北师大新版八年级上册《3.2 平面直角坐标系》 同步练习
- 格式:doc
- 大小:31.50 KB
- 文档页数:8
北师大版八年级数学上册:3.2《平面直角坐标系》教案1一. 教材分析《平面直角坐标系》是北师大版八年级数学上册第三章第二节的内容。
本节内容是在学生已经掌握了坐标系的基本概念的基础上进行讲解的,通过本节内容的学习,使学生能够熟练地建立平面直角坐标系,能够准确地确定点在坐标系中的位置,并能够利用坐标系解决一些实际问题。
二. 学情分析学生在学习本节内容之前,已经掌握了坐标系的基本概念,对于如何建立坐标系,如何确定点在坐标系中的位置有一定的了解。
但是,对于如何利用坐标系解决实际问题,部分学生可能会感到困难。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高学生的解决问题的能力。
三. 教学目标1.让学生掌握平面直角坐标系的建立方法。
2.让学生能够准确地确定点在坐标系中的位置。
3.培养学生利用坐标系解决实际问题的能力。
四. 教学重难点1.重点:平面直角坐标系的建立方法,点在坐标系中的表示方法。
2.难点:如何利用坐标系解决实际问题。
五. 教学方法采用问题驱动法,引导学生通过观察、思考、探究,发现平面直角坐标系的建立方法,以及如何确定点在坐标系中的位置。
同时,通过实例讲解,让学生学会如何利用坐标系解决实际问题。
六. 教学准备1.准备平面直角坐标系的图片,用于讲解。
2.准备一些实际问题,用于练习。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实例,如地图上的路线、飞机的飞行轨迹等,引导学生思考这些实例与坐标系之间的关系。
2.呈现(10分钟)讲解平面直角坐标系的定义,以及如何建立坐标系。
通过展示图片,让学生直观地理解坐标系的建立过程。
同时,讲解如何用坐标表示点在坐标系中的位置。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,尝试利用坐标系解决实际问题。
教师巡回指导,解答学生的问题。
4.巩固(5分钟)挑选几组学生的实例,让学生上台演示如何利用坐标系解决问题。
其他学生观看并给予评价。
5.拓展(5分钟)讲解坐标系在实际生活中的应用,如航天、地理信息系统等。
第三章位置与坐标2 平面直角坐标系第2课时平面直角坐标系中点的坐标特征教学目标1.在给定的坐标系下,会根据坐标描出点的位置.2.结合平面直角坐标系,知道不同象限中点的坐标的特征.3.通过找点、连线、观察,确定图形的大致形状,能进一步掌握平面直角坐标系的基本内容.教学重难点重点:平面直角坐标系中点的坐标特征.难点:会根据点的坐标特征判断点在哪个象限或哪条坐标轴上.教学过程导入新课在上节课中我们学习了平面直角坐标系的相关概念,练习了在平面直角坐标系中由点写坐标以及由坐标找点,利用上节课的知识来解决下列问题.B(-6, -3).设计意图:先回顾上节课的内容,让学生加深理解平面直角坐标系的知识,为学好本节课做铺垫.探究新知一、预习新知请同学们拿出准备好的坐标纸,然后按照给出的坐标,尝试在直角坐标系中描点,并依此用线段连接起来.①D(-3,5),E(-7,3),C(1,3);②F(-6,3),G(-6,0),A(0,0),B(0,3);观察所描出的图形,它像什么?学生独立认真地连线.师:(展示学生的作品),画出的图形是这样的吗?这幅图画得很美,你们觉得它像什么?生:这个图形像一座房子.师:要想准确地作出图形,我们应该注意什么问题呢?生1:看点的坐标时容易看错符号,所以就找错了点所位于的象限.生2:连线时没有用直尺或三角尺连线,画图不规范,另外点的顺序也容易出错.设计意图:通过在坐标系中描点、连线,很好地体现了数学的趣味性,数与形的结合完美地展现出来,大大激发了学生的学习热情.二、合作探究观察上面画出的图形,回答下列问题:师:图形中哪些点在坐标轴上,它们的坐标有什么特点?生:线段AG上的点都在x轴上,它们的纵坐标等于0,线段AB上的点都在y轴上,它们的横坐标等于0.师:线段EC与x轴有什么位置关系?点E和点C的坐标有什么特点?线段EC 上其他点的坐标呢?生:线段EC平行于x轴,点E和点C的纵坐标相同,线段EC上其他点的纵坐标相同,都是3.师:点F和G的横坐标有什么共同特点,线段FG与y轴有怎样的位置关系?生:点F和G的横坐标相同,线段FG与y轴平行.学生总结,教师点评:由上面的探究过程可以得到“平行于两轴的直线上的点”的坐标特征:(1) 平行于x轴的直线上的点:纵坐标相同;(2) 平行于y轴的直线上的点:横坐标相同.做一做:师:在“笑脸”上找出几个位于第一象限的点,指出它们的坐标,说说这些点的坐标有.教师总结:第一象限内的点的横、纵坐标符号都为“+”.师:在其他象限内分别找几个点,看看其他各个象限内的点的坐标有什么特点?学生分小组讨论,然后找代表说出本小组的答案.学生总结,教师点评得到“四个象限内点”的坐标特征:各象限内的点的坐标特点:点P(x,y)分别在:第一象限内,则x>0,y>0;第二象限内,则x<0,y>0;第三象限内,则x<0,y<0;第四象限内,则x>0,y<0.巩固练习已知在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________.解析:根据第一象限内点的坐标的符号特征,横坐标为正,纵坐标为正,可得关于m的一元一次不等式组{m>0,m−2>0,解得m>2.答案:m>2典型例题【例1】观察图形,并回答以下问题:(1)写出多边形ABCDEF各个顶点的坐标;(2)线段BC,CE的位置各有什么特点?(3)计算多边形ABCDEF的面积.点的坐标?【解】(1)A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).(2)线段BC平行于x轴(或线段BC垂直于y轴),线段CE垂直于x轴(或线段CE平行于y轴).(3)S多边形ABCDEF=S△ABF+S长方形BCEF+S△CDE =12×6×2+3×6+12×6×1=6+18+3=27.【总结】纵坐标相同的点所在直线平行(重合)于x轴;横坐标相同的点所在直线平行(重合)于y轴.【例2】已知点P(a-2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.【问题探索】在x轴上、y轴上的点的坐标各有什么特征?平行于x轴、y轴的直线上的点的坐标又有什么特征?【解】(1)因为点P(a-2,2a+8)在x轴上,所以2a+8=0,解得a=-4,故a-2=-4-2=-6,则P(-6,0).(2)因为点P(a-2,2a+8)在y轴上,所以a-2=0,解得a=2,故2a+8=2×2+8=12,则P(0,12).(3)因为点Q的坐标为(1,5),直线PQ∥y轴,所以a-2=1,解得a=3,故2a+8=14,则P(1,14).(4)因为点P到x轴、y轴的距离相等,所以a-2=2a+8或a-2+2a+8=0,解得a=-10或a=-2.当a=-10时,a-2=-12,2a+8=-12,则P(-12,-12);当a=-2时,a-2=-4,2a+8=4,则P(-4,4).综上所述,点P的坐标为(-12,-12)或(-4,4).【总结】横轴上点的纵坐标为0,纵轴上点的横坐标为0.平行于x轴的直线上的点的纵坐标相同,平行于y轴的直线上的点的横坐标相同.课堂练习1.在平面直角坐标系中,点P(m,1)在第二象限,则点Q(-m,0)在()A.x轴的负半轴上B.x轴的正半轴上C.y轴的负半轴上D.y轴的正半轴上2.点B的坐标为(3,-4),而直线AB平行于x轴,那么点A的坐标可能为()A.(3,-2)B.(2,4)C.(-3,2)D.(-3,-4)3.如果点B与点C的横坐标相同,纵坐标不同,则直线BC与y轴的关系为()A.平行B.垂直C.相交D.以上均不对4.设点M(a,b)为平面直角坐标系内的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意有理数,且b<0时,点M位于第几象限?参考答案1.B2.D3.A4.解:(1)点M在第四象限.(2)可能在第一象限(a>0,b>0)或者在第三象限(a<0,b<0).(3)可能在第三象限(a<0,b<0)或者第四象限(a>0,b<0)或者y轴负半轴上(a=0,b<0).课堂小结1.“平行于两坐标轴的直线上的点”的坐标特征:(1) 平行于x轴的直线上的点:纵坐标相同;(2) 平行于y轴的直线上的点:横坐标相同.2.“两坐标轴上的点”的坐标特征:(1)x轴上的点的坐标:纵坐标为0(2)y轴上的点的坐标:横坐标为0.3.“四个象限内的点”的坐标特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).布置作业习题3.3第1,2题板书设计2 平面直角坐标系第2课时平面直角坐标系中点的坐标特征1.“平行于两坐标轴的直线上的点”的坐标特征.2.“两坐标轴上的点”的坐标特征.3.“四个象限内的点”的坐标特征.。
北师大版八年级数学上册:3.2《平面直角坐标系》说课稿2一. 教材分析《北师大版八年级数学上册》第三单元《平面直角坐标系》是学生在学习了坐标轴、坐标点的基础上,对平面直角坐标系进行深入研究的课程。
本节课的内容包括坐标系的定义、坐标轴、坐标点的特征等,旨在让学生理解和掌握平面直角坐标系的基本概念和性质,能够熟练地在平面直角坐标系中确定点的坐标,为后续的函数、几何等知识的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了坐标轴、坐标点的基本概念,对平面直角坐标系有了一定的认识。
但是,对于坐标系的性质、坐标的确定方法等,还需要进一步的引导和讲解。
此外,学生对于实际问题中平面直角坐标系的应用,还需要通过实例进行引导和培养。
三. 说教学目标1.知识与技能目标:让学生理解平面直角坐标系的定义,掌握坐标轴、坐标点的特征,能够熟练地在平面直角坐标系中确定点的坐标。
2.过程与方法目标:通过实例分析,让学生理解坐标系在实际问题中的应用,培养学生的解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的抽象思维能力,让学生感受数学的美。
四. 说教学重难点1.教学重点:平面直角坐标系的定义,坐标轴、坐标点的特征,点的坐标确定方法。
2.教学难点:坐标系在实际问题中的应用,点的坐标的确定方法。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例分析法、小组合作法等,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、黑板、粉笔等,辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过复习坐标轴、坐标点的基本概念,引出平面直角坐标系的定义,激发学生的学习兴趣。
2.讲解新课:讲解坐标轴、坐标点的特征,通过实例分析,让学生理解坐标系在实际问题中的应用。
3.巩固新课:通过练习题,让学生掌握点的坐标确定方法,巩固所学知识。
4.拓展延伸:通过思考题,引导学生思考坐标系在实际问题中的更广泛应用,培养学生的抽象思维能力。
北师大版八年级数学上册《第三章位置与坐标》同步训练题-附答案学校:___________班级:___________姓名:___________考号:___________时间:60分钟满分:100分一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·广东深圳龙华区期末)家长会前,四个孩子分别向家长描述自己在班里的座位,家长能准确找到自己孩子座位的是()A.小明说他坐在第1排B.小白说他坐在第3列C.小清说她坐在第2排第5列D.小楚说他的座位靠窗2.(2021·四川成都郫都区期末)如图,小手盖住的点的坐标可能为()A.(5,2)B.(-6,3)C.(-3,-2)D.(3,-3)3.(2022·广西百色期中)在图中,所画的平面直角坐标系正确的是()A BC D4.(2022·黑龙江哈尔滨道里区期末)在平面直角坐标系中,点A在y轴上,位于原点上方,距离原点2个单位长度,则点A的坐标为() A.(2,0) B.(-2,0)C.(0,2)D.(0,-2)5.(2022·山西晋中期中)如图,在四边形ABCD中,AD∥BC∥x轴,下列说法正确的是()A.B与C的纵坐标相同B.C与D的横坐标相同C.A与D的横坐标相同D.B与D的纵坐标相同(第5题)(第6题)6.如图,雷达探测器测得六个目标A,B,C,D,E,F.按照规定的目标表示方法,目标C,F的位置分别表示为C(6,120°),F(5,210°).按照此方法表示目标A,B,D,E的位置,不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)7.小莹和小博士下棋,小莹执圆子,小博士执方子,如图,棋盘中心方子的位置用(-1,0)表示,左下角方子的位置用(-2,-1)表示,小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形,她放的位置是()A.(-2,0)B.(-1,1)C.(1,-2)D.(-1,-2)(第7题)(第8题)8.(2022·山东济宁任城区期末)如图,在平面直角坐标系中,点O为坐标原点,点A的坐标为(-5,12),它关于y轴的对称点为B,则△ABO的周长为()A.24B.34C.35D.369.(2021·辽宁锦州期中)下列说法不正确的是()A.若x+y=0,则点P(x,y)一定在第二、四象限的角平分线上B.点P(-2,3)到y轴的距离是2C.若P(x,y)中xy=0,则点P在x轴上D.点A(-a2,|b|)可能在第二象限10.对于平面直角坐标系xOy中的点P(a,b),若点P'的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P'为点P的“k属派生点”,例如:P(1,4)的“2属派生点”为P'(1+2×4,2×1+4),即P'(9,6).若点P在x轴的正半轴上,点P的“k 属派生点”为P'点,且线段PP'的长度为线段OP长度的3倍,则k的值为()A.3B.±3C.6D.±6二、填空题(共5小题,每小题3分,共15分)11.如图,已知字母W对应的有序数对为(2,4),有一个英文单词的字母依次对应的有序数对分别为(1,2),(1,3),(2,3),(5,1),请你把这个英文单词写出来.12.(2021·重庆北碚区期末)已知点P(a,b)在第三象限,且点P到x轴的距离为4,到y轴的距离为3,则点P的坐标为.13.(2022·重庆綦江区期末)在平面直角坐标系中,若点A(m-1,3)与点B(2,n-1)关于x轴对称,则(m+n)2 021的值为.14.(2021·江苏南京期末)如图,在平面直角坐标系中,点P为x轴上一点,且到A(0,2)和点B(5,5)的距离相等,则线段OP的长度为.(第14题)(第15题)15.(2022·河南郑州三中期末)如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2 021的横坐标为.三、解答题(共6小题,共55分)16.(7分)如图,我们把杜甫的《绝句》整齐排列放在平面直角坐标系中.(1)“东”“窗”和“柳”的坐标依次是:,和;(2)将第2行与第4行对调,再将第4列与第6列对调,(注:最上边一行为第一行,最左边一列为第一列)“里”由开始的坐标依次变换到和.17.(8分)下图中标明了李明家附近的一些地方,已知李明家位于(-2,-1).(1)建立平面直角坐标系,写出学校、邮局的坐标.(2)某星期日早晨,李明从家里出发,沿着(-1,-2),(1,-2),(2,-1),(1,-1),(1,3),(-1,0),(0,-1)的路线转了一下后回到家里,用线段顺次连接李明家和他在路上经过的地点,你能得到什么图形?18.(8分)(2022·浙江宁波期末改编)已知点P(-3a-4,2+a),解答下列问题:(1)若点P在x轴上,试求出点P的坐标;(2)若Q(5,8),且PQ∥y轴,试求出点P的坐标.19.(9分)(2022·河南郑州八中期末)如图,在平面直角坐标内,点A的坐标为(-4,0),点C与点A关于y轴对称.(1)请在图中标出点A和点C;(2)求△ABC的面积;(3)在y轴上有一点D,且S△ACD=S△ABC,写出点D的坐标.20.(11分)(2021·山东济南期中)如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(a,0),点C的坐标为(0,b),且a,b满足√a-4+|b-6|=0,点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着O—C—B—A—O的线路移动一圈停止.(1)a=,b=,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.21.(12分)(2022·甘肃白银期末)阅读下列文字,然后回答问题.已知在平面内有两点P1(x1,y1),P2(x2,y2),它们之间的距离P1P2=√(x1-x2)2+(y1-y2)2.(1)已知A(2,4),B(-3,-8),试求A,B两点间的距离.(2)已知△DEF各顶点为D(1,6),E(-2,2),F(4,2),请判断此三角形的形状,并说明理由.(3)在(2)的条件下,在平面直角坐标系中的x轴上找一点P,使PD+PF的长度最短,求出PD+PF的最短长度.参考答案12345678910C D A C A D B D C B11.HOPE12.(-3,4)13.114.4.615.1 0121.【答案】C(排除法)小明说他坐在第1排,无法确定座位位置;小白说他坐在第3列,无法确定座位位置;小楚说他的座位靠窗,无法确定座位位置.故选C.2.【答案】D3.【答案】A4.【答案】C∵在平面直角坐标系中,点A在y轴上,位于原点上方,距离原点2个单位长度,∴A点的坐标是(0,2).5.【答案】A∵在四边形ABCD中,AD∥BC∥x轴,∴点A与D的纵坐标相同,点B与C的纵坐标相同.6.【答案】D7.【答案】B棋盘中心方子的位置用(-1,0)表示,则这点所在的横线是x轴,这点向右1个单位所在的纵线是y轴,所以建立平面直角坐标系如图,故小莹将第4枚圆子放的位置是(-1,1)时所有棋子构成轴对称图形.8.【答案】D∵点A与点B关于y轴对称,A(-5,12),∴B(5,12),∴AB=10,OA=13,OB=13,∴△AOB的周长=OA+OB+AB=13+13+10=36.9.【答案】C∵x+y=0,∴x=-y,即点在第二、四象限的角平分线上;∵点P的横坐标是-2,∴点P到y轴的距离是2;若P(x,y)中xy=0,则点P可能在x轴上,也可能在y轴上;∵-a2≤0,|b|≥0,∴点A可能在第二象限,也可能在坐标轴上.故选C.10.【答案】B∵点P在x轴的正半轴上,∴P点的纵坐标为0,设P(a,0),a>0,则点P的“k属派生点”P'点为(a,ka),∴PP'=|ka|,OP=|a|,∵线段PP'的长度为线段OP长度的3倍,∴|ka|=3|a|,∴k=±3.11.【答案】HOPE由题意知(1,2)表示H,(1,3)表示O,(2,3)表示P,(5,1)表示E,所以这个英文单词为HOPE.12.【答案】(-3,4)13.【答案】1∵点A(m-1,3)与点B(2,n-1)关于x轴对称,∴m-1=2,n-1=-3,∴m=3,n=-2,∴(m+n)2 021=(3-2)2 021=1.14.【答案】4.6设点P(x,0),根据题意得x2+22=(5-x)2+52,解得x=4.6,∴OP=4.6.15.【答案】1 012∵A3是第一与第二个等腰直角三角形的公共点,A5是第二与第三个等腰直角三角形的公共点,A7是第三与第四个等腰直角三角形的公共点,A9是第四与第五个等腰直角三角形的公共点,…,∵2 021=1 010×2+1,∴A2 021是第1 010个与第1 011个等腰直角三角形的公共点,∴A2 021在x轴正半轴上,∵OA5=4,OA9=6,OA13=8,…,∴OA2 021=(2 021+3)÷2=1 012,∴点A2 021的坐标为(1 012,0),即A2 021的横坐标为1 012.16.【答案】(1)(3,1)(1,2)(7,4)(3分) (2)(6,1)(6,3)(4,3)(7分) 17.【答案】(1)建立平面直角坐标系如图所示,学校和邮局的坐标分别为(1,3),(0,-1).(2分)(5分)(2)如图,用线段顺次连接李明家和他在路上经过的地点,得到的图形是帆船.(8分)18.【答案】(1)∵点P在x轴上∴2+a=0,解得a=-2∴-3a-4=2∴点P的坐标为(2,0).(4分) (2)∵Q(5,8),且PQ∥y轴∴-3a-4=5,解得a=-3∴2+a=-1∴点P的坐标为(5,-1).(8分) 19.【答案】(1)如图,点A,C即为所求.(4分)×8×4=16.(7分) (2)易知B(-3,4),AC=8,所以S△ABC=12(3)点D的坐标为(0,4)或(0,-4).(9分) 20.【答案】(1)46(4,6)(3分) 解法提示:∵a,b满足√a-4+|b-6|=0∴a-4=0,b-6=0解得a=4,b=6.∵四边形OABC为长方形∴点B的坐标是(4,6).(2)当点P移动4秒时,共移动了8个单位长度.∵OA=4,OC=6∴此时点P在线段CB上,离点C的距离是8-6=2(个)单位长度∴点P的坐标是(2,6).(6分) (3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况:①当点P在OC上时点P移动的时间是5÷2=2.5(秒);(8分) ②当点P在BA上时点P移动的时间是(6+4+1)÷2=5.5(秒).故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.(11分) 21.【答案】(1)AB=√(2+3)2+(4+8)2=13.(2分) (2)等腰三角形.(3分) 理由:DE=√(1+2)2+(6-2)2=5EF=√(-2-4)2+(2-2)2=6DF=√(1-4)2+(6-2)2=5∴DE=DF<EF,DE2+DF2>EF2∴△DEF为等腰三角形.(6分) (3)如图,作点F关于x轴的对称点F',连接DF'交x轴于点P,则点P即为所求.∵F(4,2),∴F'(4,-2).∵D(1,6)∴DF'=√(1-4)2+(6+2)2=√73∴PD+PF的最短长度为√73.(12分)。
新北师大版八年级数学上册第三章坐标与位置同步练习题一、单选题1、从车站向东走400米,再向北走500米到小红家;从车站向北走500米,再向西走200米到小强家,则( )A .小强家在小红家的正东 B .小强家在小红家的正西 C .小强家在小红家的正南D .小强家在小红家的正北2、如图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是( )A .点A B.点B C. 点C D .点D3、为确定一个平面上点的位置,可用的数据个数为( ) A .1个 B .2个 C .3个 D .4个4、已知点A (3,4),B (3,1),C (4,1),则AB 与AC 的大小关系是( )A .AB >AC B .AB =AC C .AB <AC D .无法判断5、如图,正方形OABC 的边长为2,则该正方形绕点O 逆时针旋转45°后,B 点的坐标为( )A .(2,2)B .(0,22)C .(22,0)D .(0,2)6、如图,菱形OABC 的一边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°至OA ′B ′C ′的位置,若OB=,∠C=120°,则点B ′的坐标为( ) A .(3,3) B .(3,3-)C .(6,6)D .(6,6-)7、体育馆在教学楼东偏南30°的方向上,那么,教学楼在体育馆( )的方向上.A .东偏南30° B .南偏东30° C.西偏北30° D .北偏西30°8、某人从A 点出发向北偏东60°方向走10米,到达B 点,再向南偏西15°方向走10米,到达C 点.则∠ABC 等于( ) A .45° B .75° C .105° D .135°9、如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点( )A .(﹣1,1) B .(﹣2,﹣1) C .(﹣3,1) D .(1,﹣2)10、如图,在方格纸上△DEF 是由△ABC 绕定点P 顺时针旋转得到的.如果用(2,1)表示方格纸上A 点的位置,(1,2)表示B 点的位置,那么点P 的位置为( )A .(5,2) B.(2,5)C .(2,1)D .(1,2)11、在平面直角坐标系中,将线段OA 向左平移2个单位,平移后,点O 、A 的对应点分别为点O 1、A 1.若点O (0,0),A (1,4),则点O 1、A 1的坐标分别是( ) A .(0,0),(1,4) B .(0,0),(3,4) C.(﹣2,0),(1,4) D.(﹣2,0),(﹣1,4)12、如图,已知点A (1,2)和点B (3,﹣1),把线段AB 向右平移2个单位,则点B 的坐标变为( ) A .(﹣1,5) B .(5,﹣1) C .(1,﹣1) D.(﹣1,1) 二、填空题13、先将一矩形ABCD 置于直角坐标系中,使点A 与坐标系的原点重合,边AB 、AD 分别落在x 轴、y 轴上(如左图),再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图),若AB=8,BC=6,则右图中点C 的坐标为____.14、已知点M (3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N ,则点N 的坐标是____.15、如图,在平面直角坐标系中,△ABC 经过平移后点A 的对应点为点A ′,则平移后点B 的对应点B ′的坐标为____.16、将点A (0,6)绕着原点顺时针方向旋转60°得到点B ,则点B 的坐标为____(结果用根号表示).17、如图,A 、B 的坐标分别为(1,0)、(0,2),若将线段AB 平移到至A 1B 1,A 1、B 1的坐标分别为(2,a )、(b ,3),则a+b=____.18、如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(﹣1,4).将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C ′的坐标是____.19、如图,平面直角坐标系中,已知正方形OABC ,其中A ,C 分别在x 轴、y 轴上,B (2,2)将它绕O 点旋转到正方形OA ′B ′C ′的位置,已知两正方形的重叠部分的面积为334,则点C ′的坐标为____. 20、如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(﹣1,4).将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C ′的坐标是____.21、某军事行动中,对军队部署的方位,采用钟代码的方式来表示、例如,北偏东30°方向45千米的位置,与钟面相结合,以钟面圆心为基准,时针指向北偏东30°的时刻是1:00,那么这个地点就用代码010045来表示、按这种表示方式,南偏东40°方向78千米的位置,可用代码表示为________.22、某军事行动中,对军队部署的方位,采用钟代码的方式来表示、例如,北偏东30°方向45千米的位置,与钟面相结合,以钟面圆心为基准,时针指向北偏东30°的时刻是1:00,那么这个地点就用代码010045来表示、按这种表示方式,南偏东40°方向78千米的位置,可用代码表示为____. 三、解答题23、今后你将大量遇到用坐标的方法研究图形的运动变换.如图1,在已建立直角坐标系的方格纸中,图形P 的顶点为A ,B ,C ,要将它平移旋转到III 图(变换过程中图形的顶点必须在格点上,且不能超出方格纸的边界). 例如:将图形P 做如下变换(见图2).第一步:平移,使顶点C(6,6)移至点(4,3),得I图;第二步:绕着点(4,3)旋转180°,得II图;第三步:平移,使点(4,3)移至点O(0,0),得III图.(1)写出A,B两点的坐标;(2)从A,B,C三点中选取你要的点,仿照例题格式描述出另一种与上例不同的路线的图形变换.24、如果|x-3|+|2y+4|=0,那么点P(x,y)在第几象限?点Q(x-4,y+5)在坐标平面内的什么位置?25、我们规定:沿正北方向顺时针旋转θ角再前进a个单位,记作(θ,a),则分别作出下列有序数对表示的图形:(1)(45°,6);(2)(120°,8).26.小明和小新星期日到观山公园里游玩,他们在公园入口处买了张公园平面示意图,发现狮虎园在入口处的北偏西30°方向上,且距离入口处800米,大象馆在入口处的北偏东45°方向上,且距离入口处500米;两人走到狮虎园,发现猴山在狮虎园的北偏东60°,且距离狮虎园600米,游乐场在狮虎园的正东方向,距离1000米.两人在游乐场玩了﹣会儿后不知不觉走散了,后来通过手机取得了联系,小明仍在游乐场,小新则跑到了猴山.(1)用1:20000画出观山公园的平面示意图;(2)如果两人约定到狮虎园会合,那么小明和小新应分别沿什么方向行走才能最快到达狮虎园(3)如果两人约定到植物园会合,小明告诉小新说植物园在游乐场的南偏西60°,小新告诉小明说植物园在猴山的南偏西30°,那么他们到达植物园最少各需要走多少米(精确到10米).27、如图为某公园的示意图.(1)以虎山为原点,水平向右为x轴、铅直向上为y轴在图中建立直角坐标系,并写出各景点的坐标;(2)若以猴园为原点,水平向右为x轴、铅直向上为y轴建立直角坐标系,写出各景点坐标;(3)比较上述各景点的坐标,你发现了什么规律?28、观察下图,填一填,量一量,画一画.(1)学生宿舍在教学楼_____偏______°的方向上.(2)科技楼距离教学楼约米.(3)学校图书馆在教学楼正南方向约60米的位置,请在图中标出图书馆的位置.29、如图.在4×4个边长为1的正方形组成的方格中,标有A、B两点.请你表述点B相对点A的位置.30、在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.31、如图,平面直角坐标系中,△AOB为等腰直角三角形,且OA=AB.(1)如图,在图中画出△AOB关于BO的轴对称图形△A1OB,若A(﹣3,1),请求出A1点的坐标:(2)当△AOB绕着原点O旋转到如图所示的位置时,AB与y轴交于点E,且AE=BE.AF⊥y轴交BO 于F,连接EF,作AG∥EF交y轴于G.试判断△AGE的形状,并说明理由;(3)当△AOB 绕着原点O旋转到如图所示的位置时,若A(3,3),C为x轴上一点,且OC=OA,∠BOC=15°,P为y轴上一点,过P作PN⊥AC于N,PM⊥AO于M,当P在y轴正半轴上运动时,试探索下列结论:①PO+PN﹣PM不变,②PO+PM+PN不变.其中哪一个结论是正确的?请说明理由并求出其值.32、如图,奥运福娃在5×5的方格(每小格边长为1m)上沿着网格线运动.贝贝从A处出发去寻找B、C、D处的其它福娃,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4).请根据图中所给信息解决下列问题:(1)A→C(_______,______);B→C(_______,_______);C→_______(﹣3,﹣4);(2)如果贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程;(3)如果贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出妮妮的位置E点.试卷答案23,解:(1)根据C的坐标变化可得到点的坐标变化规律为:(x,y)⇒(x﹣2,y﹣3)⇒关于点(4,3)中心对称⇒平移后的坐标.根据此规律或结合坐标系可求得:A(4,6),B (6,4);(2)平移,使顶点C(6,6)移至点(2,2)⇒绕着点(1,1)旋转180°得到点O(0,0).24,解:根据题意可得x-3=0,2y+4=0,解得x=3,y=-2,∴点P的坐标为(3,-2),∴点P(3,-2)在第四象限;X-4=3-4=-1,y+5=-2+5=3,∴点Q的坐标为(-1,3),∴点Q在第二象限.25,(1)(45°,6)表示沿北偏东45°方向前进6个单位;(2)(120°,8).表示沿东偏南30°方向前进8个单位.26,解:(1)用1cm代表200米,如图A为狮虎园,D为大象馆,B为猴山,C为游乐场;(2)小明应沿正西方向走,小新沿南偏西60°方向走;(3)注意画图准确,先确定植物园的位置,然后量出植物园分别到游乐园和猴山的距离(精确到1mm),再转化为实际距离.27,解:(1)由图可得虎山(0,0)、熊猫馆(3,2)、鸟岛(﹣1,3)、狮子馆(﹣2,﹣2)、猴园(3,﹣1)(2)由图可得虎山(﹣3,1)、熊猫馆(0,3)、鸟岛(﹣4,4)、狮子馆(﹣5,﹣1)、猴园(0,0)(3)横坐标减小3,纵坐标增加1.(2分)28, 解:(1)学生宿舍在教学楼西偏南43°的方向上;(2)量得科技楼到教学楼的图上距离是3厘米,它们的实际距离是:3÷=9000(厘米)=90米. (3)图书馆到教学楼的图上距离是:60米=6000厘米,6000×=2(厘米).画图如下:29, 解:方法1:用有序实数对(a,b)表示.比如:以点A为原点,水平方向为x轴,建立直角坐标系,则B(3,3).方法2:用方向和距离表示.比如:B点位于A点的东北方向(北偏东45°等均可),距离A点3处.30, 解:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,∴OA旋转了45°.∴OA在旋转过程中所扫过的面积为.(2)∵MN∥AC,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.又∵BA=BC,∴AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON=(∠AOC﹣∠MON)=(90°﹣45°)=22.5°.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°﹣22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则∠AOE=45°﹣∠AOM,∠CON=90°﹣45°﹣∠AOM=45°﹣∠AOE,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°﹣90°=90°=∠OCN.∴△OAE≌△OCN.∴OE=ON,AE=CN.又∵∠MOE=∠MON=45°,OM=OM,∴△OME≌△OMN.∴MN=ME=AM+AE.∴MN=AM+CN,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC的过程中,p值无变化.31,(1)解:如图所示:△A1OB为所画的轴对称图形过A作AC⊥x轴于C,A1D⊥x轴于D,∵A(﹣3,1),∴AC=1,OC=3,∵OA=AB,∠BAO=90°,∴∠BOA=45°,∴∠BOA1=45°,∴∠AOA1=90°,∴∠AOC+∠A1OD=90°,又∵∠AOC+∠OAC=180°﹣∠ACO=90°,∴∠CAO=∠A1OD,又∵∠ACO=∠ODA1=90°,AO=A1O,∴△ACO≌△ODA1∴AC=OD=1,OC=A1D=3,∴A1,(1,3)(2)△AEG为等腰三角形证明:过B作BH⊥AB于B交AF的延长线于H,∵∠OAE=∠ABH=90°,∠AOE=∠BAH=90°﹣∠OAH,OA=AB,∴△AEO≌△BHA∴AE=BH=BE,∠AEO=∠BHA,又∵∠EBF=∠HBF=45°,BF=BF,∴△BEF≌△BHF(SAS)∴∠BHF=∠B EF∵AG∥EF∴∠EAG=∠BEF∴∠EAG=∠AEG∴AG=EG即△AEG为等腰三角形(3)PO+PN﹣PM=3不变,解:过A作AL⊥x轴于L,连接AP、PC∵A(,3)∴AL=3∵∠AOC=45°+15°=60°,OC=OA,∴△AOC为等边三角形,∵S△POC=PO•OC,S△PAC=PN•AC,S△POA=PM•OA,S△AOC=AL•OC,且S△AOC =S△POC+S△PAC﹣S△POA,∴S△AOC=AL•OC=PO•OC+PN•AC﹣PM•OA,∴PO+PN﹣PM=AL=3.32,解:(1)A→C(+3,+4);B→C(+2,0);C→A (﹣3,﹣4);故答案为:+3,+4;+2,0;A;(2)如果贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程;根据题意得:|+1|+|+4|+|+2|+|0|+|+1|+|﹣2|=10m.(3)妮妮的位置E点如图所示.。
3.2.3平面直角坐标系(三)同步练习题2021-2022学年北师大版八年级数学上册A组(基础题)一、填空题1.如图是某校的平面示意图的一部分,若用(0,0)表示图书馆的位置,(0,-3)表示校门的位置,则教学楼的位置可表示为______.2.如图,象棋盘上,若“将”位于点(0,-2),“车”位于点(-4,-2),则“马”位于点______3.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(-2,2),黑棋(乙)的坐标为(-1,-2),则白棋(甲)的坐标是______.4.(1)A(1,-2),B(-2,2)两点间的距离为______.(2)在平面直角坐标系中,若点M(1,0)与点N(a,0)之间的距离是5,则a的值是______.二、选择题5.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为A(-2,1)和B(-2,-3),那么第一架轰炸机C的坐标是()A.(-2,3) B.(2,-1) C.(-2,-1) D.(-3,2)6.一个长方形的三个顶点在平面直角坐标系中的坐标分别为(-1,-1),(-1,2),(3,-1),那么第四个顶点的坐标为()A.(3,2) B.(2,3) C.(3,3) D.(2,2)7.若以B点为原点,建立平面直角坐标系,A点坐标为(3,4),则以A点为原点,建立平面直角坐标系,B点坐标为()A.(-3,-4) B.(-3,4) C.(3,-4) D.(3,4)8.已知等腰△ABC,建立适当的平面直角坐标系后,其三个顶点的坐标分别为A(m,0),B(m +4,2),C(m+4,-3),则下列关于该三角形三边关系正确的是()A.AC=BC≠AB B.AB=AC≠BCC.AB=BC≠AC D.AB=AC=BC三、解答题9.建立两个适当的平面直角坐标系,分别写出边长为4的正方形的顶点的坐标.B组(中档题)四、填空题10.在一次寻宝游戏中,寻宝人找到了如图所示的两个标志,点A(2,3),B(4,1),这两个标志点到“宝藏点”的距离都是2,则“宝藏点”的坐标是______.11.如图,正方形网格ABCD是由25个边长相等的小正方形组成,将此网格放到一个平面直角坐标系中,使BC△x轴.若点E的坐标为(-4,2),点F的横坐标为5,则点H的坐标为______.12.已知点M在y轴上,点P(3,-2).若线段MP的长为5,则点M的坐标为______.13.五子棋是一种两人对弈的棋类游戏,规则是:一方执黑子,一方执白子,由黑方先行,白方后行,在正方形棋盘中,双方交替下子,每次只能下一子,下在棋盘横线与竖线的交叉点上,最先在棋盘横向、竖向或斜向形成连续的相同颜色五个棋子的一方为胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图,观察棋盘,以点O为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点,若黑子A的坐标为(7,5),则白子B的坐标为(5,1);此时轮到黑方下子,记其此步所下黑子为C,为了保证不让白方在两步之内(含两步)获胜,黑子C的坐标应该为______.五、解答题14.阅读下面一段文字,回答问题:已知在平面内两点的坐标为P1(x1,y1),P2(x2,y2),则该两点间距离公式为P1P2=(x2-x1)2+(y2-y1)2.同时,当两点在同一坐标轴上或所在直线平行于x轴或垂直于x 轴时,两点间的距离公式可简化成|x2-x1|或|y2-y1|.(1)若已知两点A(3,3),B(-2,-1),试求A,B两点间的距离.(2)已知点M,N在平行于y轴的直线上,点M的纵坐标为7,点N的纵坐标为-2,试求M,N两点间的距离.(3)已知一个三角形各顶点的坐标为A(0,5),B(-3,2),C(3,2),你能判定此三角形的形状吗?试说明理由.C组(综合题)15.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km),笔直铁路经过A,B两地.(1)求A,B间的距离.(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C 的距离相等,求C,D之间的距离.参考答案3.2.3平面直角坐标系(三)同步练习题2021-2022学年北师大版八年级数学上册A组(基础题)一、填空题1.如图是某校的平面示意图的一部分,若用(0,0)表示图书馆的位置,(0,-3)表示校门的位置,则教学楼的位置可表示为(5,0).2.如图,象棋盘上,若“将”位于点(0,-2),“车”位于点(-4,-2),则“马”位于点(3,1).3.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(-2,2),黑棋(乙)的坐标为(-1,-2),则白棋(甲)的坐标是(2,1).4.(1)A(1,-2),B(-2,2)两点间的距离为5.(2)在平面直角坐标系中,若点M(1,0)与点N(a,0)之间的距离是5,则a的值是6或-4.二、选择题5.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为A(-2,1)和B(-2,-3),那么第一架轰炸机C的坐标是( B )A.(-2,3) B.(2,-1) C.(-2,-1) D.(-3,2)6.一个长方形的三个顶点在平面直角坐标系中的坐标分别为(-1,-1),(-1,2),(3,-1),那么第四个顶点的坐标为( A )A.(3,2) B.(2,3) C.(3,3) D.(2,2)7.若以B点为原点,建立平面直角坐标系,A点坐标为(3,4),则以A点为原点,建立平面直角坐标系,B点坐标为( A )A.(-3,-4) B.(-3,4) C.(3,-4) D.(3,4)8.已知等腰△ABC,建立适当的平面直角坐标系后,其三个顶点的坐标分别为A(m,0),B(m +4,2),C(m+4,-3),则下列关于该三角形三边关系正确的是( A )A.AC=BC≠AB B.AB=AC≠BCC.AB=BC≠AC D.AB=AC=BC三、解答题9.建立两个适当的平面直角坐标系,分别写出边长为4的正方形的顶点的坐标.解:答案不唯一,如图1,以正方形两邻边所在的直线为坐标轴,建立平面直角坐标系,则A(4,0),B(4,4),C(0,4),D(0,0);如图2,以正方形的两条对称轴为坐标轴,建立平面直角坐标系,则A(2,-2),B(2,2),C(-2,2),D(-2,-2).B组(中档题)四、填空题10.在一次寻宝游戏中,寻宝人找到了如图所示的两个标志,点A(2,3),B(4,1),这两个标志点到“宝藏点”的距离都是2,则“宝藏点”的坐标是(2,1)或(4,3).11.如图,正方形网格ABCD是由25个边长相等的小正方形组成,将此网格放到一个平面直角坐标系中,使BC△x轴.若点E的坐标为(-4,2),点F的横坐标为5,则点H的坐标为(8,-1).12.已知点M在y轴上,点P(3,-2).若线段MP的长为5,则点M的坐标为(0,2)或(0,-6).13.五子棋是一种两人对弈的棋类游戏,规则是:一方执黑子,一方执白子,由黑方先行,白方后行,在正方形棋盘中,双方交替下子,每次只能下一子,下在棋盘横线与竖线的交叉点上,最先在棋盘横向、竖向或斜向形成连续的相同颜色五个棋子的一方为胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图,观察棋盘,以点O为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点,若黑子A的坐标为(7,5),则白子B的坐标为(5,1);此时轮到黑方下子,记其此步所下黑子为C,为了保证不让白方在两步之内(含两步)获胜,黑子C的坐标应该为(3,7)或(7,3).五、解答题14.阅读下面一段文字,回答问题:已知在平面内两点的坐标为P1(x1,y1),P2(x2,y2),则该两点间距离公式为P1P2=(x2-x1)2+(y2-y1)2.同时,当两点在同一坐标轴上或所在直线平行于x轴或垂直于x 轴时,两点间的距离公式可简化成|x2-x1|或|y2-y1|.(1)若已知两点A(3,3),B(-2,-1),试求A,B两点间的距离.(2)已知点M,N在平行于y轴的直线上,点M的纵坐标为7,点N的纵坐标为-2,试求M,N两点间的距离.(3)已知一个三角形各顶点的坐标为A(0,5),B(-3,2),C(3,2),你能判定此三角形的形状吗?试说明理由.解:(1)因为点A(3,3),B(-2,-1),所以AB=(-2-3)2+(-1-3)2=41,即A,B两点间的距离是41.(2)因为点M,N在平行于y轴的直线上,点M的纵坐标为7,点N的纵坐标为-2,所以MN=|-2-7|=9,即M,N两点间的距离是9.(3)该三角形为等腰直角三角形.理由:因为三角形各顶点的坐标为A(0,5),B(-3,2),C(3,2),所以AB=(-3-0)2+(2-5)2=18=32,BC=|3-(-3)|=6,AC=(3-0)2+(2-5)2=18=32.因为AB2+AC2=(32)2+(32)2=36,BC2=62=36,所以AB2+AC2=BC2,且AB=AC,即该三角形为等腰直角三角形.C组(综合题)15.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km),笔直铁路经过A,B两地.(1)求A,B间的距离.(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C 的距离相等,求C,D之间的距离.解:(1)由A,B两点的纵坐标相同可知,AB△x轴,所以AB=12-(-8)=20,即A,B间的距离为20 km.(2)过点C作l△AB于点E,连接AC,作AC的垂直平分线交直线l于点D,故AD=CD.因为CE△AB,AB△x轴,所以CE△x轴.又因为点C(0,-17)在y轴上,所以CE在y轴上.所以E(0,1).所以CE=1-(-17)=18,AE=12,设AD=CD=x,则DE=18-x.由勾股定理,得x2=(18-x)2+122,解得x=13,所以CD=13,即C,D之间的距离为13 km.。
第三章位置与坐标3.1 确定位置A阶练习1.根据下列表述,能确定位置的是()A.红星电影院2排B.北京市四环路C.北偏东30°D.东经118°,北纬40°2.某班级第4组第5排位置可以用数对(4,5)表示,则数对(2,3)表示的位置是()A.第3组第2排B.第3组第1排C.第2组第3排D.第2组第2排3.点A的位置如图所示,则关于点A的位置下列说法中正确的是()A.距点O 4km处B.北偏东40°方向上4km处C.在点O北偏东50°方向上4km处D.在点O北偏东40°方向上4km处4.如图是丁丁画的一张脸的示意图,如果用(−2,2)表示左眼,用(0,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(−1,0)C.(−1,1)D.(1,−1)5.如图是人民公园的部分平面示意图,为准确表示地理位置,可以建立坐标系用坐标表示地理位置,若牡丹园的坐标是(2,2),南门的坐标是(0,−3),则湖心亭的坐标为()A.(−1,3)B.(−3,1)C.(−3,−1)D.(3,−1)6.如图,象棋盘上,若“将”位于点(3,−2),“车”位于点(−1,−2),则“马”位于()A.(1,3)B.(5,3)C.(6,1)D.(8,2)7.以水平数轴的原点O为圆心,过正半轴Ox上的每一刻度点画同心圆,将Ox逆时针依次旋转30°、60°、90°、…、330°得到11条射线,构成如图所示的“圆”坐标系,点A、B的坐标分别表示为(5,0°)、(4,300°),则点C的坐标表示为.8.如果电影院的6排3号座位用(6,3)表示,那么该影院的7排5号座位可以表示为.9.如图,这是某市部分简图,为了确定各建筑物的位置:(图中小正方形的边长代表100m长)(1)请你以火车站为原点建立平面直角坐标系.(2)写出市场、超市、医院的坐标.3.2 平面直角坐标系A阶练习1.(2020春•南昌期末)点A(n+2,1−n)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限2.(2020春•广丰区期末)关于点P(−2,0)在直角坐标平面中所在的象限说法正确的是()A.点P在第二象限B.点P在第三象限C.点P既在第二象限又在第三象限D.点P不在任何象限3.(2020春•兴国县期末)在平面直角坐标系中,若a<0,则点(−2,−a)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限4.(2019秋•东湖区期末)P(6,−1)关于x轴的对称点坐标为()A.(6,1)B.(−6,−1)C.(−6,1)D.(−1,6)5.(2020•邗江区校级一模)如果点P(m+3,m+1)在x轴上,则点P的坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,−4)6.(2020•武汉模拟)在平面直角坐标系中,点M(3,−5)关于原点对称的点的坐标是()A.(−3,−5)B.(3,5)C.(5,−3)D.(−3,5)7.(2020春•南昌期末)已知点A(−3,2),AB∥坐标轴,且AB=4,若点B在x轴的上方,则点B坐标为.8.(2019秋•抚州期末)点A(5,−1)关于x轴对称的点A'的坐标是.9.(2019秋•广丰区期末)点A(1,5)关于原点对称,得到点A′,那么A′的坐标是.10.(2020春•宁都县期末)在平面直角坐标系中,点(2,3)到x轴的距离是.11.(2020春•霍林郭勒市期末)若点N(x,y)在第二象限,且到x轴距离为2,到y轴距离为3,则点N的坐标是.12.(2020•长汀县一模)已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=.13.(2020春•单县期末)已知点P(−3a−4,2+a),解答下列各题:(1)若点P在x轴上,试求出点P的坐标;(2)若Q(5,8),且PQ∥y轴,试求出点P的坐标.14.(2020春•广丰区校级期末)已知点P(a−2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.15.(2019秋•吉安期中)在平面直角坐标系xOy中,△ABC的位置如图所示.(1)顶点A关于x轴对称的点A′的坐标(,),顶点B的坐标(,),顶点C关于原点对称的点C′的坐标(,).(2)△ABC的面积为.一.选择题(共5小题)1.在平面直角坐标系中,点P与点M关于y轴对称,点N与点M关于x轴对称,若点P的坐标为(−2,3),则点N的坐标为()A.(−3,2)B.(2,3)C.(2,−3)D.(−2,−3)2.已知坐标平面内,线段AB∥x轴,点A(−2,4),AB=1,则B点坐标为()A.(−1,4)B.(−3,4)C.(−1,4)或(−3,4)D.(−2,3)或(−2,5)3.平面直角坐标系中,点A(−2,−1),B(1,3),C(x,y),若AC∥x轴,则线段BC的最小值为()A.2B.3C.4D.54.已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.(a,b)B.(−a,b)C.(−a,−b)D.(a,−b)5.在平面直角坐标系中,点P(−3,2)到原点的距离为()A.1B.√5C.√13D.√116.已知直角坐标平面内两点A(−3,1)和B(3,−1),则A、B两点间的距离等于.7.已知点M(a,b)的坐标满足ab>0,且a+b<0,则点N(1−a,b−1)在第象限.8.如图,在平面直角坐标系中,DC=AB,OD=OB,则点C的坐标是.9.已知点A(m,−2)和点B(3,n),若直线AB∥x轴,且AB=4,则m+n的值.10.a、b、c为△ABC的三条边,满足条件点(a−c,a)与点(0,−b)关于x轴对称,判断△ABC的形状.B阶练习11.已知点P(2m+4,m−1),请分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过点A(2,−4)且与y轴平行的直线上.12.如图,已知四边形ABCD.(1)写出点A,B,C,D的坐标;(2)试求四边形ABCD的面积.(网格中每个小正方形的边长均为1)13.平面直角坐标系中有一点M(a−1,2a+7),试求满足下列条件的α值(1)点M在y轴上;(2)点M到x轴的距离为1;(3)点M到y轴的距离为2;(4)点M到两坐标轴的距离相等.3.3 轴对称与坐标变化1.(2019春•南丰县期中)若将点(−1,3)向左平移3个单位,再向下平移4个单位得到点B,则B点坐标为()A.(−4,−1)B.(2,−1)C.(2,7)D.(−4,7)2.(2019春•宜昌期中)如果甲图形上的点P(−2,4)经平移变换后是Q(3,−2),则甲图上的点M(1,−2)经这样平移后的对应点的坐标是()A.(6,−8)B.(−4,4)C.(5,3)D.(3,−5)3.(2019春•河池期末)线段CD是由线段AB平移得到的.点A(−1,4)的对应点为C(4,7),则点B(−4,−1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(−9,−4)4.(2019春•虹口区期末)平面直角坐标系中,将正方形向上平移3个单位后,得到的正方形各顶点与原正方形各顶点坐标相比()A.横坐标不变,纵坐标加3B.纵坐标不变,横坐标加3C.横坐标不变,纵坐标乘以3D.纵坐标不变,横坐标乘以35.(2019春•南昌期中)将△ABC平移得到△A1B1C1,若已知对应点A(m,n)和A1(2m,2n),则B(a,b)的对应点B1的坐标为()A.(2a,2b)B.(a+m,b+n)C.(a+2,b+2)D.无法确定6.(2019春•高安市期中)在平面直角坐标系内,把点A(4,−1)先向右平移3个单位长度,再向上平移2个单位长度得到点A′,则点A′的坐标是.7.(2019秋•会昌县期中)在平面直角坐标系中,将点P(−3,2)绕点O(0,0)顺时针旋转90°,所得到的对应点P′的坐标为.8.(2020春•赣州期中)若将P(1,−m)向右平移2个单位长度后,再向上平移1个单位长度得到点Q(n,3),则点(m,n)的实际坐标是.9.(2019春•南昌期末)若点A(a−1,a+2)在x轴上,将点A向上平移4个单位长度得点B,则点B的坐标是.10.(2019•和平区一模)如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至A1B1,则a+b的值为.11.(2020春•新余期末)将△ABC向右平移4个单位长度,再向下平移5个单位长度,A阶练习(1)作出平移后的△A′B′C′.(2)求出△A′B′C′的面积.12.(2020春•渝水区校级月考)在平面直角坐标系中,△ABC经过平移得到三角形△A′B′C′,位置如图所示:(1)分别写出点A、A'的坐标:A,A';(2)若点M(m,n)是△ABC内部一点,则平移后对应点M'的坐标为;(3)求△ABC的面积.B阶练习1.如图,将线段AB绕点C(4,0)顺时针旋转90°得到线段A'B',那么A(2,5)的对应点A'的坐标是()A.(9,2)B.(7,2)C.(9,4)D.(7,4)2.将点P(m+2,2﹣m)向左平移1个单位长度到P',且P'在y轴上,那么点P的坐标是()A.(1,3)B.(3,−1)C.(−1,5)D.(3,1)3.在平面直角坐标系中,点G的坐标是(−2,1),连接OG,将线段OG绕原点O旋转180°,得到对应线段OG',则点G'的坐标为()A.(2,−1)B.(2,1)C.(1,−2)D.(−2,−1)4.如图,在平面直角坐标系中,A(1,0),B(−2,4),AB绕点A顺时针旋转90°得到AC,则点C的坐标是()A.(4,3)B.(4,4)C.(5,3)D.(5,4)5.在平面直角坐标系中,把点P(3,4)绕原点旋转90°得到点P1,则点P1的坐标是()A.(−4,3)B.(−3,4)C.(−3,4)或(3,−4)D.(−4,3)或(4,−3)6.已知点M(3a−9,1−a),将M点向左平移3个单位长度后落在y轴上,则M的坐标是.7.已知点A(−4,3)、B(2,−1)两点,现将线段AB进行平移,使点A移到坐标原点,则此时点B的坐标是.8.如图,点P(−2,1)与点Q(a,b)关于直线l(y=−1)对称,则a+b=.9.在平面直角坐标系中,点P(−2,5)关于直线x=2对称的点的坐标为.10.如图,在直角坐标系中,已知点A(3,2),将△ABO绕点O逆时针方向旋转180°后得到△CDO,则点C的坐标是.11.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)写出A′、B′、C′的坐标;(2)求出△ABC的面积;(3)点P在y轴上,且△BCP与△ABC的面积相等,求点P的坐标.12.已知三角形ABC与三角形A'B'C'在平面直角坐标系中的位置如图(1)分别写出点B、B'的坐标:B,B';(2)若点P(a,b)是三角形ABC内部一点,则平移后三角形A'B'C'内的对应点P'的坐标为;(3)求三角形ABC的面积.第三章《位置与坐标》3.1 确定位置A阶练习1.D.2.C.3.D.4.B.5.B.6.C.7.(3,240°).8.(7,5).9.解:(1)建立平面直角坐标系如图所示;(2)市场(400,300),医院(−200,−200),超市(200,−300).3.2 平面直角坐标系A阶练习1.C.2.D.3.B.4.A.5.B.6.D.7.(−3,6)或(1,2)或(−7,2).8.(5,1).9.(−1,−5).10.3.11.(−3,2).12.−6.13.解:(1)∵点P在x轴上,∴2+a=0,∴a=−2,∴−3a−4=2,∴P(2,0)(2)∵Q(5,8),且PQ∥y轴,∴−3a−4=5,a=−3,∴2+a=−1,P(5,−1)14.解:(1)∵点P(a−2,2a+8),在x轴上,∴2a+8=0,解得:a=−4,故a−2=−4−2=−6,则P(−6,0);(2))∵点P(a−2,2a+8),在y轴上,∴a−2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a−2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a−2=2a+8或a−2+2a+8=0,解得:a1=−10,a2=−2,故当a=−10则:a−2=−12,2a+8=−12,则P(−12,−12);故当a=−2则:a−2=−4,2a+8=4,则P(−4,4).综上所述:P(−12,−12),(−4,4).15.解:(1)顶点A关于x轴对称的点A′的坐标(−4,−3),顶点B的坐标(3,0),顶点C关于原点对称的点C′的坐标(2,−5).故答案为:−4,−3;3,0;2,−5;(2)△ABC的面积为:12×5×5+2×5−12×2×2−12×3×7=10.故答案为:10.B阶练习1.C.2.C.3.C.4.B.5.C.6.2√10.7.四.8.(0,1).9.5或﹣3.10.等边三角形.11.解:(1)∵点P(2m+4,m−1)在x轴上,∴m−1=0,解得m=1,∴2m+4=2×1+4=6,m−1=0,所以,点P的坐标为(6,0);(2)∵点P(2m+4,m−1)的纵坐标比横坐标大3,∴m−1−(2m+4)=3,解得m=−8,∴2m+4=2×(−8)+4=−12,m−1=−8−1=−9,∴点P的坐标为(−12,−9);(3)∵点P(2m+4,m−1)在过点A(2,−4)且与y轴平行的直线上,∴2m+4=2,解得m=−1,∴m−1=−1−1=−2,∴点P的坐标为(2,−2).12.解:(1)A(−2,1),B(−3,−2),C(3,−2),D(1,2);(2)S四边形ABCD=3×3+2×12×1×3+12×2×4=16.13.解:(1)∵点M在y轴上,∴a−1=0,∴a=1;(2)∵点M到x轴的距离为1;∴2a+7=1或2a+7=−1,∴a=−3或a=−4;(3)∵点M到y轴的距离为2,∴a−1=2或a−1=−2,∴a=3或a=−1;(4)∵点M到两坐标轴的距离相等,∴|a−1|=|2a+7|,∴a=−2或a=−8.3.3 轴对称与坐标变换A阶练习1.A.2.A.3.C.4.A.5.B.6.(7,1).7.(2,3).8.(−2,3).9.(−3,4).10.2.11.解:(1)如图.(2)△A′B′C′的面积是:7×8−12×3×7−12×5×2−12×8×5=20.5.12.解:(1)由图知A(1,0),A'(−4,4);(2)A(1,0)对应点的对应点A′(−4,4)得A 向左平移5个单位,向上平移4个单位得到A′,故△ABC内M(m,n)平移后对应点M'的坐标为(m−5,n+4);(3)△ABC的面积为:4×4−12×4×2−12×3×2−12×1×4=7.B阶练习1.A.2.A.3.A.4.C.5.D.6.(3,−3).7.(6,−4).8.−5.9.(6,5).10.(−3,−2).11.解:(1)如图所示:A′(0,4)、B′(−1,1)、C′(3,1);(2)S△ABC=12×(3+1)×3=6;(3)设点P坐标为(0,y),∵BC=4,点P到BC的距离为|y+2|,由题意得12×4×|y+2|=6,解得y=1或y=−5,所以点P的坐标为(0,1)或(0,−5).12.解:(1)观察图象可知B(3,−4),B′(−2,0).故答案为:(3,−4),(−2,0).(2)由题意△A′B′C′是由△ABC向左平移5个单位,向上平移4个单位得到,∴P′(a−5,b+4).故答案为(a−5,b+4).(3)S△ABC=4×4−12×2×4−12×4×1−12×2×3=7.。
北师大版八年级数学上册:3.2《平面直角坐标系》说课稿一. 教材分析《平面直角坐标系》是北师大版八年级数学上册第三章第二节的内容。
本节课的主要内容是让学生掌握平面直角坐标系的建立、坐标轴的特点、坐标的表示方法以及坐标轴上的点的坐标特点。
教材通过生动的实例和丰富的练习,使学生能够理解并熟练运用平面直角坐标系解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了实数、一次函数和二次函数等基础知识。
他们对数学图形有一定的认识,但平面直角坐标系的概念和应用可能较为抽象。
因此,在教学过程中,需要注重引导学生通过观察、操作和思考,理解和掌握平面直角坐标系的相关知识。
三. 说教学目标1.知识与技能目标:让学生掌握平面直角坐标系的建立、坐标轴的特点、坐标的表示方法,以及坐标轴上的点的坐标特点。
2.过程与方法目标:通过观察、操作和思考,培养学生运用平面直角坐标系解决实际问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
四. 说教学重难点1.教学重点:平面直角坐标系的建立,坐标轴的特点,坐标的表示方法。
2.教学难点:坐标轴上的点的坐标特点,以及运用平面直角坐标系解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和探究式教学法。
2.教学手段:利用多媒体课件、实物模型和几何画板等辅助教学。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考如何用数学方法表示物体的位置。
2.探究平面直角坐标系:让学生观察和分析实际问题,引导学生发现平面直角坐标系的建立和特点。
3.学习坐标表示方法:讲解坐标的表示方法,让学生通过实际操作,掌握坐标轴上的点的坐标特点。
4.应用与拓展:让学生运用平面直角坐标系解决实际问题,培养学生的应用能力。
5.总结与反思:对本节课的内容进行总结,引导学生思考如何更好地运用平面直角坐标系。
七. 说板书设计板书设计要简洁明了,突出重点。
北师大版八年级数学上册:3.2 《平面直角坐标系》教案1一. 教材分析《平面直角坐标系》是北师大版八年级数学上册第三章第二节的内容。
本节课的主要内容是让学生掌握平面直角坐标系的定义、特点以及坐标轴上的点的坐标特征。
通过本节课的学习,学生能够理解坐标系在数学和物理中的重要性,为后续函数、几何等知识的学习打下基础。
二. 学情分析学生在七年级已经学习了点的坐标,对坐标有一定的认识。
但他们对平面直角坐标系的理解还不够深入,需要通过本节课的学习进一步巩固和提高。
此外,学生需要掌握如何在平面直角坐标系中表示点、直线和图形,以及如何利用坐标系解决实际问题。
三. 教学目标1.知识与技能:理解平面直角坐标系的定义和特点,掌握坐标轴上的点的坐标特征,学会在平面直角坐标系中表示点、直线和图形。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:感受数学与现实生活的联系,体会数学学习的乐趣,提高学生对数学的兴趣。
四. 教学重难点1.重点:平面直角坐标系的定义、特点和坐标轴上的点的坐标特征。
2.难点:如何在平面直角坐标系中表示点、直线和图形,以及利用坐标系解决实际问题。
五. 教学方法采用讲授法、问答法、自主探究法、合作交流法等教学方法,引导学生观察、操作、思考、交流,从而达到理解平面直角坐标系的目的。
六. 教学准备1.教师准备:教材、PPT、黑板、粉笔、坐标轴模型等。
2.学生准备:笔记本、彩笔、剪刀、胶水等。
七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾七年级学过的点的坐标知识,为新课的学习做好铺垫。
例如:“同学们,你们还记得点的坐标吗?在坐标系中,如何表示一个点的位置?”呈现(10分钟)1.教师通过PPT展示平面直角坐标系的定义和特点,引导学生理解新知识。
2.教师讲解坐标轴上的点的坐标特征,如x轴上的点的纵坐标为0,y轴上的点的横坐标为0。
操练(10分钟)1.学生自主探究:在平面直角坐标系中表示点、直线和图形。
3.2 平面直角坐标系一、选择题(共8小题,每小题3分,满分24分)1.已知点P位于x轴上方,距离x轴4个单位长度,位于y轴右侧,距y轴3个单位长度,则点P坐标是()A.(﹣3,4)B.(﹣4,3)C.(3,4)D.(4,3)2.已知在直角坐标系中有点P(x、y),且x、y满足条件|x|=5,|x﹣y|=8,则这样的点P 有()A.1个B.2个C.4个D.8个3.第二象限内一点P到x轴的距离等于2,到y轴的距离等于3,则点P的坐标为()A.(﹣2,3)B.(2,﹣3)C.(﹣3,2)D.(3,﹣2)4.已知点P到x轴的距离为1,到y轴的距离为2,则点P的坐标不可能为()A.(1,2)B.(﹣2,﹣1)C.(2,﹣1)D.(2,1)5.在平面直角坐标系中,点(﹣5,2)所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限6.如果点P(m+3,m+1)在x轴上,则点P的坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)7.正方形的两条边在坐标轴上,其中一个顶点的坐标是(0,0),其他部分在第三象限,面积为4,那么这个正方形不在坐标轴上的顶点的坐标是()A.(2,2)B.(﹣2,﹣2)C.(﹣2,2)D.(2,﹣2)8.在第二象限内,到x轴距离为3,到y轴距离为2的点P坐标为()A.(3,2)B.(2,3)C.(﹣3,2)D.(﹣2,3)二、填空题(共5小题,每小题3分,满分15分)9.在y轴上,若点M与点N(0,3)的距离是6,则点M的坐标是.10.在x轴上,若点P与点Q(﹣2,0)的距离是5,则点P的坐标是.11.平面上有一点P(a,b),点P到x轴、y轴的距离分别为3、4,且ab<0,则点P的坐标是.12.点P(m+3,m+1)在直角坐标系的x轴上,则P点坐标为.13.若点M(a﹣3,a+4)在y轴上,则M点的坐标为.三、解答题(共1小题,满分0分)14.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点P到x轴、y轴的距离相等;(4)点Q的坐标为(1,5),直线PQ∥y轴.参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.已知点P位于x轴上方,距离x轴4个单位长度,位于y轴右侧,距y轴3个单位长度,则点P坐标是()A.(﹣3,4)B.(﹣4,3)C.(3,4)D.(4,3)【分析】根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.【解答】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选:C.2.已知在直角坐标系中有点P(x、y),且x、y满足条件|x|=5,|x﹣y|=8,则这样的点P 有()A.1个B.2个C.4个D.8个【分析】根据题意,由|x|=5可得,x=±5,又由|x﹣y|=8,即x﹣y=±8,代入x的值,解可得y的值,进而可得解的组数,即可得答案.【解答】解:根据题意,由|x|=5可得,x=±5,又由|x﹣y|=8,即x﹣y=±8,当x=5时,可得y=13或﹣3,当x=﹣5时,可得y=﹣13或3,即这样的点P有4个,分别为(5,﹣3),(5,13),(﹣5,3),(﹣5,﹣13);故选:C.3.第二象限内一点P到x轴的距离等于2,到y轴的距离等于3,则点P的坐标为()A.(﹣2,3)B.(2,﹣3)C.(﹣3,2)D.(3,﹣2)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答即可.【解答】解:∵第二象限内一点P到x轴的距离等于2,到y轴的距离等于3,∴点P的横坐标为﹣3,纵坐标为2,∴点P的坐标为(﹣3,2).故选:C.4.已知点P到x轴的距离为1,到y轴的距离为2,则点P的坐标不可能为()A.(1,2)B.(﹣2,﹣1)C.(2,﹣1)D.(2,1)【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度求出点P可能的横坐标与纵坐标,即可得解.【解答】解:∵点P到x轴的距离为1,到y轴的距离为2,∴点P的横坐标为2或﹣2,纵坐标为1或﹣1,∴点P的坐标不可能为(1,2).故选:A.5.在平面直角坐标系中,点(﹣5,2)所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(﹣5,2)在第二象限.故选:B.6.如果点P(m+3,m+1)在x轴上,则点P的坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)【分析】根据点P在x轴上,即y=0,可得出m的值,从而得出点P的坐标.【解答】解:∵点P(m+3,m+1)在x轴上,∴y=0,∴m+1=0,解得:m=﹣1,∴m+3=﹣1+3=2,∴点P的坐标为(2,0).故选:B.7.正方形的两条边在坐标轴上,其中一个顶点的坐标是(0,0),其他部分在第三象限,面积为4,那么这个正方形不在坐标轴上的顶点的坐标是()A.(2,2)B.(﹣2,﹣2)C.(﹣2,2)D.(2,﹣2)【分析】根据正方形的性质即可得这个正方形不在坐标轴上的顶点的坐标.【解答】解:因为正方形的面积为4,所以正方形的边长为2,因为正方形的两条边在坐标轴上,其中一个顶点的坐标是(0,0),其他部分在第三象限,这个正方形不在坐标轴上的顶点的坐标是(﹣2,﹣2).故选:B.8.在第二象限内,到x轴距离为3,到y轴距离为2的点P坐标为()A.(3,2)B.(2,3)C.(﹣3,2)D.(﹣2,3)【分析】根据点到坐标轴的距离,可得x、y的值,再根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【解答】解:∵|x|=2,|y|=3,∴x=±2,y=±3,∵点P在第二象限,∴P(﹣2,3),故选:D.二、填空题(共5小题,每小题3分,满分15分)9.在y轴上,若点M与点N(0,3)的距离是6,则点M的坐标是(0,﹣3)或(0,9).【分析】分点M在点N的上方与下方两种情况讨论求解即可.【解答】解:①当点M在点N的上方时,3+6=9,此时点M的坐标为(0,9),②点M在点N的下方时,3﹣6=﹣3,此时,点M的坐标为(0,﹣3),综上所述,点M的坐标为(0,﹣3)或(0,9).故答案为:(0,﹣3)或(0,9).10.在x轴上,若点P与点Q(﹣2,0)的距离是5,则点P的坐标是(﹣7,0)或(3,0).【分析】易得点P的纵坐标为0,横坐标为﹣2左边5个单位的数或﹣2右边5个单位的数,即可得解.【解答】解:∵点P在x轴上,∴点P的纵坐标为0,∵点P与点Q(﹣2,0)的距离是5,∴点P的横坐标为﹣2﹣5=﹣7或﹣2+5=3,∴点P的坐标是(﹣7,0)或(3,0).故答案填:(﹣7,0)或(3,0).11.平面上有一点P(a,b),点P到x轴、y轴的距离分别为3、4,且ab<0,则点P的坐标是(﹣4,3)或(4,﹣3).【分析】根据异号得负判断出x、y异号,再根据点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值求解即可.【解答】解:∵ab<0,∴a、b异号,∵点P到x轴、y轴的距离分别为3、4,∴x=﹣4,y=3或x=4,y=﹣3,∴点P的坐标为(﹣4,3)或(4,﹣3).故答案为:(﹣4,3)或(4,﹣3).12.点P(m+3,m+1)在直角坐标系的x轴上,则P点坐标为(2,0).【分析】根据x轴上点的坐标特点解答即可.【解答】解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴这点的纵坐标是0,∴m+1=0,解得,m=﹣1,∴横坐标m+3=2,则点P的坐标是(2,0).13.若点M(a﹣3,a+4)在y轴上,则M点的坐标为(0,7).【分析】根据y轴上点的横坐标为0列方程求出a的值,然后求解即可.【解答】解:∵点M(a﹣3,a+4)在y轴上,∴a﹣3=0,解得:a=3,所以,a+4=7,所以,点M的坐标为(0,7).故答案为(0,7).三、解答题(共1小题,满分0分)14.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点P到x轴、y轴的距离相等;(4)点Q的坐标为(1,5),直线PQ∥y轴.【分析】(1)利用x轴上点的坐标性质纵坐标为0,进而得出a的值,即可得出答案;(2)利用y轴上点的坐标性质横坐标为0,进而得出a的值,即可得出答案;(3)利用点P到x轴、y轴的距离相等,得出横纵坐标相等或互为相反数进而得出答案;(4)利用平行于y轴直线的性质,横坐标相等,进而得出a的值,进而得出答案.【解答】解:(1)∵点P(a﹣2,2a+8)在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2)∵点P(a﹣2,2a+8)在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4);(4)∵点Q的坐标为(1,5),直线PQ∥y轴,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14).。