2=1682.某超市一月份的营业额为200万元,一,二,三月份的营业额为1000万元,设平均每月的营业额为增长率为x,则由题意列方程为A.200+200×2x=1000B.200(1+x)2=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10003.某商店6月份的利润是2500元,要使8月份的利润达到3600元,这两个月利润的月平均增长的百分率是多少?4.植树造林是造福子孙后代的善义之举,某中学师生从2005年到2008年四年内共植树1999棵,已知该校2005年植树344棵,2006年植树500棵,如果2006年到2008年的植树棵数的年增长率相同,那么该校2008年植树多少棵?5.某钢铁厂今年一月份的某种钢产量是5000吨,此后每月比上个月产量提高的百分数相同,且三月份比二月份的产量多1200吨,求这个相同的百分数.6.某种服装,平均每天可销售20件,每件盈利44元;若每件降价1元,则每天可多售5件。
如果每天要盈利1600元,每件应降价多少元?7.某商店经销一种销售成本为每千克40元的水产品,椐市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克。
针对这种水产品的销售情况,要使月销售利润达到8000元,销售单价应定为多少?(月销售利润=月销售量×销售单价-月销售成本.)8.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。
调查表明:这种台灯的售价每上涨一元,其销售量就将减少10个。
为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?9.某商店进了一批服装,每件成本为50元,如果按每件60元出售,可销售800件;如果每件提价5元出售,其销售量就将减少100件。
第2课时营销问题及平均变化率问题与一元二次方程1.会用列一元二次方程的方法解决营销问题及平均变化率问题;(重点、难点)2.进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生应用数学的意识.一、情景导入某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?二、合作探究探究点一:利用一元二次方程解决营销问题某超市将进价为40元的商品按定价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得8000元的利润,且尽量减少库存,售价应为多少?解析:销售利润=(每件售价-每件进价)×销售件数,若设每件涨价x元,则售价为(50+x)元,销售量为(500-10x)件,根据等量关系列方程即可.解:设每件商品涨价x元,根据题意,得(50+x-40)(500-10x)=8000,即x2-40x+300=0.解得x1=10,x2=30.经检验,x1=10,x2=30都是原方程的解.当x=10时,售价为10+50=60(元),销售量为500-10×10=400(件).当x=30时,售价为30+50=80(元),销售量为500-10×30=200(件).∵要尽量减少库存,∴售价应为60元.方法总结:理解商品销售量与商品价格的关系是解答本题的关键,另外,“尽量减少库存”不能忽视,它是取舍答案的一个重要依据.探究点二:利用一元二次方程解决平均变化率问题某商场今年1月份的销售额为60万元,2月份的销售额下降10%,改进经营管理后月销售额大幅度上升,到4月份销售额已达到121.5万元,求3,4月份销售额的月平均增长率.解析:设3,4月份销售额的月平均增长率为x ,那么2月份的销售额为60(1-10%)万元,3月份的销售额为60(1-10%)(1+x )万元,4月份的销售额为60(1-10%)(1+x )2万元.解:设3,4月份销售额的月平均增长率为x .根据题意,得60(1-10%)(1+x )2=121.5,则(1+x )2=2.25,解得x 1=0.5,x 2=-2.5(不合题意,舍去).所以,3,4月份销售额的月平均增长率为50%. 方法总结:解决平均增长率(或降低率)问题的关键是明确基础量和变化后的量.如果设基础量为a ,变化后的量为b ,平均每年的增长率(或降低率)为x ,则两年后的值为a (1±x )2.由此列出方程a (1±x )2=b ,求出所需要的量.三、板书设计营销问题及平均变化率⎩⎪⎨⎪⎧营销问题平均变化率问题经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣.第2课时 营销问题及平均变化率问题与一元二次方程教学目标:知识技能目标通过探索,学会解决有关营销的问题和平均比变化率的问题.过程性目标经历探索过程,培养合作学习的意识,体会数学与实际生活的联系.情感态度目标 通过合作交流进一步感知方程的应用价值,培养学生的创新意识和实践能力,通过交流互动,逐步培养合作的意识及严谨的治学精神.重点和难点:重点:列一元二次方程解决实际问题.难点:寻找实际问题中的相等关系.教学过程:一、创设情境 我们经常从电视新闻中听到或看到有关增长率的问题,例如今年我市人均收入Q 元,比去年同期增长x %;环境污染比去年降低y %;某厂预计两年后使生产总值翻一番……由此我们可以看出,增长率问题无处不在,无时不有,这节课我们就一起来探索增长率问题.二、探究归纳例1 阳江市市政府考虑在两年后实现市财政净收入翻一番,那么这两年中财政净收入的平均年增长率应为多少?分析 翻一番,即为原净收入的2倍.若设原值为1,那么两年后的值就是2. 解 设原值为1,平均年增长率为x ,则根据题意得2)1(12=+⨯x解这个方程得 12,1221--=-=x x . 因为122--=x 不合题意舍去,所以%4.4112≈-=x .答 这两年的平均增长率约为41.4%.探索 若调整计划,两年后的财政净收入值为原值的1.5倍、1.2倍、…,那么两年中的平均年增长率相应地调整为多少?又若第二年的增长率为第一年的2倍,那么第一年的增长率为多少时可以实现市财政净收入翻一番?归纳:平均增长率(或平均减少率)问题:原数(1 + 平均增长率)n= 。
第2课时营销问题及平均变化率问题与一元二次方程1.会用列一元二次方程的方法解决营销问题及平均变化率问题;(重点、难点)2.进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生应用数学的意识.一、情景导入某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?二、合作探究探究点一:利用一元二次方程解决营销问题某超市将进价为40元的商品按定价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得8000元的利润,且尽量减少库存,售价应为多少?解析:销售利润=(每件售价-每件进价)×销售件数,若设每件涨价x元,则售价为(50+x)元,销售量为(500-10x)件,根据等量关系列方程即可.解:设每件商品涨价x元,根据题意,得(50+x-40)(500-10x)=8000,即x2-40x+300=0.解得x1=10,x2=30.经检验,x1=10,x2=30都是原方程的解.当x=10时,售价为10+50=60(元),销售量为500-10×10=400(件).当x=30时,售价为30+50=80(元),销售量为500-10×30=200(件).∵要尽量减少库存,∴售价应为60元.方法总结:理解商品销售量与商品价格的关系是解答本题的关键,另外,“尽量减少库存”不能忽视,它是取舍答案的一个重要依据.探究点二:利用一元二次方程解决平均变化率问题某商场今年1月份的销售额为60万元,2月份的销售额下降10%,改进经营管理后月销售额大幅度上升,到4月份销售额已达到121.5万元,求3,4月份销售额的月平均增长率.解析:设3,4月份销售额的月平均增长率为x,那么2月份的销售额为60(1-10%)万元,3月份的销售额为60(1-10%)(1+x)万元,4月份的销售额为60(1-10%)(1+x)2万元.解:设3,4月份销售额的月平均增长率为x.根据题意,得60(1-10%)(1+x)2=121.5,则(1+x)2=2.25,解得x1=0.5,x2=-2.5(不合题意,舍去).所以,3,4月份销售额的月平均增长率为50%. 方法总结:解决平均增长率(或降低率)问题的关键是明确基础量和变化后的量.如果设基础量为a ,变化后的量为b ,平均每年的增长率(或降低率)为x ,则两年后的值为a (1±x )2.由此列出方程a (1±x )2=b ,求出所需要的量.三、板书设计 营销问题及平均变化率 ⎩⎪⎨⎪⎧营销问题平均变化率问题经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣.。
人教版九年级上册数学21.3 一元二次方程传播问题、平均变化率、几何图形典型题总结学生姓名:年级:老师:上课日期:时间:课次:第1课时传播问题与一元二次方程1.会根据具体问题中的数量关系列出一元二次方程并求解,能根据问题中的实际意义,检验所得的结果是否合理.2.联系实际,让学生进一步经历“问题情境——建立模型——求解——解释与应用”的过程,获得更多运用数学知识分析、解决实际问题的方法和经验,进一步掌握解应用题的步骤和关键.一、情境导入某细菌利用二分裂方式繁殖,每次一个分裂成两个,那么五次繁殖后共有多少个细菌呢?二、合作探究探究点:传播问题与一元二次方程【类型一】疾病传染问题有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了多少个人?(2)如果不及时控制,第三轮将又有多少人被传染?解析:设每轮传染中平均一个人传染了x个人,根据题意可知,在第一轮,有x个人被传染,此时,共有(1+x)人患了流感;到了第二轮,患流感的(1+x)人作为“传染源”,每个人又传染给了x个人,这样,在第二轮中新增加的患了流感的人有x(1+x)人,根据等量关系可列一元二次方程解答.解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+x(1+x)=64,解之,得x1=7,x2=-9(不合题意,舍去).答:每轮传染中平均一个人传染了7个人.(2)7×64=448(人).答:又将有448人被传染.方法总结:建立数学模型,利用一元二次方程来解决实际问题.读懂题意,正确的列出方程是解题的关键.【类型二】分裂增长问题月季生长速度很快,开花鲜艳诱人,且枝繁叶茂.现有一棵月季,它的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是73.求每个支干长出多少小分支?解:设每个支干长出x个小分支,根据题意得:1+x+x2=73,解得:x1=8,x2=-9(舍去).答:每个支干长出8个小分支.三、板书设计教学过程中,强调利用一元二次方程解应用题的步骤和关键.特别是解有关的传播问题时,一定要明确每一轮传染源的基数.第2课时平均变化率与一元二次方程1.掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.2.会解有关“增长率”及“销售”方面的实际问题.一、情境导入月季花每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?二、合作探究探究点:用一元二次方程解决增长率问题【类型一】增长率问题(2014·辽宁大连)某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?解析:(1)通过增长率公式列出一元二次方程即可求出增长率;(2)依据求得的增长率,代入2014年产量的表达式即可解决.解:(1)设这种产品产量的年增长率为x,根据题意列方程得100(1+x)2=121,解得x1=0.1,x2=-2.1(舍去).答:这种产品产量的年增长率为10%.(2)100×(1+10%)=110(万件).答:2014年这种产品的产量应达到110万件.方法总结:增长率问题中可以设基数为a,平均增长率为x,增长的次数为n,则增长后的结果为a(1+x)n;而增长率为负数时,则降低后的结果为a(1-x)n.某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元;从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去旧设备维护费或新设备购进费) 解析:(1)设2月,3月生产收入的月增长率为x,根据题意建立等量关系,即3个月之和为364万元,解方程时要对结果进行合理取舍;(2)根据题意,建立不等关系:前三个月的生产收入+以后几个月的收入减去一次性支付640万元大于或等于旧设备几个月的生产收入-每个月的维护费,然后解不等式.解:(1)设2月,3月生产收入的月增长率为x,根据题意有100+100(1+x)+100(1+x)2=364,即25x2+75x-16=0,解得,x=-3.2(舍),x2=0.2,所以2月,3月生产收入1的月增长率为20%.(2)设m个月后,使用新设备所得累计利润不低于使用旧设备的累计利润,根据题意有364+100(1+20%)2(m-3)-640≥90m-5m,解得,m≥12.所以,使用新设备12个月后所得累计利润不低于使用旧设备的累计利润.方法总结:根据实际问题中的数量关系或是题目中给出的数量关系得到方程,通过解方程解决实际问题,当方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型二】利润问题一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?解析:根据条件设该校共购买了x棵树苗,根据“售价=数量×单价”就可求解.解:∵60棵树苗售价为120元×60=7200元<8800元,∴该校购买树苗超过60棵.设该校共购买了x棵树苗,由题意得x[120-0.5(x-60)]=8800,解得x1=220,x2=80.当x1=220时,120-0.5(220-60)=40<100,∴x1=220不合题意,舍去;当x2=80时,120-0.5(80-60)=110>100,∴x2=80,∴x=80.答:该校共购买了80棵树苗.方法总结:根据实际问题中的数量关系或题目中给出的数量关系得到方程,当求出的方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型三】方案设计问题菜农李伟种植的某蔬菜计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.分析:第(1)小题设平均每次下调的百分率为x,列一元二次方程求出x,舍去不合题意的解;第(2)小题通过计算进行比较即可求解.解:(1)设平均每次下调的百分率为x,由题意,得5(1-x)2=3.2,解得x1=0.2=20%,x=1.8(舍去).∴平均每次下调的百分率为20%;2(2)小华选择方案一购买更优惠,理由如下:方案一所需费用为:3.2×0.9×5000=14400(元);方案二所需费用为:3.2×5000-200×5=15000(元),∵14400<15000,∴小华选择方案一购买更优惠.三、板书设计教学过程中,强调解决有关增长率及利润问题时,应考虑实际,对方程的根进行取舍.第3课时几何图形与一元二次方程1.掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.2.继续探究实际问题中的数量关系,列出一元二次方程解应用题.3.通过探究体会列方程的实质,提高灵活处理问题的能力.一、情境导入如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,你能求出所截去小正方形的边长吗?二、合作探究探究点:用一元二次方程解决图形面积问题【类型一】利用面积构造一元二次方程模型用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为( )A.x(5+x)=6 B.x(5-x)=6C.x(10-x)=6 D.x(10-2x)=6解析:设一边长为x米,则另外一边长为(5-x)米,根据它的面积为6平方米,即可列出方程得:x(5-x)=6,故选择B.方法总结:理解题意,恰当的设未知数,把题中相关的量用未知数表示出来,用相等关系列出方程.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为x cm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,求小正方形的边长.解析:设小正方形的边长为x cm,则长方体盒子底面的长、宽均可用含x的代数式表示,再根据面积,即可建立等量关系,列出方程.解:设小正方形的边长为x cm,则可得这个长方体盒子的底面的长是(80-2x)cm,宽是(60-2x)cm,根据矩形的面积的计算方法即可表示出矩形的底面积,方程可列为(80-2x)(60-2x)=1500,整理得x2-70x+825=0,解得x1=55,x2=15.又60-2x>0,∴x=55(舍).∴小正方形的边长为15cm.方法总结:要从已知条件中找出关键的与所求问题有关的信息,通过图形求出面积,解题的关键是熟记各种图形的面积公式,列出符合题意的方程,整理即可.【类型二】整体法构造一元二次方程模型如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.设道路宽为x米,根据题意可列出的方程为______________.解析:解法一:把两条道路平移到靠近矩形的一边上,用含x的代数式表示草坪的长为(22-x)米,宽为(17-x)米,根据草坪的面积为300平方米可列出方程(22-x)(17-x)=300.解法二:根据面积的和差可列方程:22×17-22x-17x+x2=300.方法总结:解答与道路有关的面积问题,可以根据图形面积的和差关系,寻找相等关系建立方程求解;也可以用平移的方法,把道路平移构建特殊的图形,并利用面积建立方程求解.【类型三】利用一元二次方程解决动点问题如图所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC 向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.解析:这是一道动态问题,可设出未知数,表示出PC与CQ的长,根据面积公式建立方程求解.解:(1)设x s后,可使△PCQ的面积为8cm2,所以AP=x cm,PC=(6-x)cm,CQ=2x cm.则根据题意,得12·(6-x)·2x=8.整理,得x2-6x+8=0,解这个方程,得x1=2,x2=4.所以P、Q同时出发,2s或4s后可使△PCQ的面积为8cm2.(2)设点P出发x秒后,△PCQ的面积等于△ABC面积的一半.则根据题意,得12(6-x)·2x=12×12×6×8.整理,得x2-6x+12=0.由于此方程没有实数根,所以不存在使△PCQ的面积等于△ABC面积一半的时刻.三、板书设计与图形有关的问题是一元二次方程应用的常见题型,解决这类问题的关键是将不规则图形分割或补全成规则图形,找出各部分面积之间的关系,运用面积等计算公式列出方程;对图形进行分割或补全的原则:转化成为规则图形时越简单越直观越好.。
平均变化率与一元二次方程
1.掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.2.会解有关“增长率”及“销售”方面的实际问题.
一、情境导入
月季花每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?
二、合作探究
探究点:用一元二次方程解决增长率问题
【类型一】增长率问题
(2014·辽宁大连)某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这
种产品产量的年增长率相同.
(1)求2013年到2015年这种产品产量的年增长率;
(2)2014年这种产品的产量应达到多少万件?
解析:(1)通过增长率公式列出一元二次方程即可求出增长率;(2)依据求得的增长率,代入2014年产量的表达式即可解决.
解:(1)设这种产品产量的年增长率为x,根据题意列方程得100(1+x)2=121,解得x1=0.1,x2=-2.1(舍去).
答:这种产品产量的年增长率为10%.
(2)100×(1+10%)=110(万件).
答:2014年这种产品的产量应达到110万件.
方法总结:增长率问题中可以设基数为a,平均增长率为x,增长的次数为n,则增长后的结果为a(1+x)n;而增长率为负数时,则降低后的结果为a(1-x)n.
某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元;从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐
月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.
(1)求使用新设备后,2月、3月生产收入的月增长率;
(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去旧设备维护费或新设备购进费)
解析:(1)设2月,3月生产收入的月增长率为x,根据题意建立等量关系,即3个月之和为364万元,解方程时要对结果进行合理取舍;(2)根据题意,建立不等关系:前三个月的生产收入+以后几个月的收入减去一次性支付640万元大于或等于旧设备几个月的生产收入-每个月的维护费,然后解不等式.
解:(1)设2月,3月生产收入的月增长率为x,根据题意有100+100(1+x)+100(1+x)2=364,即25x2+75x-16=0,解得,x1=-3.2(舍),x2=0.2,所以2月,3月生产收入的月增长率为20%.
(2)设m个月后,使用新设备所得累计利润不低于使用旧设备的累计利润,根据题意有364+100(1+20%)2(m-3)-640≥90m-5m,解得,m≥12.所以,使用新设备12个月后所得累计利润不低于使用旧设备的累计利润.
方法总结:根据实际问题中的数量关系或是题目中给出的数量关系得到方程,通过解方程解决实际问题,当方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.
【类型二】利润问题
一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?
解析:根据条件设该校共购买了x棵树苗,根据“售价=数量×单价”就可求解.
解:∵60棵树苗售价为120元×60=7200元<8800元,∴该校购买树苗超过60棵.设该校共购买了x棵树苗,由题意得x[120-0.5(x-60)]=8800,解得x1=220,x2=80.当x1=220时,120-0.5(220-60)=40<100,∴x1=220不合题意,舍去;当x2=80时,120-0.5(80-60)=110>100,∴x2=80,∴x=80.
答:该校共购买了80棵树苗.
方法总结:根据实际问题中的数量关系或题目中给出的数量关系得到方程,当求出的方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.
【类型三】方案设计问题
菜农李伟种植的某蔬菜计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.
(1)求平均每次下调的百分率;
(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.
分析:第(1)小题设平均每次下调的百分率为x,列一元二次方程求出x,舍去不合题意的解;第(2)小题通过计算进行比较即可求解.
解:(1)设平均每次下调的百分率为x,由题意,得5(1-x)2=3.2,解得x1=0.2=20%,x2=1.8(舍去).∴平均每次下调的百分率为20%;
(2)小华选择方案一购买更优惠,理由如下:方案一所需费用为:3.2×0.9×5000=14400(元);方案二所需费用为:3.2×5000-200×5=15000(元),∵14400<15000,∴小华选择方案一购买更优惠.
三、板书设计
教学过程中,强调解决有关增长率及利润问题时,应考虑实际,对方程的根进行取舍.。