人教版九年级上册 21.3 实际问题和一元二次方程-增长率问题(18张))
- 格式:ppt
- 大小:2.98 MB
- 文档页数:18
陕西省安康市石泉县池河镇九年级数学上册21.3 实际问题与一元二次方程(增长率)教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(陕西省安康市石泉县池河镇九年级数学上册21.3 实际问题与一元二次方程(增长率)教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为陕西省安康市石泉县池河镇九年级数学上册21.3 实际问题与一元二次方程(增长率)教案(新版)新人教版的全部内容。
21.3实际问题与一元二次方程(增长率)一、教材分析本课的主要内容是以列一元二次方程解应用题为中心,深入探究有关成本下降和增长率问题。
活动的侧重点是列方程解应用题,提高学生应用方程分析解决问题的能力。
活动中涉及了一元二次方程解法,列方程解应用题的一般规律等.这些问题在现实世界中有许多原型,让学生理解两个时间段的平均变化率可以用一元二次方程作为数学模型,从而使问题得到解决。
二、学情分析本节课是在初二学习增长率,下降率的基础上来用一元二次方程的方法来解决的问题,在本课的学习中,应重视相关内容与实际的联系,加强对一元二次方程是解决现实问题的一种数学模型的认识。
分析和解决的关键是找出问题中的相关数量之间的相等关系,并把这样的关系“翻译"为一元二次方程。
在教学中借助现代化教学媒体和网络资源,让学生通过观察、类比,分解、等方法指导怎样试。
加强对这类题的把握。
三、教学目标通过列一元二次方程的方法解决日常生活及生产实际中遇到的有关成本下降和增长率问题。
四、教学重点难点重点会用列一元二次方程的方法解有关下降和增长率问题。
难点有关成本下降和增长率问题的数量关系。
人教版九年级数学上册第21章一元二次方程 21.3 实际问题与一元二次方程同步训练题含答案人教版九年级数学上册 第21章 一元二次方程 21.3 实际问题与一元二次方程同步训练题1. 小明家前年的日常开支为3.26万元,去年提高了x%,如果今年的提高率与去年相同,那么预计今年的日常开支为( )A .3.26(1+2x)万元B .3.26(1+2x%)万元C .3.26(1+x)2万元D .3.26(1+x%)2万元2. 某果园2019年水果产量为100吨,2019年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( )A .144(1-x)2=100B .100(1-x)2=144C .144(1+x)2=100D .100(1+x)2=1443. 某中学九年级(1)班在七年级时植树400棵,计划到今年毕业时,使植树总数达到1324棵,该班植树平均每年的增长率是( )A .10%B .100%C .20%D .231%4. 在某次聚会上,每两人都握了一次手,所有人共握手10次.设有x 人参加这次聚会,则列出方程正确的是( )A .x(x -10)=10 B.x x -12=10 C .x(x +1)=10 D .x x +12=105. 一个多边形共有14条对角线,则这个多边形的边数是( )A .6B .7C .8D .96. 要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队有( )A .5个B .6个C .7个D .8个7. 某校九年级毕业时,每个同学都将自己的相片向全班其他同学各送一张留念,全班共送了2550张相片.如果全班有x 名同学,根据题意列方程为 .18. 看下列一组数据:直线l上有2个点,共有1条构成的线段.直线l上有3个点,共有3条构成的线段.直线l上有4个点,共有6条构成的线段.(1)直线l上有n个点(n为正整数,n≥2),共有12n(n-1)条构成的线段;(2)若直线l上有n个点构成的线段的条数为36条,则直线l上有多少个点?参考答案:1---6 DDABB C7. x(x-1)=25508. 20%9. 1+a+a210. 1+x+x(1+x)=225或(1+x)2=22511. 50+50(1+x)+50(1+x)2=19612. 913. 解:设一台电脑每轮感染给x台电脑,由题意得:(1+x)2=81,解得x1=8,x2=-10(不合题意,舍去)故每轮感染中平均一台电脑会感染8台电脑.∵(1+x)3=(1+8)3=729>700,∴若病毒得不到有效控制,三轮感染后,被感染的电脑会超过700台.14. 设3月份到5月份营业额的月平均增长率为x,由题意,得:400×(1+10%)(1+x)2=633.6.解得:x1=0.2=20%,x2=-2.2(不合题意,舍去).答:3月份到5月份营业额的月平均增长率为20%.15. 解:设该市这两年(从2019年底到2019年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程2(1+x)2=2.88,解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.16. 解:设该厂今年产量的月增长率为x ,根据题意,得:5(1+x)2-5(1+x)=1.2,整理得:25x 2+25x -6=0,解得:x 1=15=20%,x 2=-65(不合题意,舍去) 答:该厂今年产量的月增长率为20%.17. 解:设南瓜亩产量的增长率为x ,则种植面积的增长率为2x ,依题意,得 10(1+2x)·2019(1+x)=60000解这个方程,得x 1=0.5,x 2=-2(不合题意,舍去)答:南瓜亩产量的增长率为50%.18. 解:依题意有12n(n -1)=36即n 2-n -72=0解得n 1=9,n 2=-8(舍去)答:直线l 上有9个点.。
人教版九年级上册数学21.3 实际问题与一元二次方程--增长率问题专题练习一、单选题1.2021年9月份,全国新冠疫苗当月接种量约为1.4亿剂次,11月份新冠疫苗当月接种量达到2.3亿剂次,若设平均每月的增长率为x ,则下列方程中符合题意的是( )A .1.4x 2 =2.3B .1.4(1+x 2)=2.3C .1.4(1+x )2 =2.3D .1.4(1+2x )=2.3 2.某中学连续三年开展植树活动.已知2020年植树500棵,2022年植树720棵,假设该校这两年植树棵树的年平均增长率为x ,根据题意可以列方程为( ) A .()25001720x +=B .()25001%720x +=C .()50012720x +=D .()()250050015001720x x ++++= 3.某厂一月份的总产量为500吨,三月份的总产量达到为720吨.若平均每月增率是x ,则可以列方程 ( )A .500(12)720x +=B .2500(1)720x +=C .2720(1)500x +=D .2500(1)720x +=4.新冠疫情给各地经济带来很大影响. 为了尽快恢复经济,某企业加大生产力度,四月份生产零件50万个,第二季度共生产零件182万个. 若该企业五、六月份平均每月的增长率为x ,则下列方程中正确的是( )A .()2501182x +=B .()()505015012182x x ++++=C .()25012182x +=D . ()()250501501182x x ++++= 5.2022年受国际原油大涨影响,国内95#汽油从一月份7.85元/升上涨到三月份9元/升,如果平均每月汽油的增长率相同,设这个增长率为x ,则可列方程得( ). A .7.85(12)9x ⨯+= B .27.85(1)9x ⨯+=C .()27.8519x ⨯+=D .7.85(1)9x ⨯+=6.疫情期间,某快递公司推出无接触配送服务,4月份第1周接到1.5万件订单,前3周共接到4.8万件订单,设第1周到第3周订单的周平均增长率为x ,则可列方程为( )A .1.5(12) 4.8x +=B .1.52(1) 4.8x ⨯+=C .21.5(1) 4.8x +=D .21.5 1.5(1) 1.5(1) 4.8x x ++++= 7.科学研究表明,接种新冠疫苗是阻断新冠病毒传播的最有效途径.2021年我国居民接种疫苗迎来高峰期,据统计2021年4月份全国新冠疫苗当月接种量约为1.4亿剂次,6月份新冠疫苗当月接种量达到5.6亿剂次,若设平均每月的增长率为x ,则下列方程正确的是( )A .21.4 5.6x =B .()21.41 5.6x +=C .()21.41 5.6x +=D .()1.412 5.6x += 8.疫情形势下,我国坚持“动态清零”的防控措施,使很多地区疫情蔓延形势得以有效控制,并逐步恢复生产.某商店今年1月份的销售额仅2万元,3月份的销售额已达到4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( ) A .50%B .62.5%C .20%D .25% 二、填空题9.某海洋养殖场每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖场第一年的可变成本为2.6万元,第三年的养殖成本为7.146万元,设可变成本平均每年增长的百分率为x ,则可列方程为_____. 10.某商场销售额4月份为25万元,6月份为36万元,该商场5、6两个月销售额的平均增长率是 _____%.11.新能源汽车节能、环保,越来越受消费者喜爱.2020年某款新能源汽车销售量为15万辆,销售量逐年增加,2022年预估当年销售量为21.6万辆,求这款新能源汽车的年平均增长率是多少?可设年平均增长率为x ,根据题意可列方程_______. 12.受益于电子商务的发展以及法治环境的改善等多重因素,“快递业”成为我国经济的一匹“黑马”.2018年我国快递业务量为500亿件,2020年快递量预计将达到740亿件,若设快递量平均每年增长率为x ,则所列方程为_________.13.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每瓶零售价由225元降至144元,则平均每次降价的百分率为______________.14.某学区房房价连续两次上涨,由原来的每平方米10000元涨至每平方米12100元,设每次涨价的百分率相同,则涨价的百分率为______.15.某种型号的电脑,原售价7200元/台,经连续两次降价后,现售价为4608元/台,则平均每次降价的百分率为________.16.汽车产业的发展有效促进我国现代化建设,某汽车销售公司2009年盈利1500万元,到2011年盈利2160万元,且从2009年到2011年,每年盈利的年增产率相同.若该公司的盈利年增产率继续保持不变,预计2012年盈利________万元?三、解答题17.某学校去年年底的绿化面积为2500平方米,预计到明年年底增加到3600平方米,若这两年的平均增长率相同,求这两年的平均增长率.18.疫情期间居民为了减少外出,更愿意选择线上购物,某购物平台今年二月份注册用户50万人,四月份达到了72万人,假设二月份至四月份的月平均增长率为x.(1)求x的值.(2)若保持这个增长率不变,五月份注册用户能否达到85万人?为什么?19.某口罩生产厂生产的口罩7月份平均日产量为30000个,7月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,厂决定从8月份起扩大产量,9月份平均日产量达到36300个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计10月份平均日产量为多少?20.为进一步提高某届学生的阅读量,学校积极开展课外阅读活动,目标将该届学生人均阅读量从刚上七年级的80万字增加到八年级结束时的115.2万字.(1)求该届学生人均阅读量这两年中每年的平均增长率;(2)若按这两年中每年的平均增长率增长,学校能否实现九年级结束时该届学生人均阅读量达到140万字的目标,请计算说明.参考答案:1.C2.A3.D4.D5.B6.D7.B8.A9.2+=-2.6(1)7.1464x10.2011.15(1+x)2=21.6或15(x+1)2=21.612.2x+=500(1)74013.20%14.10%15.20%16.259217.20%18.(1)20%(2)五月份注册用户能达到85万人19.(1)口罩日产量的月平均增长率为10%(2)39930个20.(1)20%(2)学校的目标不能实现。
实际问题与一元二次方程增长率问题一、选择题1.某种植基地2021年蔬菜产量为80吨,预计2023年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为( )A.80(1+x)2=100B.100(1−x)2=80C.80(1+2x)=100D.80(1+x2)=1002.共享单车为市民出行带来了方便,某单车公司第一季度投放1万辆单车,计划第三季度投放单车的数量比第一季度多4400辆,设该公司第二、三季度投放单车数量的平均增长率均为x,则所列方程正确的是( )A.(1+x)2=4400B.(1+x)2=1.44C.10000(1+x)2=4400D.10000(1+2x)=144003.某种品牌手机经过二、三月份两次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( )A.20%B.11%C.10%D.9.5%二、填空题4.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为.5.某厂今年3月的产值为50万元,5月上升到72万元,若设这两个月平均每月增长的百分率为x,则可得方程.6.2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育活动.据了解,某展览中心3月份的参观人数为10万人,5月份的参观人数增加到12.1万人.设参观人数的月平均增长率为x,则可列方程为.7.某工厂去年10月份机器产量为500台,12月份的机器产量达到720台,设11,12月份平均每月机器产量增长的百分率为x,则根据题意可列方程.三、解答题8.振华贸易公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生成本是324万元.假设该公司2,3,4月每个月生产成本的下降率都相同.(1) 求每个月生产成本的下降率;(2) 请你预测4月份该公司的生产成本是多少.9.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为响应我市全民阅读的号召,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.(1) 求进馆人次的月平均增长率;(2) 因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次?并说明理由.10.2022年北京冬奥会吉祥物“冰墩墩”意喻敦厚、健康、活泼、可爱,象征着冬奥会运动员强壮的身体、坚韧的意志和鼓舞人心的奥林匹克精神.随着北京冬奥会开幕日的临近,某特许零售店“冰墩墩”的销售日益火爆.据统计,该店2021年10月的销量为3万件,2021年12月的销量为3.63万件.(1) 求该店“冰墩墩”销量的月平均增长率;(2) 假设该店“冰墩墩”销量的月平均增长率保持不变,则2022年1月“冰墩墩”的销量有没有超过4万件?请利用计算说明.11.某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.(1) 若该商品售价连续两次下调相同的百分率后降至每件32.4元,求每次下降的百分率;(2) 经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获利510元的利润且尽快减少库存,每样应降价多少元?12.“一路一带”倡议6岁了!到目前为止,中国已与126个国家和29个国际组织签署174份合作文件,共建“一路一带”国家已由亚欧延伸至非洲、拉美、南太等区域.截止2019年一季度末,人民币海外基金业务规模约3000亿元,其投资范围覆盖交通运输、电力能源、金融业和制造业等重要行业,投资行业统计图如图所示.(1) 求投资制造业的基金约为多少亿元?(2) 按照规划,中国将继续对“一路一带”基金增加投入,到2019年三季度末,共增加投入630亿元,假设平均每季度的增长率相等,求平均每季度的增长率是多少?13.去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1) 求该商店去年“十一黄金周”这七天的总营业额;(2) 去年,该商店7月份的营业额为350万元,8,9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等,求该商店去年8,9月份营业额的月增长率.14.某工厂在第一季度的生产中,一月份的产值是250万元,二、三月份产值的月增长率相同.已知第一季度的总产值是843.6万元,求二、三月份的月增长率.15.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递总件数的月平均增长率相同.(1) 求该快递公司投递总件数的月平均增长率;(2) 如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递业务员能否完成今年六月份的快递投递任务?如果不能,请问至少需要增加几名业务员?。
人教版九年级上册数学21.3实际问题与一元二次方程——增长率问题应用题1.某水果商场经销一种高档水果,原价每千克128元,连续两次降价后每千克98元,若每次下降的百分率相同.(1)求每次下降的百分率;(2)若该水果每千克盈利20元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克.现该商场要保证销售该水果每天盈利9000元,且要减少库存,那么每千克应涨价多少元?2.某商场于今年年初以每件40元的进价购进一批商品.当商品售价为60元时,一月份销售64件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到100件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销,经调查发现,该商品每降价2元,销售量增加20件,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售,商场获利2240元?3.某工厂一月份的产品产量为100 万件,由于工厂管理理念更新,管理水平提高,产量逐月提高,三月份的产量提高到144万件,求一至三月该工厂产量的月平均增长率.4.某商场对某种商品进行销售调整.已知该商品进价为每件30元,售价为每件40元,每天可以销售48件,现进行降价处理.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求这两次中平均每次下降的百分率.(2)经调查,该商品每降价0.5元,平均每天可多销售4件.若要使每天销售该商品获利510元,则每件商品应降价多少元?5.某大型电子商场销售某种空调,每台进货价为2500元,标价为3200元.(1)若电子商场连续两次降价,每次降价的百分率相同,最后以2592元售出,求每次降价的百分率;(2)市场调研表明:当每台售价为3000元时,平均每天能售出10台,当每台售价每降100元时,平均每天就能多售出4台,若商场要想使这种空调的销售利润平均每天达到5400元,且顾客得到优惠,则每台空调的定价应为多少元?6.由于新冠疫情的影响,口罩需求量急剧上升,经过连续两次价格的上调,口罩的价格由每包10元涨到了每包14.4元,(1)求出这两次价格上调的平均增长率;(2)在有关部门调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包,当销售额为315元时,且让顾客获得更大的优惠,应该降价多少元?7.某楼盘准备以每平方米4800元的均价对外销售,由于受经济形势的影响后,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米3888元的均价开盘销售.(1)求平均每次下调的百分率;(2)陈先生准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.5折销售;①不打折,一次性送装修费每平方米188元.试问哪种方案更优惠?8.据统计,第一天公益课受益学生2万人次,第三天公益课受益学生2.42万人次.(1)设第二天,第三天公益课受益学生人次的增长率相同,请求出这个增长率;(2)若(1)中的增长率保持不变,预计第四天公益课受益学生将达到多少万人次?9.为了满足师生的阅读需求,某校图书馆的藏书从2019年底到2021年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年平均增长率;(2)该校期望2022年底藏书量达到8.6万册,按照(1)中藏书的年平均增长率,上述目标能实现吗?请通过计算说明.10.两年前,生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元.随着生产技术的进步,现在生产1吨甲种药品的成本是3200元,生产1吨乙种药品的成本是3375元,哪种药品成本的年平均下降率较大?11.随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量2019年为10万只,预计2021年将达到12.1万只.求该地区2019年到2021年高效节能灯年销售量的平均增长率.12.甲商品的进价为每件20元,商场将其售价从原来的每件40元进行两次调价,已知该商品现价为每件32.4元(1)若该商场两次调价的降价率相同,求平均降价率;(2)经调查,该商品每降价0.2元,即可多销售10件,已知甲商品售价40元时每月可销售500件,若商场希望该商品每月能盈利10000元,且尽可能扩大销售量,求该商品应该如何定价出售?13.2022年北京冬奥会吉祥物“冰墩墩”的销售十分火爆,出现了“一墩难求”的现象.据统计,某特许零售店2021年11月的销量为3万件,2022年1月的销量为3.63万件.(1)求该店“冰墩墩”销量的月平均增长率;(2)假设该店“冰墩墩”销量的月平均增长率保持不变,则2022年2月“冰墩墩”的销量有没有超过4万件?请利用计算说明.14.2022年北京冬奥会吉祥物“冰墩墩”的销售十分火爆,出现了“一墩难求”的现象.据统计,某特许零售店2021年11月的销量为4万件,2022年1月的销量为4.84万件.(1)求该店“冰墩墩”销量的月平均增长率;(2)假设该店“冰墩墩”销量的月平均增长率保持不变,则2022年2月“冰墩墩”的销量有没有超过5万件?请利用计算说明.15.某口罩厂生产的口罩1月份平均日产量为10000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到14400个.求口罩日产量的月平均增长率.16.随着合肥都市圈的成立,合肥市将加大对都市圈内基础设施投人,尽快形成合肥都市圈“1小时通勤圈”和“1小时生活圈”.在都市圈内,计划四年完成对某条重要道路改造工程,2019年投入资金2000万元,2021年投入的资金为2420万元,设这两年问每年投人资金的年平均增长率相同.(1)求出这两年间的年平均增长率.(2)若对该道路投人资金的年平均增长率不变,预计完成这条道路改造工程的总投入.17.“新冠肺炎”疫情初期,一家药店购进A,B两种型号防护口罩共8万个,其中B型口罩数量不超过A 型口罩数量的1.5倍,第一周就销售A型口罩0.4万个,B型口罩0.5万个,第三周的销量占30%.(1)购进A型口罩至少多少万个?(2)从销售记录看,第二周两种口罩销售增长率相同,第三周A型口罩销售增长率不变,B型口罩销售增长率是第二周的2倍.求第二周销售的增长率.18.某玩具店两周前以40元一个的价格购进一批玩偶,原定以50%的利润率定价,但由于销路不好导致商品积压,于是在周末调价时打折促销.通过两次打折调价,每次打折力度相同,现在的售价为每个48.6元.(1)请问该批玩偶每次打几折?(2)若玩偶库存共20个,计划通过两次相同力度打折调价,清空所有库存,并保证两次降价后销售的总利润不少于200元,则第一次降价至少售出多少件玩偶,才可以进行第二次降价?19.书籍是人类宝贵的精神财富.读书则是传承优秀文化的通道.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次.若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过450人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.20.为进一步提高某届学生的阅读量,学校积极开展课外阅读活动,目标将该届学生人均阅读量从刚上七年级的80万字增加到八年级结束时的115.2万字.(1)求该届学生人均阅读量这两年中每年的平均增长率;(2)若按这两年中每年的平均增长率增长,学校能否实现九年级结束时该届学生人均阅读量达到140万字的目标,请计算说明.。
人教版九年级上册数学21.3实际问题与一元二次方程——增长率问题一、单选题1.某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x ,那么x 满足的方程是( ) A .50(1+x )²=182 B .50+50(1+x )+50(1+x )²=182 C .50(1+2x )=182D .50+50(1+x )+50(1+2x )²=1822.某商品原价为180元,连续两次提价x %后售价为300元,下列所列方程正确的是( )A .180(1+x %)=300B .180(1+x %)2=300C .180(1-x %)=300D .180(1-x %)2=3003.某银行经过最近的两次降息,使三年期存款的年利率由3.85%降至3.25%,设平均每次降息的百分率为x ,根据题意,所列方程正确的是( ) A .23.85%(1) 3.25%x -= B .23.85%(1) 3.25%x +=C .23.85%(1) 3.25%x -=D .23.85% 3.85%(1) 3.85%(1) 3.28%x x ----=4.骑行带头盔,安全有保障.“一盔一带”政策的推行致头盔销量大幅增长,从2019年到2021年我国头盔销售额从18亿元增长到30.42亿元,则我国头盔从2019年到2021年平均每年增长率是( ) A .10%B .15%C .25%D .30%5.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分比率相同,求每次降价的百分率.设每次降价的百分率为x ,下面所列的方程中正确的是( )A .560(1﹣x 2)=315B .315(1+x )2=560C .560(1﹣2x )=315D .560(1﹣x )2=3156.某小型企业一月份的营业额为200万元,月平均增长率相同,第一季度的总营业额为1000万元.设月平均增长率为x ,可列方程为( ) A .()220011000x += B .20020021000x +⨯⨯=C .()200121000x +=D .()()2200200120011000x x ++++=7.某农场2019年的产值为80万元,通过改进技术,2021年的产值达到96.8万元,求该农场这两年产值的年平均增长率.设该农场这两年产值的年平均增长率为x ,根据题意可列方程为( ) A .280(1)96.8x += B .80(12)96.8x +=C .280(1)96.8x -=D .296.8(1)80x +=8.某中学连续三年开展植树活动.已知2020年植树500棵,2022年植树720棵,假设该校这两年植树棵树的年平均增长率为x ,根据题意可以列方程为( ) A .()25001720x += B .()25001%720x +=C .()50012720x +=D .()()250050015001720x x ++++=9.温州某镇居民人均可支配收入逐年增长,从2019年的5.2万元增长到2021年的6万元.设这两年该镇居民人均可支配收入的年平均增长率为x ,根据题意可以列方程为( ) A .()5.2126x += B .()25.216x +=C .()5.216x +=D .()25.216x +=10.电影《我和我的祖国》一上映就受到观众热烈追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元.若设增长率为x ,则根据题意可列方程为( ) A .()3110x += B .()23110x +=C .()233110x ++= D .()()23313110x x ++++=二、填空题11.某楼盘2014年底房价为每平方米8100元,经过两年连续降价后,2016年底房价为7600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为_____________________.(不必化简)12.在国家政策的宏观调控下,某市的商品房成交均价由去年10月份的7000元/m 2下降到12月份的5670元/m 2,则11、12两月平均每月降价的百分率是_______%. 13.某超市一月份的营业额为200万元,三月份的营业额为288万元.则二月份、三月份营业额的平均增长率为__________.14.某公司今年4月的营业额为1600万元,按计划6月的营业额达到3600万元,设该公司5,6两月的营业额的月平均增长率为x ,根据题意可列方程为______________.15.经过两次连续降价,某药品销售单价由原来的100元降到81元,设该药品平均每次降价的百分率为x,根据题意可列方程是________.16.劳动教育已纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种农作物的产量两年内从300千克增加到363千克,则平均每年增产的百分率为____.17.某注册平台三月份新注册用户为653万,五月份新注册用户为823万,设四、五两个月新注册用户每月平均增长率为x,则列出的方程是_______.18.某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.三、解答题19.某中学2020年对学校实验器材投资20000元.为改善办学条件,预计今明两年加大投入,请根据下列条件,通过计算或列方程等解答问题:(1)若今年学校对实验器材投入比去年增加10%,则学校今年对实验器材投入多少元?(2)按照(1)中增加的投入比例,则学校明年对实验器材投入多少元?(3)若今明两年学校对实验器材投入增加的百分数相同,且明年的投资为28800元,求今明两年学校对实验器材投入的平均增长率.20.某商店以每件60元的价格购进一种小电器,标价150元,经过两次降价,以每件96元出售,结果一个月售出200台.根据以往销售经验,销售单价每降价1元,每月销售量就会增加5台.(1)求平均每次降价的百分率;(2)商店希望一个月内销售该种小电器能获得利润6900元,则该种小电器的销售单价应再降价多少元?21.扬州一农场去年种植水稻10亩,总产量为6000kg,今年该农场扩大了种植面积,并且引进新品种“超级水稻”,使总产量增加到18000kg,已知种植面积的增长率是平均亩产量的增长率的2倍,求平均亩产量的增长率.22.“低碳生活,绿色出行”.共享单车因其便捷、绿色、环保等优势,受到广大市民青睐.据统计2021年某区8月份租用单车次数6400辆,10月份租用单车次数10000辆.若该区2021年8月至10月的单车租用次数的月增长率相同,求该区单车租用次数的月增长率.参考答案:1.B2.B3.C4.D5.D6.D7.A8.A9.B10.D11.8100(1﹣x)2=760012.1013.20%14.2x+=1600(1)360015.()2-=x10018116.10%17.()2+=6531823x18.20%19.(1)22000元(2)24200元(3)20%20.(1)平均每次降价的百分率为20%(2)该种小电器的销售单价应再降价6元21.50%22.25%答案第1页,共1页。
21.3 实际问题与一元二次方程平均增长率问题一、列一元二次方程解应用题的一般步骤:与列一元一次方程解应用题的步骤类似,列一元二次方程方程解实际问题的一般步骤也可归纳为:“审、找、设、列、解、验、答”七个步骤。
(1)设:设未知数,有直接和间接两种设法,因题而异;(2)找:找出等量关系;(3)列:列出一元二次方程;(4)解:求出所列方程的解;(5)验:检验方程的解是否正确,是否符合题意;(6)答:作答。
二、典型题型平均增长率问题增长率问题经常用公式,a 为基数, b 为增长或下降后的数,x 为平均增长率或降低率,“n ”表示 n 次增长或下降。
例题1、某中学连续三年开展植树活动.已知第一年植树500棵,第三年植树720棵,假设该校这两年植树棵数的年平均増长率相同.(1)求这两年该校植树棵数的年平均增长率;(2)按照(1)的年平均增长率,预计该校第四年植树多少棵?【分析】(1)设这两年该校植树棵数的年平均增长率为x ,根据第一年及第三年的植树棵数,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据第四年植树的棵数=第三年植树的棵数×(1+增长率),即可求出结论.【解答】解:(1)设这两年该校植树棵数的年平均增长率为x ,根据题意得:500(1+x )2=720,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意,舍去).答:这两年该校植树棵数的年平均增长率为20%.(2)720×(1+20%)=864(棵).答:该校第四年植树864棵.(1)n a x b +=【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.例题2、某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.例题3、某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.【分析】(1)设该地投入异地安置资金的年平均增长率为x,根据2015年及2017年该地投入异地安置资金,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设2017年该地有a户享受到优先搬迁租房奖励,根据投入的总资金=前1000户奖励的资金+超出1000户奖励的资金结合该地投入的奖励资金不低于500万元,即可得出关于a 的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意得:1280(1+x)2=1280+1600,解得:x1=0.5=50%,x2=﹣2.5(舍去).答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.(2)设2017年该地有a户享受到优先搬迁租房奖励,根据题意得:8×1000×400+5×400(a﹣1000)≥5000000,解得:a≥1900.答:2017年该地至少有1900户享受到优先搬迁租房奖励.【点评】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据各数量之间的关系,列出关于a的一元一次不等式.三、综合练习一.选择题(共15小题)1.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2%B.4.4%C.20%D.44%2.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8%B.9%C.10%D.11%3.某县为解决大班额问题,对学校进行扩建,计划用三年时间对全县学校进行扩建和改造,2016年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2018年投资7.2亿元人民币,那么每年投资的增长率为()A.20%、﹣220%B.40%C.﹣220%D.20%4.近年来某市不断加大对城市绿化的经济收入,使全市绿地面积不断增加,从2015年底到2017年底的城市绿化面积变化如图所示,则这两年绿地面积的年平均增长率是()A.10%B.15%C.20%D.25%5.某商场3月份的销售额为160 万元,5月份为250万元,则该商场这两个月销售额的平均增长率为()A.20%B.25%C.30%D.35%6.某种药品经过两次降价后,价格下降了19%,则该药品平均每次降价的百分比为()A.10%B.15%C.20%D.25%7.某工厂一月份生产零件100万个,若二、三月份平均每月的增长率为20%,则该工厂第一季度共生产零件()A.300万个B.320万个C.340万个D.364万个8.某种童鞋原价为100元,由于店面转让要清仓,经过连续两次降价处理,现以64元销售,已知两次降价的百分率相同,则每次降价的百分率为()A.19%B.20%C.21%D.22%9.某文具10月份销售铅笔100支,11、12两个月销售量连续增长,若月平均增长率为x,则该文具店12月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)10.2017年海南房价不断攀升,某楼盘年初的均价是1万/m2,经过两次调价后,年底均价为1.69万/m2,则平均每次提价的百分率是()A.10%B.20%C.30%D.40%11.为保护森林,中华铅笔厂准备生产一种新型环保铅笔.随着技术的成熟,由刚开始每月生产625万支新型铅笔,经两次技术革新后,上升至每月生产900万支新型铅笔,则每次技术革新的平均增长率是()A.22%B.20%C.15%D.10%12.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到l210辆,则该厂四、五月份的月平均增长率为()A.12.1%B.20%C.21%D.10%13.某城市2014年底已有绿化面积500公顷,经过努力,绿化面积以相同的增长率逐年增加,到2016年底增加到605公顷.若按照这样的绿化速度,则该市2017年底绿化面积能达到()A.657.5公顷B.665.5公顷C.673.5公顷D.681.5公顷14.某种衬衫的价格经过连续两次的降价后,由每件150元降到96元,则平均每次降价的百分率是()A.10%B.15%C.20%D.30%15.临工集团某机械制造厂制造某种产品,原来每件产品的成本是20000元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是16200元.则平均每次降低成本的百分率是()A.8%B.9%C.8.1%D.10%二.解答题(共7小题)16.“在线教育”指的是通过应用信息科技和互联网技术进行内容传播和快速学习的方法.”互联网+”时代,中国的在线教育得到迅猛发展.根据中国产业信息网数据统计分析,2015年中国在线教育市场产值约为1600亿元,2017年中国在线教育市场产值在2015年的基础上增加了900亿元.(1)求2015年到2017年中国在线教育市场产值的年平均增长率;(2)若增长率保持不变,预计2018年中国在线教育市场产值约为多少亿元?17.2017年5月14日﹣﹣﹣5月15日.“一带一路”国际合作高峰论坛在北京成功举办,高峰论坛期间及前夕,各国政府、地方、企业等达成一系列合作共识、重要举措及务实成果.中方对其中具有代表性的一些成果进行了梳理和汇总,形成高峰论坛成果清单.清单主要涵盖政策沟通、设施联通、贸易畅通、资金融通、民心相通5大类,共76大项、270多项具体成果.我市新能源产业受这一利好因素,某企业的利润逐月提高.据统计,2017年第一季度的利润为2000万元,第三季度的利润为2880万元.(1)求该企业从第一季度到第三季度利润的平均增长率;(2)若第四季度保持前两季度利润的平均增长率不变,该企业2017年的年利润总和能否突破1亿元?18.李师傅去年开了一家商店,今年1月份开始盈利,2月份盈利2400元,4月份的盈利达到3456元,且从2月到4月,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率;(2)按照这个平均增长率,预计5月份这家商店的盈利将达到多少元?19.某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.20.淮北市某中学七年级一位同学不幸得了重病,牵动了全校师生的心,该校开展了“献爱心”捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该校能收到多少捐款?21.随着阿里巴巴、淘宝网、京东、小米等互联网巨头的崛起,催生了快递行业的高速发展.据调查,杭州市某家小型快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递快递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问至少需要增加几名业务员?22.某楼盘2018年2月份准备以每平方米7500元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格连续两个月进行下调,4 月份下调到每平方米6075元的均价开盘销售.(1)求3、4两月平均每月下调的百分率;(2)小颖家现在准备以每平方米6075元的开盘均价,购买一套100平方米的房子,因为她家一次性付清购房款,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,小颖家选择哪种方案更优惠?(3)如果房价继续回落,按此平均下调的百分率,请你预测到6月份该楼盘商品房成交均价是否会跌破4800元/平方米,请说明理由.参考答案一.选择题(共15小题)1.C.2.C.3.D.4.A.5.B.6.A.7.D.8.B.9.B.10.C.11.B.12.D.13.B.14.C.15.D.二.解答题(共7小题)16.解:(1)设2015年到2017年中国在线教育市场产值的年平均增长率为x,根据题意得:1600(1+x)2=1600+900,解得:x1=0.25=25%,x2=﹣2.25(舍去).答:2015年到2017年中国在线教育市场产值的年平均增长率为25%.(2)(1600+900)×(1+25%)=3125(亿元).答:预计2018年中国在线教育市场产值约为3125亿元.17.解:(1)设该企业从第一季度到第三季度利润的平均增长率为x,根据题意得:2000(1+x)2=2880,解得:x=0.2=20%或x=﹣2.2(不合题意,舍去).答:该企业从第一季度到第三季度利润的平均增长率为20%.(2)2000+2000×(1+20%)+2880+2880×(1+20%)=10736(万元),10736万元>1亿元.答:该企业2017年的年利润总和突破1亿元.18.解:(1)设该商店的每月盈利的平均增长率为x,根据题意得:2400(1+x)2=3456,解得:x1=20%,x2=﹣2.2(舍去).(2)由(1)知,该商店的每月盈利的平均增长率为20%,则5月份盈利为:3456×(1+20%)=4147.2(元).答:(1)该商店的每月盈利的平均增长率为20%.(2)5月份盈利为4147.2元.19.解:设这两年中获奖人次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=183,解得:x1==25%,x2=﹣(不符合题意,舍去).答:这两年中获奖人次的年平均年增长率为25%.20.解:(1)捐款增长率为x,根据题意得:10000(1+x)2=12100,解得:x1=0.1,x2=﹣2.1(舍去).则x=0.1=10%.答:捐款的增长率为10%.21.(1)解:设该快递公司投递快递总件数的月平均增长率为x,由题意,得10×(1+x)2=12.1,解得:x1=10%,x2=﹣210%.答:该快递公司投递快递总件数的月平均增长率为10%.(2)4月:12.1×1.1=13.31(万件)21×0.6=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年4月份的快递投递任务.∵22<<23,∴至少还需增加2名业务员.22.解:(1)设3、4两月平均每月下调的百分率为x,由题意得:7500(1﹣x)2=6075,解得:x1=0.1=10%,x2=1.9(舍),答:3、4两月平均每月下调的百分率是10%;(2)方案一:6075×100×0.98=595350(元),方案二:6075×100﹣100×1.5×24=603900(元),∵595350<603900,∴方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米因为由(1)知:平均每月下调的百分率是10%,所以:6075(1﹣10%)2=4920.75(元/平方米),∵4920.75>4800,∴6月份该楼盘商品房成交均价不会跌破4800元/平方米.。
人教版2020-2021学年九年级数学上册21.3实际问题与一元二次方程(传播问题和增长率问题)学校:___________姓名:___________班级:___________考号:___________一、单选题1.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .7 2.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 3.肆虐的冠状病毒肺炎具有人传人性,调查发现:1人感染病毒后如果不隔离,那么经过两轮传染将会有225人感染,若设1人平均感染x 人,依题意可列方程( ) A .1+x =225B .1+x 2=225C .(1+x )2=225D .1+(1+x 2 )=2254.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有二人参加这次聚会,则列出方程正确的是( )A .(1)10x x -=B .(1)102x x -=C .(1)10x x +=D .(1)102x x += 5.有n 支球队参加篮球比赛,共比赛了15场,每两个队之间只比赛一场,则下列方程中符合题意的是( )A .n(n ﹣1)=15B .n(n+1)=15C .n(n ﹣1)=30D .n(n+1)=306.某市从2021年开始大力发展“竹文化”旅游产业.据统计,该市2021年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2021年、2021年“竹文化”旅游收入的年平均增长率约为( )A .2%B .4.4%C .20%D .44% 7.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程,则下列方程正确的是( )A .22500(1)9100x +=B .22500(1%)9100x +=C .22500(1)2500(1)9100x x +++=D .225002500(1)2500(1)9100x x ++++=8.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( )A .1000(1+x )2=1000+440B .1000(1+x )2=440C .440(1+x )2=1000D .1000(1+2x )=1000+4409.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是( ). A .8% B .9% C .10% D .11%10.据省统计局发布,2021年我省有效发明专利数比2021年增长22.1%.假定2021年的年增长率保持不变,2021年和2021年我省有效发明专利分别为a 万件和b 万件,则( )A .b=(1+22.1%×2)aB .b=(1+22.1%)2aC .b=(1+22.1%)×2aD .b=22.1%×2a二、填空题11.若一人患了流感,经过两轮传染后共有121人感染了流感.按照这样的传染速度,若2人患了流感,第一轮传染后患流感的人数共有_____人.12.一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握了36次手,设到会的人数为x 人,则根据题意列方程为_____.13.今年“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到90个红包,则该群一共有_____人.14.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是______.15.某小区2010年屋顶绿化面积为2000平方米,计划2021年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.三、解答题16.“埃博拉”病毒是一种能引起人类和灵长类动物产生“出血热”的烈性传染病毒,传染性极强,一日本游客在非洲旅游时不慎感染了“埃博拉”病毒,经过两轮传染后,共有121人受到感染,(1)问每轮传染中平均一个人传染了几个人?(2)如果得不到控制,按如此的传播速度,经过三轮后将有多少人受到感染?17.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.参考答案1.C【分析】设这种植物每个支干长出x 个小分支,根据主干、支干和小分支的总数是43,即可得出关于x 的一元二次方程,解之取其正值即可得出结论【详解】设这种植物每个支干长出x 个小分支,依题意,得:2143x x ++=,解得: 17x =-(舍去),26x =.故选C .【点睛】此题考查一元二次方程的应用,解题关键在于列出方程2.B【详解】设全组共有x 名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.3.C【分析】此题可设1人平均感染x 人,则第一轮共感染(1)x +人,第二轮共感染(1)1(1)(1)x x x x x +++=++人,根据题意列方程即可.【详解】解:设1人平均感染x 人,依题意可列方程:2(1)225+=x .故选:C .【点睛】此题考查了由实际问题抽象出一元二次方程的解,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.4.B【解析】分析:如果有x 人参加了聚会,则每个人需要握手(x-1)次,x 人共需握手x (x-1)次;而每两个人都握了一次手,因此要将重复计算的部分除去,即一共握手:() x x 1 2-次;已知“所有人共握手10次”,据此可列出关于x 的方程.解答:解:设x 人参加这次聚会,则每个人需握手:x-1(次);依题意,可列方程为:()x x 12- =10; 故选B .5.C【解析】【分析】 由于每两个队之间只比赛一场,则此次比赛的总场数为:1(1)2n n -,场.根据题意可知:此次比赛的总场数=15场,依此等量关系列出方程即可.【详解】试题解析:∵有n 支球队参加篮球比赛,每两队之间都比赛一场, ∴共比赛场数为1(1)2n n -, ∴共比赛了15场,1(1)152n n ∴-=, 即()130.n n -=故选C.6.C【解析】分析:设该市2021年、2021年“竹文化”旅游收入的年平均增长率为x ,根据2021年及2021年“竹文化”旅游收入总额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.详解:设该市2021年、2021年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市2021年、2021年“竹文化”旅游收入的年平均增长率约为20%.故选C.点睛:本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7.D【分析】分别表示出5月,6月的营业额进而得出等式即可.【详解】解:设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程得:2++++()()=.x x250025001250019100故选D.【点睛】考查了由实际问题抽象出一元二次方程,正确理解题意是解题关键.8.A【分析】根据第一个月的单车数量×(1+x)2=第三个月的单车数量可以列出相应的一元二次方程,进而可得答案.【详解】解:由题意可得,1000(1+x)2=1000+440.故选:A.【点睛】本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.9.C【解析】分析:设平均每次下调的百分率为x,则两次降价后的价格为6000(1-x)2,根据降低率问题的数量关系建立方程求出其解即可.详解:设平均每次下调的百分率为x,由题意,得6000(1-x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选C.点睛:本题考查了一元二次方程的应用,降低率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据降低率问题的数量关系建立方程是关键.10.B【解析】【分析】根据题意可知2021年我省有效发明专利数为(1+22.1%)a万件,2021年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2021年我省有效发明专利数为(1+22.1%)a万件,2021年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键. 11.22【分析】设每轮传染中1人传染给x人,则第一轮传染后共(1+x)人患流感,第二轮传染后共[1+x+x (x+1)]人患流感,列出方程进行计算即可.【详解】解:设每轮传染中1人传染给x人,则第一轮传染后共(1+x)人患流感,第二轮传染后共[1+x+x(x+1)]人患流感,根据题意得:1+x+x(x+1)=121,解得:x1=10,x2=﹣12(舍去),∴2(1+x)=22.故答案为22.【点睛】考查一元二次方程的应用,读懂题目,找出题目中的等量关系是解题的关键.12.12x(x﹣1)=36【解析】试题解析:设到会的人数为x人,则每个人握手(x﹣1)次,由题意得,12x(x﹣1)=36,故答案是:12x(x﹣1)=36.13.10【分析】设该群一共有x人,则每人收到(x﹣1)个红包,根据群内所有人共收到90个红包,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设该群一共有x人,则每人收到(x﹣1)个红包,依题意,得:x(x﹣1)=90,解得:x1=10,x2=﹣9(舍去).故答案为10.【点睛】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.14.20%【解析】解:设该药品平均每次降价的百分率是x,根据题意得25×(1-x)(1-x)=16,整理得,解得x=0.2或1.8(不合题意,舍去);即该药品平均每次降价的百分率是20%.15.20%【解析】分析:本题需先设出这个增长率是x,再根据已知条件找出等量关系列出方程,求出x的值,即可得出答案.解答:解:设这个增长率是x,根据题意得:2000×(1+x)2=2880解得:x1=20%,x2=-220%(舍去)故答案为20%.16.(1) 每轮传染中平均一个人传染了10个人;(2) 过三轮后将有1331人受到感染.【分析】(1)设每轮传染中平均一个人传染了x个人,根据经过两轮传染后共有121人受到感染,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)将x=10代入(x+1)3中即可求出结论.【详解】(1)设每轮传染中平均一个人传染了x个人,根据题意得:(x+1)2=121解得:x1=10,x2=﹣12(不合题意,应舍去).答:每轮传染中平均一个人传染了10个人.(2)当x=10时,(x+1)3=(10+1)3=1331.答:经过三轮后将有1331人受到感染.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17.(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.。
21.3实际问题与一元二次方程6.如图为一边靠墙(墙长18米)长方形的鸡场,另外三边用长为35米竹篱笆围成。
(1)若鸡场的面积为面积为150米2,求鸡场的长与宽各为多少米?(2)若使鸡场的面积最大,求鸡场的长与宽各为多少米?7.用长为100cm的金属丝做成一个矩形框子。
(1)阎亮做成的矩形框子的面积为400cm2,而冯子良做成的矩形框子的面积为600 cm2,你知道为什么吗?(2)能做成面积为800 cm2的矩形框子吗?为什么?你能做成最大的矩形框子面积是多少?1.把长为36㎝的铁丝剪成相等的两段,用一段弯成一个矩形,另一段弯成一个腰长为5㎝的等腰三角形,如果矩形面积是等腰三角形面积的1.5倍,求矩形的长和宽.3.警察站在离公路的垂直距离为600米的A点,接到命令要堵截一辆肇事汽车,此时肇事汽车正由公路B点处以40米/秒的速度沿着公路逃窜(假设在逃窜过程中肇事汽车速度不变),已知点A和点B相距1000米.问:接到命令后,此警察驾驶汽车以25米/秒的速度匀速行驶,能否截住这辆肇事车?4.如图,在△ABC中∠B=90°,AB=6㎝,BC=8㎝,点P从点A开始沿AB边向点B以1cm/s的速度移动, 点Q从点B开始沿边BC向点C以2cm/s的速度移动.如果点P、Q分别从A、B两点同时出发,经过几秒钟,△PBQ的面积等于8cm²5.如图,AO=BO=50cm,OC是一条射线,OC⊥AB,一只蚂蚁由点A以2cm/s的速度向点B爬行,同时另一只蚂蚁由点O以如图,AO=BO=50cm,OC是一条射线,OC⊥AB,一只蚂蚁由点A以2cm/s的速度向点B爬行,同时另一只蚂蚁由点O以3cm/s的速度沿OC方向爬行,则______秒后两只蚂蚁与点O组成的三角形的面积为450cm2.6. 如图,客轮沿折线A-B-C从A出发经B再到C匀速航行,货轮从AC的中点D出发沿某一方向匀速直线航行,将一批物品送达客轮.两船同时起航,并同时到达折线A-B-C上的某点E处.已知AB=BC=200海里,∠ABC=90°,客轮速度是货轮速度的2倍.(1)选择:两船相遇之处E点()(A)在线段AB上;(B)在线段BC上;(C)可以在线段AB上,也可以在线段BC上;(2)求货轮从出发到两船相遇共航行了多少海里?(结果保留根号)7.如图,等腰直三角形ABC中,AB=AC=8㎝,动点P从A出发,沿AB向B移动,过点P作PR∥BC,PQ∥AC交AC、BC于R、Q.问:(1)□PQCR面积能否为7cm2?如果能,请求出P点与A点的距离;如果不能请说明理由;(2)□PQCR面积能否为16cm2吗?能为20cm2吗?如果能求出P点与A点距离,如不能,请说明理由.参考答案1.3、62.11、13、153.不能4.设经过x秒钟,使△PBQ的面积为8cm 2 , BP=6-x,BQ=2x,∵∠B=90°, ∴BP×BQ=8, ∴1/2 ×(6-x)×2x=8, ∴x 1 =2,x 2 =4, 答:如果点P、Q分别从A、B同时出发,经过2或4秒钟,使△PBQ的面积为8cm 2 .5.(1)如图1,当蚂蚁在AO上运动时,设xs后两只蚂蚁与O点组成的三角形面积为450cm2,由题意,得×3x×(50-2x)=450,整理,得x2-25x+150=0,解得x1=15,x2=10.(2)如图2,当蚂蚁在OB上运动时,设x秒钟后,两只蚂蚁与O点组成的三角形面积为450cm2,由题意,得×3x(2x-50)=450,整理,得x2-25x-150=0,解得x1=30,x2=-5(舍去).答:15s,10s,30s后,两蚂蚁与O点组成的三角形的面积均为450cm2.故答案为:15s或10s或30s.一、选择题1.有一张画的尺寸是12×18,要在它的四周镶上一样宽的银边.如果使银边的面积正好与画面积相等,那么银边应当有多宽?设银边的宽为,根据题,如下四个方程中,错误的是()A. B.C. D.2.小明家的饭桌桌面是一个长方形,其长为150㎝,宽为80㎝,现要在桌面上铺一块桌布,已知桌布的面积是桌面面积的2倍,全桌面四周垂下的边均为㎝,则所列方程为()A. B.C. D.3.有一个面积为16㎝2的梯形,它的一条底边长为3㎝,另一条底边长比它的高线长1㎝,若设这条底边长为㎝,依据题意,列出整理后得()A. B. C. D.4.从一块正方形的铁版上剪掉2㎝宽的长方形铁片,剩下的面积是48㎝2,则原来铁片的面积为()A.64㎝2B.100㎝2C.121㎝2D.144㎝25.用22㎝长的铁丝折成一个面积为30㎝2的矩形,若这个矩形的长为㎝,依题意可列一元二次方程 .6.如图①,在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为m,从图②的思考方式出发列出的方程是;三、解答题7.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2.8.为响应市委市政府提出的建设“绿色襄阳”的号召,我市某单位准备将院内一块长30m,宽20m的长方形空地,建成一个矩形花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)9.某小区有一长100m,宽80m的空地,现将其建成花园广场,设计图案如下:阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动区,且四周出口一样宽,宽度不小于50m,不大于60m.预计活动区每平方米造价60元,绿化区每平方米造价50元.(1)设一块绿化区的长边为m,写出工程总造价与的函数关系式(写出x的取值范围).(2)如果小区投资46.9万元,问能否完成工程任务?若能,请写出为整数的所有工程方案;若不能,请说明理由.(参考值:≈1.732),参考答案1.D;2.A;3.A;4.A;5.;6. ;7.解:设AB=xm,则BC=(50﹣2x)m.根据题意可得,x(50﹣2x)=300,解得:x1=10,x2=15,当x=10,BC=50﹣10﹣10=30>25,故x1=10(不合题意舍去),答:可以围成AB的长为15米,BC为20米的矩形.8.设小道进出口的宽度为x米,根据题意有:(30-2x)(20-x)=532.整理得:x2-35x+34=0.解得:x1=1,x2=34.(∵34>30,∴不合题意,舍去)∴x=1.∴小道进出口的宽度应为1米9.解:(1)矩形的宽为 =x﹣10,∴y=50·x(x﹣10)·4+60[100×80﹣4x(x﹣10),即:y=﹣40x2+400x+480000,∵x>0,x﹣10>0,50≤100﹣2x≤60,即:x的取值范围是20≤x≤25.答:工程总造价y与x的函数关系式是y=﹣40x2+400x+480000,x的取值范围是20≤x≤25;(2)46.9万元=469000元,根据题意得:﹣40x2+400x+480000≤469000,即:(x﹣5)2﹣300≥0,解得:x≤﹣12.32,或x≥22.32,∵由(1)知20≤x≤25,22.32≤x≤25,∴x能取23、24、25.所以只有3种方案:①当x=23时,y=468040;②当x=24时,y=466560;③当x=25时,y=445000.答:如果小区投资46.9万元,能完成工程任务.x为整数的所有工程方案是:①当x=23时,y=468040;②当x=24时,y=466560;③当x=25时,y=445000.第三课时销售利润问题1.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?2. 某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月卖出3部汽车,则每部汽车的进价为万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)3.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加_________件,每件商品盈利_________元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?4.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?,5.某单位于“三•八”妇女节期间组织女职工到温泉“星星竹海”观光旅游.下面是领队与旅行社导游收费标准的一段对话:领队:组团去“星星竹海”旅游每人收费是多少?导游:如果人数不超过25人,人均旅游费用为100元.领队:超过25人怎样优惠呢?导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团浏览“星星竹海”结束后,共支付给旅行社2700元.请你根据上述信息,求该单位这次到“星星竹海”观光旅游的共有多少人?6.某公司投资新建了一商场共有商铺30间,据预测,当每间的年租金定为10万元时,可以全部租出,每件的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元。
人教版九年级上册数学21.3实际问题与一元二次方程--增长率问题同步训练一、单选题1.李师傅家的超市今年1月盈利3000元,3月盈利3630元.若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是( ) A .10.5%B .10%C .20%D .21%2.2021年顺平县林木覆盖率为39.7%,被评为“河北省森林城市”.为进一步巩固成果,全县大力开展植树造林活动,计划到2023年森林覆盖率达到50%,如果这两年的森林覆盖年平均增长率相同,均为x ,那么符合题意的方程是( ) A .0.397(1)0.5+=x B .0.397(12)0.5+=x C .20.397(1)0.5+=xD .20.397(1)0.5-=x3.某种药品原价为64元/盒,经过连续两次降价后售价为49元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是( ) A .264(1)6449x -=- B .64(12)49x -=C .264(1)49x -=D .()264149x -=4.某农业基地现有杂交水稻种植面积36公顷,计划两年后将杂交水稻种植面积增加到48公顷,设该农业基地杂交水稻种植面积的年平均增长率为x ,则可列方程为( ) A .248(1)36x += B .248(1)36x -= C .236(1)48x +=D .236(1)48x -=5.电影《长津湖》讲述了一段波澜壮阔的历史,自上映以来,全国票房连创佳绩.据不完全统计,某市第一天票房收入约2亿元,第三天票房收入约达到4亿元,设票房收入每天平均增长率为x ,下面所列方程正确的是( ) A .22(1)4x += B .()2124x +=C .22(1)4x -=D .()22212(1)4x x ++++=6.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增.为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.则口罩日产量的月平均增长率为( )A .8%B .10%C .15%D .20%7.某品牌电动自行车经销商1月至3月统计,该品牌电动自行车1月销售150辆,3月销售216辆.设该品牌电动车销售量的月平均增长率为x ,根据题意列方程得( )A .()15012216x -=B .()21501216x -= C .()15012216x +=D .()21501216x +=8.骑行带头盔,安全有保障.“一盔一带”政策的推行致头盔销量大幅增长,从2019年到2021年我国头盔销售额从18亿元增长到30.42亿元,则我国头盔从2019年到2021年平均每年增长率是( ) A .10% B .15%C .25%D .30%二、填空题9.重庆某风景区2021年三月份共接待游客4000人次,五月份共接待游客9000人次,则每月的平均增长率为______.10.某试验田种植了杂交水稻,2019年平均亩产800千克,2021年平均亩产1000千克,设此水稻亩产量的平均增长率为x ,则可列出的方程是______.11.某商品由于连续两次降低成本,使成本比原来降低了36%,则平均每次降低成本_______(填百分数).12.某药品经过两次降价,每瓶零售价由100元降为81元,若设平均每次降价的百分率为x ,则由题意可列方程为 ________________,可得x =____.13.2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育活动.据了解,某展览中心3月份的参观人数为10万人,5月份的参观人数增加到12.1万人.设参观人数的月平均增长率为x ,则可列方程为________. 14.随着网络购物的兴起,增加了快递公司的业务量,一家今年刚成立的小型快递公司业务量逐月攀升,今年9月份和11月份完成投送的快递件数分别是20万件和24.2万件,若该公司每月投送的快递件数的平均增长是x ,由题意列出关于x 的方程:______.15.某旅游景点6月份共接待游客64万人次,暑期放假学生旅游人数猛增,且每月的增长率相同,8月份共接待游客81万人次,如果每月的增长率都为x ,则根据题意可列方程 _____.16.某超市第二季度的营业额为200万元,第四季度的营业额为288万元.如果每季度营业额的平均增长率相同,那么每季度的平均增长率为 _____.三、解答题17.某商场今年8月的营业额为400万元,9月份营业额比8月份增加10%,11月份的营业额达到633.6万元,求9月份到11月份营业额的月平均增长率.18.某产品5月份时每件200元,在6、7月进行了两次提价,且每次提价的百分率相同,此时售价为288元,后因产品销售问题,8月选择降价,降价的百分率与之前每次提价的百分率相同,求8月份该产品的售价?19.某菜农大量种植蔬菜计划以每千克5元的价格对外批发销售,因销售不利,为减少损失,菜农决定降价出售,经过两次下调售价后,以每千克3.2元的单价对外批发销售.求每次下调的百分率.20.王师傅今年初开了一家商店,二月份开始盈利,二月份的盈利是5000元,四月份的盈利达到6050元,且从今年二月到四月,每月盈利的增长率都相同.(1)求每月盈利的增长率;(2)按照这个增长率,预计今年五月份的盈利能达到多少元?参考答案:1.B2.C3.C4.C5.A6.B7.D8.D9.50%10.800(1+x)2=100011.20%12.100(1﹣x)2=8110%13.210(1)12.1+=x14.()2x+=20124.215.64(1+x)2=8116.20%17.20%18.230.4元19.每次下调的百分率为20%20.(1)每月盈利的平均增长率为10%(2)按照这个增长率,预计今年五月份这家商店的盈利将达到6655元。
实际问题与一元二次方程(增长率类问题)同步练习题一、单选题1.据省统计局公布的数据,合肥市2021年第一季度GDP 总值约为2.4千亿元人民币,若我市第三季度GDP 总值为y 千亿元人民币,平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是( ) A .y =2.4(1+2x ) B .y =2.4(1-x )2C .y =2.4(1+x )2D .y =2.4+2.4(1+x )+2.4(1+x )22.今年由于受新型冠状病毒的影响,一次性医用口罩的销量剧增.某药店一月份销售量是5000枚,二、三两个月销售量连续增长.若月平均增长率为x ,则该药店三月份销售口罩枚数y (枚)与x 的函数关系式是( )A .y =5000(1+x )B .y =5000(1+x )2C .y =5000(1+x 2)D .y =5000(1+2x )3.某市为解决当地教育“大班额”问题,计划用三年时间完成对相关学校的扩建,2019年市政府已投资5亿人民币,若每年投资的增长率相同,预计2021年投资额达到y 亿元人民币,设每年投资的增长率为x ,则可得( )A .5(12)y x =+B .25y x =C .()251y x =+D .()251y x =+ 4.一件商品的原价是100元,经过两次提价后的价格为y 元,每次提价的百分率是x ,则y 与x 的函数关系式是( )A .y =100(1+2x )B .y =100(1﹣2x )C .y =100(1+x )2D .y =100(1﹣x )25.某种商品的价格是2元,准备进行两次降价.如果每次降价的百分率都是x ,经过两次降价后的价格y (单位:元)随每次降价的百分率x 的变化而变化,则y 关于x 的函数解析式是( )A .()221y x =+B .()221y x =-C .()21y x =+D .()21y x =- 6.一台机器原价100万元,若每年的折旧率是x ,两年后这台机器约为y 万元,则y 与x 的函数关系式为( )A .2100(1)y x =-B .100(1)y x =-C .2100y x =-D .2100(1)y x =+二、填空题 7.比亚迪汽车销售公司3月份销售新上市一种新能源汽车8辆,由于该型汽车既环保,又经济,销量快速上升,5月份该公司销售该型汽车达18辆.设该公司销售该型汽车4月份和5月份的平均增长率为x ,可列方程为:_________.8.2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育活动.据了解,某展览中心3月份的参观人数为100万人,5月份的参观人数增加到144万人.设参观人数的月平均增长率为x ,则可列方程为______.9.随着生产技术的进步,某制药厂生产成本逐年下降,两年前生产一吨药的成本是8000元,现在生产一吨药的成本是6000元.设生产成本的年平均下降率为x ,可以得到关于x 的方程为______________.10.商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,设该店销售额平均每月的增长率是x ,由题意列出方程是________.11.某超市1月份营业额为90万元,3月份总营业额为108万元,求平均每月营业额增长率.设平均每月营业额增长率为x ,根据题意,所列方程是______.12.某地区加大教育投入,2020年投入教育经费2000万元,以后每年逐步增长,预计2022年,教育经费投入为2420万元,设年平均增长率为x ,则可列方程________.13.2021年,某市准备加大对雾霾的治理力度,2021年第一季度投入资金100万元,第二季度和第三季度计划共投入资金260万元. 设这两个季度计划投入资金的平均增长率为x ,则列方程是_________14.受疫情影响,我区居民投资房产热情有所降低,据调查,今年1月份我区一房地产公司的住房销售量为100套,3月份的住房销售量为64套,若该公司这两个月住房销售量的平均下降率相同,则该公司这两个月住房销售量的平均下降率为__.三、解答题15.某件羊毛衫的售价为1000元,因换季促销,在经过连续两次降价后,现售价为810元,求平均每次降价的百分率.16.学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.17.2022年2月4日至20日,第24届冬奥会在北京和张家口举办,这是中国历史上第一次举办冬奥会,吉祥物“冰墩墩”深受大家的喜爱.某超市在今年1月份销售“冰墩墩”256个,“冰墩墩”十分畅销,2、3目销售量持续走高,在售价不变的基础上,3月份的销售量达到400个.(1)求“冰墩墩”2、3这两个月销售量的月平均增长率;(2)若“冰墩墩”每个进价25元,原售价为每个40元,该超市在今年4月进行降价促销,经调查发现,若“冰墩墩”价格在3月的基础上,每个降价1元,销售量可增加5个,当“冰墩墩”每个降价多少元时,出售“冰墩墩”在4月份可获利4620元?18.由于供不应求,市场上青瓜的批发价连续两个月持续上涨,从2元/千克涨到2.88元/千克.(1)求青瓜批发价两月的平均增长率.(2)某商户以3元/千克的价格购进一批青瓜,以4元/千克的价格出售,每天可售出200千克.为了促销,该商户决定降价销售.经调查发现,这种青瓜每降价0.1元/千克,每天可多售出50千克,另外每天的房租等固定成本为40元.为了每天盈利200元,且使每天的销量较大,需将每千克青瓜降价多少元?。