低饱和共沉淀法
- 格式:doc
- 大小:23.00 KB
- 文档页数:1
化学共沉淀法-注意事项1.沉淀溶液的浓度沉淀溶液的浓度会影响沉淀的粒度、晶形、收率、纯度及表面性质。
通常情况下,相对稀的沉淀溶液,由于有较低的成核速度,容易获得粒度较大、晶形较为完整、纯度及表面性质较高的晶形沉淀,但其收率要低一些,这适于单纯追求产品的化学纯度的情况;反之,如果成核速度太低,那么生成的颗粒数就少,单个颗粒的粒度就会变大,这对于微细粉体材料的制备是不利的,因此,实际生产中应根据产品性能的不同要求,控制适宜的沉淀液浓度,在一定程度上控制成核速度和生长速度。
2.合成温度沉淀的合成温度也会影响到沉淀的粒度、晶形、收率、纯度及表面性质。
在热溶液中,沉淀的溶解度一般都比较大,过饱和度相对较低,从而使得沉淀的成核速度减慢,有利于晶核的长大,得到的沉淀比较紧密,便于沉降和洗涤;沉淀在热溶液中的吸附作用要小一些,有利于纯度的提高。
在制备不同的沉淀物质时,由于追求的理化性能不同,具体采用的温度应视试验结果而定。
例如:在合成时如果温度太高,产品会分解而只得到黑色氧化铜;在采用易地分解、易挥发的沉淀剂时,温度太高会增加原料的损失。
3.沉淀剂的加入方式及速度沉淀剂的加入方式及速度均摊会影响沉淀的各种理化性能。
沉淀剂若分散加入,而且加料的速度较慢,同时进行搅拌,可避免溶液局部过浓而形成大量晶核,有利于制备纯度较高、大颗粒的晶形沉淀。
例如:制备白色无定形粉末状沉淀氢氧化铝,使用的原料为NaAlO2及碳酸氢铵,其主要杂质为碱金属,开始时以较慢的线速度将NH4HCO3加入到NaAlO2的热溶液中,待沉淀析出大半时,再加快沉淀剂的加入速度,直至反应结束。
这样得到的Al(OH)3颗粒较大,只需要洗涤数次,产品中碱金属杂质即可合格。
如将沉淀剂浓度加大,加料速度加快、反应温度又低,这样得到的是Al(OH)3的胶状沉淀,即使洗涤数十次,产品中碱金属含量也不容易合格。
当然,这只是从化学纯度的角度来考虑的,或要生产专用性的Al(OH)3产品,沉淀剂的加入方式及速度则应该根据具体要求而定。
共沉淀法制备磁性Fe3O4余春宇摘要考察了普通共沉淀法制备过程中的一些影响因素,采用一种改进,了的共沉淀法,制备磁性Fe3O4 纳米粒子。
并对获得的粉体采用进行初步表征用化学共沉淀法制备了纳米Fe3O4颗粒, 研究了影响纳米Fe3O4 颗粒磁性的因素[1]。
关键词磁性Fe3O4;共沉淀法;制备;引言磁流体作为一种新型纳米材料,在工业上也有着广阔的应用前景。
目前磁流体技术在国内未得到广泛应用的主要原因是纳米铁氧体粉体的制备不够完善,目前应用较广泛的铁氧体是纳米Fe3O4,近年来纳米材料取得了很大的进展[2]Fe3O4更多应用于化学领域[3]近几年来Fe3O4便成为了一种新型材料[4]纳米粒子(nano particle)也叫超微颗粒,一般是指尺寸在1~100 am间的粒子[5]Fe3O4纳米粒子是一种新型材料,具有良好的磁性能,即超顺磁性[6]Hao-Yu等人制备出来的Fe3O4可达5–10 nm[7]使用XRD,TEM,VSM 对材料进行了相关测试,测试结果发现,用水热法制备的磁性纳米复合材料具有典型的层型结构[8]。
,近年来有关纳米粒子的制备方法及其物性的研究受到很大的重视,这在纳米粒子基本理论上有重大意义[9]通过共沉淀法制备纳米FeO 性能影响因素的研究,以得到合理优化的制备工[10]采用化学沉淀法制备纳米Fe304颗粒,并以聚乙二醇为改性剂,蒸馏水为载液[11]本文综述了多种制备磁性Fe3O4纳米粒子的方法且分析了它们的诸多影响因素,在前人的基础上总结了很多经验取长补短得出了在共沉淀发的基础上再对一些反应条件以及其他一些试剂进行了改进内容近年来,随着纳米技术的飞速发展,有关纳米Fe304的制备方法及其性能的研究受到很大的重视。
纳米材料的制备方法多种多样,目前纳米Fe304的制备方法主要有[12]机械球磨法、溶胶一凝胶法、化学共沉淀法、热分解法、电弧蒸发法、液相微介质电加热分解法、水热法等,但每种方法有其自身的不足。
第五章《化工生产中的重要非金属元素》教学设计实验活动4 用化学沉淀法去除粗盐中的杂质离子A.A B.B C.C D.D【答案】C【解析】A.盐酸的酸性强于碳酸,CO2中混有HCl,常采用通入饱和碳酸氢钠溶液,故A不符合题意;B.加入过氧化氢,将Fe2+氧化成Fe3+,不引入新杂质,能够完成实验目的,故B不符合题意;C.氧化铝为两性氧化物,氧化铁为碱性氧化物,加入氢氧化钠溶液,氧化铝与氢氧化钠生成可溶的偏铝酸钠,而氧化铁不与氢氧化钠反应,不能达到实验目的,故C符合题意;D.MnO2不溶于水,KCl可溶于水,因此可采用加水溶液,过滤,除去KCl,能达到实验目的,故D不符合题意;答案为C。
【对应训练2】三氯化碘(ICl3)在药物合成中用途非常广泛,其熔点为33℃,沸点为73℃,遇水易反应。
实验室可用图装置制取ICl3,制备的反应原理:I2+3Cl2=2ICl3 下列说法不正确的是()A.利用装置甲制备氯气选用的药品可以是高锰酸钾和浓盐酸B.装置乙中长颈漏斗液面上升说明丙装置可能发生堵塞C.装置丙中氯化钙的作用是干燥Cl2D.装置戊中的碱石灰可以用无水氯化钙代替【答案】D【解析】A.高锰酸钾氧化浓盐酸当中的氯离子生成氯气,且该反应不需要加热,A 正确;B.若丙中U型管堵塞,则气体会滞留在装置乙中,导致乙中长颈漏斗液面上升,B正确;C.氯化钙是干燥剂,因此丙的作用是干燥制得的氯气,C正确;D.碱石灰可以除去多余的氯气,无水氯化钙不能除去氯气,故装置戊中的碱石灰不可以用无水氯化钙代替,D错误;故本题选D。
【过渡】物质的分离和提纯实验过程中,会用到多种实验方法,下面我们来学习过滤和蒸发。
【问题1】过滤实验操作的概念、原理、适用范围、主要仪器及注意事项分别是什么?【学生1】概念:利用物质溶解性的差异,将液体和不溶于液体的固体分离开来【学生2】原理:物质溶解性的差异【学生3】适用范围:适用于固液混合物的分离。
一般情况下,是一种物质易溶于水,另一种物质难溶于水【学生4】主要仪器:铁架台(含铁圈)、烧杯、漏斗、滤纸【教师】评价、投影装置图:【教师】追问:在过滤操作中,要注意“一贴、二低、三靠”,其含义是什么?【学生】一贴:滤纸紧贴漏斗内壁,中间不留有气泡;二低:滤纸上边缘低于漏斗边缘,液面低于滤纸边缘;三靠:倾倒液体的烧杯紧靠玻璃棒,玻璃棒末端紧靠三层滤纸处,漏斗的下端尖口紧靠盛接滤液的烧杯内壁【教师】评价、设凝:在过滤过程中,若滤液浑浊,该怎样处理?滤液浑浊的原因可能是什么?【学生】需更换滤纸,重新过滤,直至溶液澄清透明为止。
作为热稳定剂,或与其他助剂共同使用,进一步提高PVC的热稳定性。
水滑石本身无毒,可大范围代替铅盐和其他金属类稳定剂,且可用于食品包装PVC中。
(3) 催化剂方面的应用水滑石的最基本性能是碱性,因而可以用作碱性催化剂。
水滑石作为固体碱催化剂具有广泛的应用,可用于加氢、聚合、缩合反应、烷基化反应和重整反应替代NaOH等均相碱性催化剂,这不但有利于产物分离,还有利于催化剂的回收和再生。
通过调变金属离子的种类和组成比,或嵌入不同性能的阴离子,可成为催化多种反应的氧化还原催化剂。
水滑石不但可以作为催化剂,还可以作为多种催化剂的载体。
载体的性质和制备方法直接影响粒子的性状、大小和分布,水滑石为前体制备的混合氧化物具有较高的比表面积和良好的水、热稳定性,可以用作碱性催化剂载体。
(4) 水滑石的其它用途水滑石与其它制剂混用,除了可改善高分子材料的耐热性外,还可以改善它们的其它性能。
如机械强度、抗老化温度、制品表面亮度、绝缘性能、抗静电性能、抗紫外线性能等。
水滑石还具有良好的隔热性,促进PVC农膜对红外线的吸收,提高农膜的保温性;用作塑料、橡胶、化纤等高分子材料的阻燃、稳定、绝缘、着色、抗紫外线等多功能填充改进剂;用作染料、涂料、油漆、油墨、化妆品日用化工原材料;用作染织物废水处理剂、放射性废水处理剂,污染净化絮凝剂;用作化工催化剂载体和芳构化催化剂;用作多种材料的改进剂和中间体。
1.2 水滑石的制备方法镁铝水滑石作为一种新型的无卤、无毒、无机阻燃剂的新品种,兼具了Al(OH)3和Mg(OH)2阻燃剂各自的优点,又克服了它们的不足。
但是,天然的镁铝水滑石在世界范围内非常有限,因而人工合成镁铝水滑石成为各种应用的首选。
天然存在的水滑石大都是镁铝水滑石,其层间阴离子主要为CO32-。
由于研究与应用的需要,有必要获得具有不同层、柱组成的其它水滑石,合成水滑石的方法主要有共沉淀法、水热合成法、离子交换法、焙烧还原法、溶胶-凝胶法以及一些比较特殊的方法[9-18]。
1.沉淀溶液的浓度沉淀溶液的浓度会影响沉淀的粒度、晶形、收率、纯度及表面性质。
通常情况下,相对稀的沉淀溶液,由于有较低的成核速度,容易获得粒度较大、晶形较为完整、纯度及表面性质较高的晶形沉淀,但其收率要低一些,这适于单纯追求产品的化学纯度的情况;反之,如果成核速度太低,那么生成的颗粒数就少,单个颗粒的粒度就会变大,这对于微细粉体材料的制备是不利的,因此,实际生产中应根据产品性能的不同要求,控制适宜的沉淀液浓度,在一定程度上控制成核速度和生长速度。
2.合成温度沉淀的合成温度也会影响到沉淀的粒度、晶形、收率、纯度及表面性质。
在热溶液中,沉淀的溶解度一般都比较大,过饱和度相对较低,从而使得沉淀的成核速度减慢,有利于晶核的长大,得到的沉淀比较紧密,便于沉降和洗涤;沉淀在热溶液中的吸附作用要小一些,有利于纯度的提高。
在制备不同的沉淀物质时,由于追求的理化性能不同,具体采用的温度应视试验结果而定。
例如:在合成时如果温度太高,产品会分解而只得到黑色氧化铜;在采用易地分解、易挥发的沉淀剂时,温度太高会增加原料的损失。
3.沉淀剂的加入方式及速度沉淀剂的加入方式及速度均摊会影响沉淀的各种理化性能。
沉淀剂若分散加入,而且加料的速度较慢,同时进行搅拌,可避免溶液局部过浓而形成大量晶核,有利于制备纯度较高、大颗粒的晶形沉淀。
例如:制备白色无定形粉末状沉淀氢氧化铝,使用的原料为NaAlO2及碳酸氢铵,其主要杂质为碱金属,开始时以较慢的线速度将NH4HCO3加入到NaAlO2的热溶液中,待沉淀析出大半时,再加快沉淀剂的加入速度,直至反应结束。
这样得到的Al(OH)3颗粒较大,只需要洗涤数次,产品中碱金属杂质即可合格。
如将沉淀剂浓度加大,加料速度加快、反应温度又低,这样得到的是Al(OH)3的胶状沉淀,即使洗涤数十次,产品中碱金属含量也不容易合格。
当然,这只是从化学纯度的角度来考虑的,或要生产专用性的Al(OH)3产品,沉淀剂的加入方式及速度则应该根据具体要求而定。
ldhs制备
制备LDHs的方法有多种,常见的有共沉淀法、成核/晶化隔离法、溶胶-凝胶法、水热合成法、离子交换法、水解法等。
以共沉淀法为例,其制备过程包括:将M2+和M3+的混合金属盐溶液和阴离子作为LDHs的合成时,为了保证生成LDHs,必须加入过度饱和的M2+和M3+。
有两种共沉淀条件,即在较低的饱和度或高的饱和度下发生共沉淀。
低饱和度的共沉淀法是按比例缓慢滴加M2+和属盐的混合溶液,同时加入层间阴离子进行反应,然后补充碱液,以保持反应所需的pH值。
此外,通过控制速度将金属离子溶液和碱性溶液同时滴加入预先装入有水的反应容器中,滴加过程保持混合溶液的pH值恒定,后将得到的含有共沉淀的悬浮液在一定温度下晶化,制得最终产物LDH。
以上信息仅供参考,如需了解更多制备方法,建议咨询专业人士获取帮助。
1前言微波介质陶瓷是指应用于微波频段电路中作为介质材料并完成一种或多种功能的陶瓷材料。
微波介质陶瓷广泛应用于移动通讯领域,如移动电话、电视卫星接收器、雷达、卫星广播等领域。
目前微波介质陶瓷材料中,大部分含有昂贵的稀土或环境不友好的金属元素[1、2]。
铌铁矿结构AB2O6化合物(A=Ca,Mg,Mn,Co,Ni,Zn;B=Nb,Ta)为微波介电材料。
在这类化合物中MgNb2O6因原材料便宜,同时又具有优良的微波介电性能(εr=21.4,Q f=93800GHz,τf=-7×10-5℃-1),所以具有较好的应用前景和研究价值,引起不少研究者的关注[2-6]。
MgNb2O6最常用的是采用固相反应法制备,其合成温度达1100℃以上,烧结温度在1300℃以上[4-9]。
为了降低合成温度和提高其烧结特性,研究者用改变原料低温烧结法[10]、机械跟溶胶-凝胶法结合法[11]或用溶胶-凝胶法(sol-gel法)制备陶瓷粉体[12-19]。
在溶胶-凝胶法中有的采用高腐蚀性的HF作为溶剂[14、19],另外溶胶-凝胶法用到醇盐,昂贵且稳定性差,所以该方法虽然降低了合成温度,但也存在原料成本高、制备流程复杂、影响因素多、制备条件较难控制等缺点。
傅志粉等[20]用高能球磨法在800℃,2h煅烧得到单相MgNb2O6粉体,降低了合成温度,但是该方法存在着设备的限制,而且高能球磨的过程中也会引入一些球磨器具中的杂质。
所以找到一种更优的MgNb2O6粉体的制吴兴袁何晓东(横店集团控股有限公司,东阳322100)Mg(NO3)2、K8Nb6O19·10H2O为前驱体,以H3BO3做助剂,采用共沉淀法在650℃制备单相的MgNb2O6陶瓷粉末。
该方法将MgNb2O6陶瓷的合成温度降低约500℃。
通过XRD结合ICP-MS定量分析其物相组成。
加入硼酸有利于推动合成MgNb2O6单相晶体的热力学过程。
加入硼酸的量不同,合成的陶瓷粉末形貌不同。
溶液的饱和度与共沉淀反应共沉淀反应是指在溶液中存在两种或多种离子,其中至少两种离子会以沉淀的形式共同存在于溶液中。
共沉淀反应的发生与溶液的饱和度密切相关。
本文将探讨溶液的饱和度与共沉淀反应之间的关系,以及在实验中如何控制共沉淀反应的发生。
一、溶液的饱和度饱和度是指溶液中溶质的溶解度达到了最大值,即溶液中含有最大量的溶质。
溶质在溶液中的溶解度受多种因素影响,包括温度、压力、溶质溶解度和溶液中其他溶质的存在等。
当溶质溶解度超过其在特定条件下的饱和度时,就会形成固体沉淀。
二、共沉淀反应共沉淀反应是指在溶液中存在多种离子,其中至少两种离子会以沉淀的形式共同存在于溶液中。
共沉淀反应的发生与溶液的饱和度密切相关,当溶液的饱和度达到一定程度时,不溶性盐或配合物会形成沉淀,并与溶液中的其他离子共同沉淀下来。
共沉淀反应在化学实验中是常见的,可通过控制溶液的饱和度来促使反应发生。
例如,当想要从溶液中分离出某些离子时,可以通过适当调节溶液的饱和度,使目标离子与其他离子共同形成沉淀并沉淀出来。
这在分析化学和废水处理等领域有着广泛的应用。
三、控制共沉淀反应的发生1. 调节溶液的饱和度控制共沉淀反应的发生,首先需要控制溶液的饱和度。
饱和度可以通过改变溶质的浓度、温度和pH值等因素进行调节。
一般来说,增加溶质的浓度可以提高溶液的饱和度,而降低溶液的温度则通常会导致饱和度的降低。
此外,某些共沉淀反应还受pH值的影响,通过调节溶液的酸碱性可以控制反应的进行。
2. 选择合适的沉淀剂在控制共沉淀反应的发生时,选择合适的沉淀剂也是至关重要的。
沉淀剂需要能与目标离子反应生成沉淀,并与其他离子无明显反应。
常用的沉淀剂有氢氧化物、硫化物和碳酸盐等。
根据溶液中所含离子的性质,选择适当的沉淀剂可以增加共沉淀反应的效果。
4. 进行沉淀反应的控制实验为了研究溶液的饱和度与共沉淀反应之间的关系,可以进行一系列的控制实验。
首先,选择特定的溶液体系,例如含有阳离子A和阴离子B的混合溶液。
低饱和共沉淀法
低饱和共沉淀法,按照一定的比例,将金属硝酸盐溶液配成一定浓度的混合盐溶液(SolS),将NaOH和Na2CO3按照一定比例的配成混合碱溶液(SolB),在大烧杯中预先装入一定量的蒸馏水,加热至一定的温度,将SolS和SolB按一定的滴速同时滴入大烧杯中,维持反应体系的pH为一恒定值,剧烈搅拌。
滴定完毕后,继续搅拌陈化,最后经过滤、洗涤、烘干,得产物。
此合成方法是水滑石合成中的一种常用方法。
其中镁盐和铝盐可以采用硝酸盐、硫酸盐、氯化物等,碱可以采用氢氧化钠、氢氧化钾、氨水等,碳酸盐可以采用碳酸钠、碳酸钾等,也可以采用尿素代替碱和碳酸盐。
高过饱和共沉淀法
高过饱和共沉淀法,即将SolS和SolB各自预先加热至反应温度,快速将两种溶液同时倒入装有预先加热到和该溶液具有相同温度的二次蒸馏水的大烧杯中,剧烈搅拌
水热合成法
水热合成法,是先将SolS和SolB缓慢滴加在一起活着快速混合,然后将得到的浆状液立即转移至高压釜中,在一定的温度下(通常是100 °C)陈化较长时间,最后经过过滤、洗涤、干燥、研磨得产品。
此法特点是使水滑石的成核和晶化过程隔离开,并通过提高陈化温度和压力来促进晶化过程。
水热合成法由于反应发生在密闭的系统中,因而没有其他杂质被引入。
制备所得纳米金属氧化物具有粉末细(纳米级)、纯度高、分散性好、颗粒均匀、晶粒发育完整、形状可控等优异特性。
另外水热法还能够避免高温下反应物的挥发、应力诱导缺陷、物相相互反应等缺点,更重要的是水热法通过调整反应条件可控制生成物的形貌、大小、粘度分布等。
离子交换法
当金属离子在碱性介质中不稳定,或当阴离子An-没有可溶性的M2+和M3+盐类,共沉淀法无法进行时,可采用离子交换法。
该法是从给定的水滑石出发,通过溶液中某种阴离子对原有阴离子的交换作用,形成新的相。
然而在层状双金属氢氧化物材料上,直接用大体积无机阴离子通过离子交换法制备很困难,一般先用大体积有机阴离子把层间撑开,然后用无机阴离子交换制得样品。
尿素分解—均匀共沉淀法
该法利用尿素在低温下呈中性,可与金属离子形成均一溶液,而溶液温度超过90 °C时尿素分解使溶液pH值均匀逐步地升高这一特点,用尿素代替混合碱溶液,该罚的优点是溶液内部的pH值始终是一致的,因而可以合成出高结晶度的Mg-Al、Zn-Al、Ni-Al类水滑石,而难以合成Co-Al、Mn-Al、Co-Cr类水滑石。
另一方面以尿素为沉淀剂,反应过程中在层间形成NH2COO-插层,经水热处理即转化为CO32-,而溶液内形成的[Ni(NH3)6]2+水热条件下则释放出NH3,所以尿素可以取代强碱混合液来制备碳酸型水滑石并且可以制备得到结晶较好、粒径均匀的水滑石样品。