受迫振动(用)
- 格式:ppt
- 大小:1.07 MB
- 文档页数:18
利用波尔共振仪研究受迫振动实验报告一、实验目的1、观察摆轮在受迫振动时的振幅频率特性和相位频率特性。
2、研究不同阻尼力矩对受迫振动的影响,测定阻尼系数。
3、学习用频闪法测定动态物理量——相位差。
二、实验仪器波尔共振仪由振动仪与电器控制箱两部分组成。
振动仪部分由摆轮、摆盘、弹性钢丝、光电门、阻尼线圈等组成。
电器控制箱部分有电源开关、电机转速调节旋钮、闪光灯开关、振幅调节旋钮等。
三、实验原理1、受迫振动物体在周期性外力的持续作用下进行的振动称为受迫振动。
当外力的频率与物体的固有频率接近时,振幅会显著增大,这种现象称为共振。
2、运动方程设摆轮转动惯量为 J,扭转弹性系数为 k,阻尼系数为 b,强迫力矩为 M = M₀cosωt,则摆轮的运动方程为:Jd²θ/dt² +bdθ/dt +kθ = M₀cosωt其中,θ 为角位移,ω 为强迫力矩的角频率。
3、幅频特性和相频特性在小阻尼情况下,受迫振动的振幅和相位差与强迫力矩的频率之间存在特定的关系。
振幅 A 与强迫力矩频率ω 的关系为:A = M₀/√((k Jω²)² +(bω)²)相位差φ 与强迫力矩频率ω 的关系为:φ =arctan(bω/(k Jω²))四、实验内容及步骤1、调整仪器将波尔共振仪调整至水平状态,打开电源,调节电机转速,使摆轮做自由摆动,观察其振幅和周期是否稳定。
2、测量固有频率在阻尼较小的情况下,让摆轮自由摆动,测量其振幅逐渐衰减到初始振幅的一半所经历的时间 t,根据公式计算固有频率ω₀=2π/t。
3、测量幅频特性选择不同的阻尼档位,逐渐改变电机转速,即改变强迫力矩的频率ω,测量相应的振幅 A,绘制幅频特性曲线。
4、测量相频特性在测量幅频特性的同时,使用频闪法测量相位差φ,绘制相频特性曲线。
5、数据分析根据实验数据,分析阻尼系数对幅频特性和相频特性的影响,验证理论公式。
五、实验数据及处理以下是一组实验数据示例(实际数据应根据实验情况记录):|强迫力矩频率ω(Hz)|振幅 A(mm)|相位差φ(°)|阻尼档位||||||| 05 | 50 | 100 |小阻尼|| 06 | 65 | 150 |小阻尼|| 07 | 80 | 200 |小阻尼||||||根据实验数据,以强迫力矩频率ω 为横坐标,振幅 A 和相位差φ 分别为纵坐标,绘制幅频特性曲线和相频特性曲线。
利用波尔共振仪研究受迫振动实验报告实验报告:利用波尔共振仪研究受迫振动一、实验目的与意义1.1 实验目的本次实验的主要目的是探究受迫振动现象。
在力学中,受迫振动是一个非常重要的概念。
它在我们生活中随处可见,比如秋千的摆动,甚至是建筑物在地震中的反应。
我们使用波尔共振仪进行实验,目的是观察和分析系统在不同频率下的振动特性。
1.2 实验意义理解受迫振动不仅仅是为了理论上的探索。
它还对实际应用有着深远的影响。
比如,工程师们需要设计抗震建筑,音乐家需要调音,甚至航天器的发射也需要考虑振动问题。
通过本次实验,我们可以加深对振动机制的理解,提升我们的实验技能和观察能力。
二、实验原理2.1 受迫振动受迫振动是指在外力作用下,物体的振动状态。
简单来说,就是你推一下秋千,它开始摆动。
频率的匹配至关重要。
当外力的频率与系统的固有频率相匹配时,振动幅度会显著增大,这就是共振现象。
2.2 波尔共振仪波尔共振仪是一个非常精密的设备。
它通过控制外部频率,测量物体的振动响应。
仪器的操作看似复杂,但其实就是不断调整频率,观察振动情况。
波尔共振仪帮助我们量化受迫振动的特征。
2.3 实验步骤实验开始前,我们首先组装好波尔共振仪。
然后,将待测物体固定在仪器上。
接着,缓慢增加外力的频率,观察并记录物体的振动幅度。
通过多次实验,我们能得到不同频率下的振动数据。
三、实验过程3.1 准备工作准备工作可谓是关键一步。
我们细心地检查仪器,确保每个部件都工作正常。
小心翼翼地调整仪器,像是给一个脆弱的孩子穿衣服。
紧张又期待。
接下来,我们把待测物体固定好,心中暗暗祈祷一切顺利。
3.2 数据记录频率逐渐升高,物体开始轻微摆动。
我们仔细观察,兴奋感油然而生。
随着频率增加,振动幅度渐渐增大,直到某个特定频率,振动幅度达到了最高点。
这一瞬间,仿佛时间都静止了。
我们迅速记录下这个数据,心里暗自高兴。
3.3 结果分析分析数据的过程充满挑战。
我们逐一查看记录,找出共振点。
实验1 用摆球探究受迫振动和共振现象实验目的探究受迫振动的振动频率由什么因素决定,以及发生共振的条件是什么。
实验器材一组带小孔的金属小球(质量不同)、细绳、钢丝、电子秒表。
实验设计与步骤1.改变甲球的振幅,测量乙球的周期。
2.改变乙球的绳长,测量乙球的周期。
3.不改变绳长,改变乙球的质量(如更换不同质量的小球或在球上增加一块橡皮泥),测量乙球的周期。
4.改变甲球的绳长,测量乙球的周期。
5.用5个摆球演示共振现象,三个摆球的长摆相同,另外两个摆长不同。
实验结果与分析1.从小到大改变驱动球甲球的振幅,测量乙球的周期。
表7.4-1实验分析:甲球的振幅改变,不影响乙球的振动周期(频率)。
2.改变乙球的绳长,测量乙球的周期变化。
表7.4—2实验分析:乙球的振动周期(频率)不随着自身摆长(固有周期)的改变而改变。
3.不改变绳长,改变乙球的质量,测量乙球的周期变化。
表7.4-3实验分析:乙球的振动周期(频率)不随着自身的质量的改变而改变。
4.改变甲球的绳长,测量乙球的周期变化。
表7.4-4实验分析:甲球绳长的改变,即驱动周期(频率)的改变影响了乙球的振动周期(频率)的变化。
5.演示共振现象。
实验装置如图所示。
球A、B、C的摆长一样,球E的摆长较短,球D的摆长最长。
让球A振动起来,观察其他小球振动稳定后的现象。
实验现象:与球A同摆长的球B、C的振幅最大,摆长与球A越接近的球E的振幅次之,球D的振幅最小。
实验分析:对于摆长与球A同摆长的球B、C,即固有周期(频率)与驱动力周期(频率)相等的摆球的振动,振幅最大;固有周期(频率)与驱动力周期(频率)相差最大的摆球(如球D)的振幅最小。
结论与解释为了使阻尼振动能够持续的周期性振动,可以施加外界驱动力;受迫振动的物体振动稳定后的频率等于驱动力的频率,与物体的固有频率无关;当驱动力的频率接近或等于物体的固有频率时,物体振动的振幅最大。
问题与思考1.洗衣机脱水后关掉电源,脱水桶的转速越来越慢,到一定的转速时,洗衣机会剧烈的振动一小段时间。
振动理论(4-1)第四章单自由度系统受迫振动陈永强北京大学力学系减速带speed bump2014/10/172橡胶减速带32014/10/1742014/10/17无阻尼受迫振动●图示电磁式振动台,励磁线圈通直流电形成恒定磁场;振动线圈通交流电时,导杆和台面在磁场中振动●激振力由正弦交流电引起的电磁力提供,是简谐力受迫振动(强迫振动):系统由外界持续激振引起振动;从外界不断获得能量补偿阻尼所消耗的能量,维持系统的等幅振动响应:外界激振引起的系统振动状态(位移形式,速度形式,加速度形式)外界激振:持续的激振力(包括系统的不平衡离心惯性力);持续的支承作用单自由度系统振动微分方程不考虑阻尼的作用是这个方程的解,代入上式,有或重写为所以记(静变形)定义振幅放大因子82014/10/17●全微分方程的一般解是齐次方程的通解和全方程的特殊解之和●简谐力作用下,受迫振动是简谐振动,频率与激振作用的频率相同●受迫振动的振幅与相位差与初始条件无关;初始条件只影响瞬态振动自由振动受迫振动瞬态振动稳态振动012345-1-2-3-41A B C 负振幅?:频率低,静变形:频率极高,振幅小:受迫频率=固有频率:力永远在正确时间正确的方向上推动质量●如果在施加外来激励的时候,外来激励的圆频率与系统的固有频率相同(而不是在求解后分析二者相同的情况),此时如何求解?●实际上相当于求解如下方程:即该微分方程的解为:12cos sin cos 2n n n np y c t c t t tωωωω=+123456-6-4-2246第三项的时间曲线(前20周期)包括前两项自由振动影响的前20周期曲线123456-6-4-2246在1-2个周期内,也能引起较大的振动●无阻尼受迫振动的通解●在零初始条件下●假定和比较接近,例如,则在很小的情况下,括号中的第二项可以忽略,因此 这是拍的方程,利用这一特性,拍的原理可以用于校正乐器,测量声的频率等等。
引 言在机械制造和建筑工程等领域中,受迫振动所导致的共振现象引起工程技术人员的极大关注。
它既有破坏作用,也有实用价值,很多电声器件都是运用共振原理设计制作的。
另外,在微观科学研究中,“共振”也是一种重要的研究手段,例如:利用核磁共振和顺磁共振研究物质结构等。
表征受迫振动性质是受迫振动的振幅—频率特性和相位—频率特性(简称幅频和相频特性)。
本实验采用波尔共振仪定量测定机械受迫振动的幅频特性和相频特性,并利用频闪方法来测定动态的物理量——相位差。
数据处理与误差分析方面的内容也比较丰富。
【实验目的】1. 研究波尔共振仪中弹性摆轮受迫振动的幅频特性和相频特性。
2. 研究不同阻尼矩对受迫振动的影响,观察共振现象。
3. 学习用频闪法测定运动物体的某些量。
【实验原理】一、受迫振动物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为强迫力。
如果外力是按简谐振动规律变化,那么稳定状态时的受迫振动也是简谐振动,此时,振幅保持恒定,振幅的大小与强迫力的频率和原振动系统无阻尼时的固有振动频率以及阻尼系数有关。
在受迫振动状态下,系统除了受到强迫力的作用外,同时还受到回复力和阻尼力的作用。
所以在稳定状态时物体的位移、速度变化与强迫力变化不是同相位的,存在一个相位差。
当强迫力频率与系统的固有频率相同时产生共振,此时振幅最大,相位差为90°。
实验采用摆轮在弹性力矩作用下自由摆动,在电磁阻尼力矩作用下作受迫振动来研究受迫振动特性,可直观地显示机械振动中的一些物理现象。
当摆轮受到周期性强迫力矩t M M ωcos 0=作用,并有空气阻尼和电磁阻尼的媒质中运动时(阻尼力矩为tbd d θ-),其运动方程为 t M t b k tJ ωθθθcos d d d d 022+--= (1)式中,J 为摆轮的转动惯量,θk -为弹性力矩,0M 为强迫力矩的幅值,ω为策动力的圆频率。
令J k =20ω,J b =β2,J M m 0=,则上式变为t m t tωθωθβθcos d d 2d d 2022=++ (2) 当0cos =t m ω时,式(2)即为阻尼振动方程。
利用波尔共振仪研究受迫振动实验报告一、实验目的1、观察摆轮在受迫振动时的振幅与驱动力频率之间的关系,绘制幅频特性曲线和相频特性曲线。
2、了解共振现象,测量共振频率和振幅。
3、学会使用波尔共振仪测量受迫振动的相关参数。
二、实验原理1、受迫振动物体在周期性外力的持续作用下所进行的振动称为受迫振动。
当外力的频率与物体的固有频率接近时,振幅会显著增大,这种现象称为共振。
2、波尔共振仪波尔共振仪由摆轮、弹性摆线、电磁阻尼线圈、电机、光电门等组成。
电机通过偏心轮带动连杆,从而给摆轮施加周期性的驱动力。
通过调节电机的转速,可以改变驱动力的频率。
光电门用于测量摆轮的振幅和振动周期。
3、幅频特性和相频特性在受迫振动中,振幅与驱动力频率的关系称为幅频特性,相位差与驱动力频率的关系称为相频特性。
三、实验仪器波尔共振仪、秒表、数字示波器四、实验步骤1、仪器调节将波尔共振仪水平放置,调节底座上的螺丝,使摆轮能自由摆动且不与其他部件碰撞。
接通电源,打开电机开关,调节电机转速调节旋钮,使电机转速缓慢增加,观察摆轮的运动情况,直至摆轮稳定振动。
2、测量固有频率关闭电机,让摆轮自由摆动,用秒表测量摆轮摆动 10 个周期的时间,重复测量 3 次,计算平均周期 T0,从而得到固有频率 f0 = 1/T0 。
3、测量幅频特性打开电机,缓慢调节电机转速,从低到高逐渐改变驱动力的频率。
在每个频率下,待摆轮稳定振动后,测量振幅值,记录频率和振幅。
4、测量相频特性在测量幅频特性的同时,用数字示波器观察摆轮振动信号与驱动力信号之间的相位差,记录频率和相位差。
5、重复实验重复上述步骤 2 4,进行多次测量,以减小误差。
五、实验数据处理1、以驱动力频率为横坐标,振幅为纵坐标,绘制幅频特性曲线。
2、以驱动力频率为横坐标,相位差为纵坐标,绘制相频特性曲线。
3、从幅频特性曲线中找出共振频率和最大振幅。
六、实验结果与分析1、实验结果幅频特性曲线显示,在一定范围内,随着驱动力频率的增加,振幅逐渐增大,达到共振频率时振幅达到最大值,随后振幅逐渐减小。
受迫振动与共振实验受迫振动与共振等现象在工程和科学研究中经常用到。
如在建筑、机械等工程中,经常须避免共振现象,以保证工程的质量。
而在一些石油化工企业中,用共振现象测量音叉式液体密度传感器和液体传感器在线检测液体密度和液位高度,所以受迫振动与共振是重要的物理规律。
受到物理和工程技术广泛重现。
本仪器用音叉振动系统为研究对象,用电磁激振线圈的电磁力作为激振力,用电磁线圈作检测振幅传感器,测量受迫振动系统振动振幅与驱动力频率的关系,研究受迫振动与共振现象及其规律。
【实验目的】1.研究音叉振动系统在周期外力作用下振幅与强迫力频率的关系,测量及绘制它们的关系曲线,并求出共振频率和振动系统振动的锐度(其值等于Q 值)。
2.音叉双臂振动与对称双臂质量关系的测量,求音叉振动频率f (即共振频率)与附在音叉双臂一定位置上相同物块质量m 的关系公式。
3.通过测量共振频率的方法,测量一对附在音叉上的物块x m 的未知质量。
4.在音叉增加阻尼力情况下,测量音叉共振频率及锐度,并与阻尼力小情况进行对比。
【实验原理】1.简谐振动与阻尼振动许多振动系统如弹簧振子的振动、单摆的振动、扭摆的振动等,在振幅较小而且在空气阻尼可以忽视的情况下,都可作简谐振动处理。
即此类振动满足简谐振动方程02022=+x dtx d ω (1)(1)式的解为)cos(0ϕω+=t A x(2)对弹簧振子振动圆频率0m m K +=ω,K 为弹簧劲度,m 为振子的质量,m 0为弹簧的等效质量。
弹簧振子的周期T 满足)(4022m m KT +=π(3)但实际的振动系统存在各种阻尼因素,因此(1)式左边须增加阻尼项。
在小阻尼情况下,阻尼与速度成正比,表示为dtdxβ2,则相应的阻尼振动方程为 022022=++x dt dx dtx d ωβ(4)式中β为阻尼系数。
2.受迫振动与共振阻尼振动的振幅随时间会衰减,最后会停止振动。
为了使振动持续下去,外界必须给系统一个周期变化的强迫力。