奥数加法原理问题
- 格式:docx
- 大小:20.83 KB
- 文档页数:2
第22讲加法原理和乘法原理——练习题一、第22讲加法原理和乘法原理(练习题部分)1.书架上有三排书.第一排共有12本书.第二排共有20本书,第三排共有15本书.小明从中取一本书来阅读.问他有几种不同的取法?2.某班有男生18人,女生15人.从中选出一人去参加夏令营,问有多少种不同的选法?3.第一个口袋中装2个球,第二个口袋中装4个球,第三个口袋中装5个球,球各不相同.(1)从口袋中任取一个小球,有多少种不同的取法?(2)从三个口袋中各取一个球,问有多少种不同的取法?4.如图,从甲地到乙地有两条路.从乙地到丙地有三条路.从甲地到丙地有四条路.问从甲地到丙地共有多少种不同的走法?5.把多项式(a1+a2+a3)(b1+b2+b3+b4)(c1+c2) 展开,展开式中有多少种不同的项?6.求2000的正约数的个数.7.用1、2、3、4这四个数字可组成多少个不同的三位数?8.将6个人分成甲、乙两组,每组至少1人.有多少种不同的分法?9.从南京到上海的某次快车,中途要停靠六个大站.铁路局要为这次快车准备多少种不同的车票?这些车票中最多有多少种不同的票价?10.4个人站成一排合影,共有多少种不同的排法?11.用2、3、4这三个数字组成没有重复数字的三位数.(1)求这些三位数的数字和的和;(2)求这些三位数的和.12. 2000的正约数中,有多少个偶数?13.用数字0、1、2、3、4可以组成多少个(1)四位数?(2)四位偶数?(3)没有重复数字的四位数?(4)没有重复数字的四位偶数?(5)没有重复数字的正整数?14.三封信,随机地投入四个信箱中.有多少种不同的投信方法?15. 5人站成一排照相,其中一人必须站在中间.有多少种站法?16.有多少个被3整除并且含有数字9的三位数?17.如图,对地图中的A、B、C、D、E这五个部分用四种不同的颜色染色.相邻的部分不能用相同的颜色,不相邻的部分可以用相同的颜色.有多少种不同的染色方法?答案解析部分一、第22讲加法原理和乘法原理(练习题部分)1.【答案】解:小明从中取一本,共有三种方法:一种是从第一排取,共12种不同的取法;一种是从第二排取,共20种不同的取法;一种是从第三排取,共15种不同的取法;∴12+20+15=47(种),答:他有47种不同的取法.【解析】【分析】做一件事情,完成它有n类办法;在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,在第三类办法中有m3种不同的方法,……在第n类办法中有m n种不同的方法,那么完成这件事情共有m1+m2+m3+……+m n.根据加法原理计算即可.2.【答案】解:从中选一人,共有两种选法:一种是从男生选,共有18种选法;一种是从女生选,共有15种选法;∴18+15=33(种),答:有33种不同的选法.【解析】【分析】做一件事情,完成它有n类办法;在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,在第三类办法中有m3种不同的方法,……在第n类办法中有m n种不同的方法,那么完成这件事情共有m1+m2+m3+……+m n.根据加法原理计算即可.3.【答案】(1)解:从口袋中任取一个小球有三种办法:第一种是从第一个口袋中取球,共有2种不同的方法;第二种是从第二个口袋中取球,共有4种不同的方法;第三种是从第三个口袋中取球,共有5种不同的方法;∴2+4+5=11(种).答:有1种不同的取法.(2)解:从三个口袋中各取一个球,可分三步进行:第一步是从第一个口袋中取一球,有2种不同的方法;第二步是从第二个口袋中取一球,有4种不同的取法;第三步是从第三个口袋中取一球,有5种不同的方法;∴2×4×5=40(种).答:有40种不同的取法.【解析】【分析】使用乘法原理与加法原理的不同之处在于:用加法原理时,完成一件事情有n类办法,不论用哪一类办法,都能完成这件事.而用乘法原理时,完成一件事情可分为n步,但不论哪一步,都只是完成这件事情的一部分,只有每一步都完成了;这件事情才得以完成.因此,这n步缺一不可.这就是使用乘法原理还是使用加法原理的主要区别.4.【答案】解:从甲地到丙地有两种不同的走法:第一种是从甲地到丙地,有4条路;第二种是从甲地到乙地有2条路,从乙地到丙地有3条路,故共有2×3=6条路;∴4+2×3=10(种).答:从甲地到丙地共有10种不同的走法.【解析】【分析】从甲地到丙地有两种不同的走法:第一种是从甲地到丙地,有4条路;第二种需要分成两步:先从甲地到乙地有2条路,再从乙地到丙地有3条路,根据加法原理和乘法原理计算即可.5.【答案】解:多项式含a的有3项,含b的有4项,含c的有2项,∴展开式中不同的项有:3×4×2=24(种).【解析】【分析】这个多项式的乘积是有三个部分组成:第一部分含a的有3项,第二部分含b的有4项,第三部分含c的有2项,根据乘法原理计算即可.6.【答案】解:∵2000=24×53,∴2000的正约数个数是:(4+1)×(3+1)=20(个).【解析】【分析】对于一个大于1的正整数分解质因数:n=p1a1·p2a2·……·p k a k,可知n的正约数有(a1+1)(a2+1)……(a k+1)个;所以先将2000分解质因数,再依此计算即可.7.【答案】解:百位数字有4种选法,十位数字有4种选法,个位数字有4种选法,∴4×4×4=64.∴可组成64个不同的三位数.【解析】【分析】三位数分成三步:第一步选百位数字有4种选法,第二步选十位数字有4种选法,第三步选个位数字有4种选法,根据乘法原理计算即可.8.【答案】解:∵每个人都可分在甲组,也可分在乙组,即有2种分法,根据乘法原理可得:2×2×2×2×2×2=64(种),又∵这64种方法种,有1种是6个人全在甲组,有1种是6个人全在乙组,∴64-1-1=62(种).答:有62种不同的分法.【解析】【分析】每个人都可以分在甲组或乙组,即有2种分法,根据乘法原理算出所有分法;然后去掉一些不符题意的;这种做法常常有很好的效果.9.【答案】解:∵中途有6个大站,∴一共有6+2=8(站),∴7+6+5+4+3+2+1=28(种),∴两个车站的往返车票各一种,即两种,∴28×2=56(种),答:铁路局要为这次快车准备56种不同的车票;这些车票中最多有28种不同的票价.【解析】【分析】根据题意可知从南京到上海一共8个站,从第一站到其他各站有7种,从第二站到下边各站有6种,从第三站到下边各站有5种,……,从第七站到下边各站有1种,根据加法原理计算单程车票的种类,即可计算往返车票的种类和票价.10.【答案】解:第一个人有4种不同站法,第二个人有3种不同的站法,第三个人有2种不同的站法,第四个人有1种不同的站法,∴4×3×2=24(种).答:共有24种不同的排法.【解析】【分析】根据题意可知第一个人有4种不同站法,第二个人有3种不同的站法,第三个人有2种不同的站法,第四个人有1种不同的站法,根据乘法原理计算即可得出答案.11.【答案】(1)解:百位数字有3种方法,十位数字与百位数字不同,有2种方法,个位数字与百位、十位数字不同,有1种方法,∴3×2×1=6(种),∴这些三位数的数字和的和为:(2+3+4)×6=54.答:这些三位数的数字和的和为54.(2)解:依题可得三位数为:432,423,324,342,234,243,∴这些三位数的和为:432+423+324+342+234+243=1998.答:这些三位数的和为1998.【解析】【分析】(1)选三位数分成三步:第一步百位数字有3种方法,第二步十位数字与百位数字不同,有2种方法,第三步个位数字与百位、十位数字不同,有1种方法,根据乘法原理计算即可.(2)根据题意写出所有的三位数,再将这些数字加起来即可得出答案.12.【答案】解:∵2000=24×53,∴2000的正约数个数是:(4+1)×(3+1)=20(个),∴奇约数有:3+1=4(个),∴偶约数有:20-4=16(个).【解析】【分析】对于一个大于1的正整数分解质因数:n=p1a1·p2a2·……·p k a k,可知n的正约数有(a1+1)(a2+1)……(a k+1)个;所以先将2000分解质因数,再依此计算即可.13.【答案】(1)解:千位数字有4种不同的选法,百位数字有5种不同的选法,十位数字有5种不同的选法,个位数字有5种不同的选法,∴4×5×5×5=500(个).答:可以组成500个四位数.(2)解:个位数字从0、2、4数字中选有3种不同的选法,则十位数字有5种不同的选法,百位数字有5种不同的选法,千位数字有4种不同的选法,∴3×5×5×4=300(种).答:可以组成300个四位偶数.(3)解:∵数字不能重复,∴千位数字有4种不同的选法,百位数字与千位数字不同,则有4种不同的选法,十位数字与千位、百位数字不同,则有3种不同的选法,个位数字与千位、百位、十位数字不同,则有2种不同的选法,∴4×4×3×2=96(种).答:没有重复数字的四位数有96种.(4)解:∵数字不能重复且为偶数,∴①若个数数字为0时,则十位数字与个位数字不同,则有4种不同的选法;百位数字与个位、十位数字不同,则有3种不同的选法;千位数字与个位、十位、百位数字不同,则有2种不同的选法,∴4×3×2=24(种),②个位数字从2、4数字中选有2种不同的选法,则千位数字与个位数字不同,则有3种不同的选法,百位数字与个位、千位数字不同,则有3种不同的选法;十位数字与个位、百位、千位数字不同,则有2种不同的选法,∴2×3×3×2=36(种),∴24+36=60(种).答:没有重复数字的四位偶数有60种.(5)解:①一位数有4个;②两位数有4×4=16(个);③三位数有4×4×3=48(个);④四位数有4×4×3×2=96(个);⑤五位数有4×4×3×2×1=96(个);∴没有重复数字的正整数有:4+16+48+96+96=260(个).答:没有重复数字的正整数有260.【解析】【分析】(1)千位数字有4种不同的选法,百位数字有5种不同的选法,十位数字有5种不同的选法,个位数字有5种不同的选法,根据乘法原理计算即可.(2)个位数字从0、2、4数字中选有3种不同的选法,则十位数字有5种不同的选法,百位数字有5种不同的选法,千位数字有4种不同的选法,根据乘法原理计算即可.(3)由于数字不能重复,从而千位数字有4种不同的选法,百位数字与千位数字不同,则有4种不同的选法,十位数字与千位、百位数字不同,则有3种不同的选法,个位数字与千位、百位、十位数字不同,则有2种不同的选法,根据乘法原理计算即可.(4)根据题意分情况分析:①若个数数字为0时,分别写出十位、百位、千位数字的不同选法,根据乘法原理计算即可;②个位数字从2、4数字中选有2种不同的选法,分别写出十位、百位、千位数字的不同选法,根据乘法原理计算即可;再将两种选法加起来即可.(5)根据题意分情况讨论:①一位数;②两位数;③三位数;④四位数;⑤五位数;再分别求出个数,求和即可.14.【答案】解:每封信都有4种投法,依题可得:4×4×4=64(种).答:有64种不同的投信方法.【解析】【分析】根据题意可知每封信都有4种投法,根据乘法原理计算即可.15.【答案】解:∵一人必须站在中间,∴第一个人有4种不同的排法,第二个人有3种不同的排法,第四个人有2种不同的排法,第五个人有1种不同的排法,∴4×3×2=24(种).答:有24种站法.【解析】【分析】根据题意可知一个人的位置已经固定,再将剩余的4人排列,根据乘法原理计算即可.16.【答案】解:依题可分类讨论:①9在个位:由于需被3整除且个位是9,根据被3整除的数,其各位数字之和也能被3整除的定理,百位和十位数字之和能被3整除;所以百位和十位组成的两位数也能被3整除.百位和十位从10到99,共有90个数,每3个数一组,必有一个被3整除,共30个.②9在十位:同上分析,有30个.③9在百位:与上面不同的是,个位和十位组成的两位数应该从00到99,共100个数,能被3整除的有34个.以上三种情况有重复的,那就是9不止一个的时候.④□99,有3个.⑤9□9,有4个.⑥99□,有4个.⑦999,有1个.∴共有30+30+34-3-4-4+1 =84(个).【解析】【分析】根据题意分情况讨论:①9在个位;②9在十位;③9在百位,根据被3整除的数的特征分析得出各部分数的个数,再把其中重复的找出来,计算即可.17.【答案】解:根据题意可知:A有4种不同的染色方法,则B不能和A相同,有3种不同的染色方法;C不能和A、B相同,有2种不同的染色方法;D不能和B、C相同,有2种不同的染色方法;E不能和C、D相同,有2种不同的染色方法;∴4×3×2×2×2=96(种).答:有96种不同的染色方法.【解析】【分析】根据题意可知A有4种不同的染色方法,则B不能和A相同,有3种不同的染色方法;C不能和A、B相同,有2种不同的染色方法;D不能和B、C相同,有2种不同的染色方法;E不能和C、D相同,有2种不同的染色方法;由乘法原理计算即可.。
加法原理的高难度奥数题题目背景加法原理是数学中最基本的计数原理之一,它是指当进行两个或更多个事件的相互排列时,可以通过两个或更多个步骤的相加来计算总数。
这个原理在组合数学和概率统计等领域有着广泛的应用。
下面将给出一个高难度的奥数题,需要运用加法原理解决。
题目描述在第一节课上,小明的老师给出了一个挑战题目:有一个四位数N,其中任意两位之差都在3到7之间(含3和7),并且所有数位之和是偶数。
小明希望能找到满足条件的N,并且它是3的倍数。
请问小明应该选择哪个数作为N?解题思路首先,我们需要找到满足条件的四位数N。
根据题目所给的条件,我们可以确定以下几个规则:1.任意两位之差都在3到7之间(含3和7)。
因此,百位和个位之差的绝对值必然在3到7之间,十位和个位之差的绝对值也必然在3到7之间。
设百位和个位的差为a,十位和个位的差为b,那么可以得到以下等式:|a| ≥ 3,|b| ≥ 3。
2.所有数位之和是偶数。
首先,我们可以得出结论:如果一个整数是3的倍数,那么它的各个数字之和也是3的倍数。
因此,N的各个数位之和是3的倍数,即a + b + c + d (设百位、十位、个位依次为c、d)是一个3的倍数,其中c、d的取值范围为0到9。
基于以上两个条件,我们可以穷举出满足条件的四位数N的可能取值。
具体步骤如下:1.首先,我们确定百位和个位之差的取值范围,在3到7之间(含3和7)。
假设百位为x,个位为y,则有以下等式:|x - y| ≥ 3。
根据这个条件,我们可以列出x和y的所有可能组合如下:x y3 03 13 23 34 04 14 24 34 45 05 15 25 35 46 06 16 26 36 47 07 17 27 37 42.然后,我们计算百位和个位之和的奇偶性。
根据题目条件,所有数位之和是偶数,即a + b + c + d是偶数。
结合第一步得到的x和y的取值范围,我们可以穷举出a + b + c + d是偶数的可能组合。
奥数加法原理
奥数加法原理是指在计算两个或多个数的和时,可以按照任意顺序进行计算,最终得到的和都是相同的。
这个原理在奥数学习中起着非常重要的作用,不仅可以帮助学生更好地理解加法运算,还可以应用于解决各种数学问题。
首先,我们来看一个简单的例子来说明奥数加法原理。
假设有三个数分别是3、4和5,按照加法原理,我们可以先计算3+4,然后再加上5,也可以先计算4+5,再加上3,或者先计算3+5,再加上4,最终得到的和都是12。
这就是奥数加法原理的基本概念。
在实际应用中,奥数加法原理可以帮助我们更快地解决一些复杂的数学问题。
比如,在排列组合中,如果我们需要计算一组数的和,可以根据加法原理任意选择计算顺序,从而简化计算过程。
又如,在概率统计中,奥数加法原理也可以帮助我们计算不同事件发生的总概率,提高计算效率。
除此之外,奥数加法原理还可以应用于解决一些实际生活中的问题。
比如,在购物时,如果我们需要计算一些商品的总价,可以根据加法原理任意选择计算顺序,以便更快地得出总价。
又如,在
时间安排上,如果我们需要计算一天中不同活动的总时间,也可以利用加法原理灵活安排时间,提高时间利用效率。
总的来说,奥数加法原理是一种非常实用的数学原理,可以帮助我们更好地理解加法运算,提高数学解题的效率,同时也可以应用于实际生活中,帮助我们更好地解决各种问题。
因此,我们在学习奥数的过程中,应该充分理解和掌握加法原理,灵活运用于解决各种数学问题和实际生活中的应用场景中。
这样不仅可以提高我们的数学能力,还可以提高我们的解决问题的能力,让我们在学习和生活中更加得心应手。
加法原理和乘法原理知识方法一、分类计数原理(加法原理)1、完成一件事情,有n类方法,在第1类方法中有m1种不同的方法,在第2类方法中有m2种不同的方法,……在第n类方法中有mn种不同的方法,则完成这件事有N=m1+m2+……+m n 种不同的方法2、分类计数原理的特点:针对的是“分类”问题,各类方法是相互独立的。
二、分步计数原理(乘法原理)1、完成一件事情,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有有m2种不同的方法,……做第n步有mn种不同的方法,则完成这件事有N=m1×m2×……×m n 种不同的方法2、分不计数原理的特点:针对的是“分步”问题,各类方法是相互依存的。
例1:从资阳到成都可乘火车,也可乘汽车,一天中,火车有3列,汽车有12辆,一天中乘坐这些交通工具从资阳到成都有多少种不同的方法?例2:陈老师从资阳到美国,第1天,乘高铁到成都有3辆,次日,从成都乘飞机到美国有5班,陈老师从资阳到美国有多少种不同的乘车方法?变式:一个盒子里装有5个小球。
另一个盒子里装有9个小球。
所有这些小球的颜色各不相同。
(1)从两个盒子中任取一个小球,有多少种不同的取法?(2)从两个盒子中各取一个球,有多少种不同的取法?例3:4个数字3、5、6、8可以组成多少个没有重复数字的四位数?变式:有7、3、6三个数字卡片,能组成几个不同的三位数?(每个数字只能用1次)例4、用4种不同颜色给下面的图形涂色。
使相邻两个长方形颜色不相同,有多少种不同的涂法?变式:在A 、B 、C 、D 四个长方形区域中涂上红黄蓝黑这4种不同颜色,使相邻两个长方形颜色不相同,有多少种不同的涂法?例5、南京与上海的动车组特快列车,中途只停靠常州,无锡,苏州三个火车站。
共要准备多少种不同的车票?(考虑往返)变式:北京到广州的火车中间要停靠8个大站。
火车站要准备多少种不同的车票?有多少种不同的票价?(考虑往返)练习题1、小军小蓝和小红三个朋友排成一排照相,有多少种不同的排法?2、书架上有5本不同的科技书,6本不同的故事书,8本不同的英语书,如果从中各取一本科技书,一本故事书和一本英语书,那么总共有多少种取法?3、有8、0、2、4、6五个数字,可以组成几个不同的五位数?4、五一前夕,学校举行亲子活动。
加法原理【例1】从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。
一天中火车有4班,汽车有3班,轮船有2班。
问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法?分析与解:一天中乘坐火车有4种走法,乘坐汽车有3种走法,乘坐轮船有2种走法,所以一天中从甲地到乙地共有:4+3+2=9(种)不同走法。
以上利用的数学思想就是加法原理。
加法原理:如果完成一件任务有n 类方法,在第一类方法中有m 1种不同方法,在第二类方法中有m 2种不同方法 ……在第n 类方法中有m n 种不同方法,那么完成这件任务共有N=m 1+m 2+…+m n 种不同的方法。
区别。
乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积;加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和。
【例2】有红、黄、蓝小旗各一面,从中选用1面、2面或3面升上旗杆,做出不同的信号,一共可以做出多少种不同的信号?分析:因为选一面符合要求,选2面或3面都符合要求,这三类之间是单独成立的,事独成则加;而选两面时,第一步确定第一面,第二步确定第2面,要分步才能完成选两面这件事,事分步则乘。
这道题是加法原理与乘法原理的综合运用。
解:如一次升一面,则有3种信号;如一次升两面,则有3×2=6种信号;如一次升三面,则有3×2×1=6种信号;一共有:3+6+6=15种。
【例3】两次掷一枚骰子,两次出现的数字之和为偶数的情况有多少种?分析与解:两次的数字之和是偶数可以分为两类,即两数都是奇数,或者两数都是偶数。
因为骰子上有三个奇数,所以两数都是奇数的有3×3=9(种)情况;同理,两数都是偶数的也有9种情况。
根据加法原理,两次出现的数字之和为偶数的情况有9+9=18(种)。
【举一反三】从19、20、21、22、…93、94这76个数中,选取两个不同的数,使其和为偶数的选法共有多少种?【例4】从2、3、4、5、6、10、11、12这8个数中,取出两个数组成一个最简真分数有多少种取法?【举一反三】有5家英国公司,6家日本公司,8家中国公司参加某国际会议洽谈贸易,彼此都希望与异国的每个公司洽谈一次,问要安排多少次会谈场次?【例5】1995的数字和是1+9+9+5=24,问:小于2000的四位数中,数字和等于24的数共有多少个?解:小于2000的四位数千位数字是1,要它数字和为24,只需其余三位数数字和是23。
1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”. 知识要点教学目标7-1-1.加法原理之分类枚举(一)分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.例题精讲模块一、分类枚举——数出来的种类【例1】小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,小宝买一种礼物可以有多少种不同的选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】小宝买一种礼物有三类方法:第一类,买玩具,有8种方法;第二类,买课外书,有20种方法;第三种,买纪念品,有10种方法.根据加法原理,小宝买一种礼物有8+20+10=38种方法.【答案】38【巩固】有不同的语文书6本,数学书4本,英语书3本,科学书2本,从中任取一本,共有多少种取法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】根据加法原理,共有6+4+3+2=15种取法.【答案】15【巩固】阳光小学四年级有3个班,各班分别有男生18人、20人、16人.从中任意选一人当升旗手,有多少种选法?【考点】加法原理之分类枚举【难度】2星【题型】解答【关键词】分类讨论思想【解析】解决这个问题有3类办法:从一班、二班、三班男生中任选1人,从一班18名男生中任选1人有18种选法:同理,从二班20名男生中任选1人有20种选法;从三班16名男生中任意选1人有16种选法;根据加法原理,从四年级3个班中任选一名男生当升旗手的方法有:18201654++=种.【答案】54【例2】和为15的两个非零自然数共有对。
加法原理和乘法原理练习题一.夯实基础1.有不同的语文书6本,数学书4本,英语书3本,科学书2本,从中任取一本,共有多少种取法?2.阳光小学四年级有3个班,各班分别有男生18人、20人、16人.从中任意选一人当升旗手,有多少种选法?3.由3、6、9这3个数字可以组成多少个没有重复数字的三位数?4.邮递员投递邮件由A村去B村的道路有3条,由B村去C村的道路有2条,那么邮递员从A村经B村去C村,共有多少种不同的走法?5.从全班20人中选出3名学生排队,一共有多少种排法?6..在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?ACB二.拓展提高:7.“数学”这个词的英文单词是“MATH”.用红、黄、蓝、绿、紫五种颜色去分别给字母染色,每个字母染的颜色都不一样.这些颜色一共可以染出多少种不同搭配方式?8.小明到图书馆借书时,图书馆有不同的外语书15本,不同的科技书20本,不同的小说10本,那么,小明要选两本不同类的书有多少种选法?9.从四年级六个班中评选出学习、体育、卫生先进集体,如果要求同一个班级只能得到一个先进集体,那么一共有多少种评选方法?10.由数字1,2,3 可以组成多少个没有重复数字的数?11.由0,2,5,6,7,8组成无重复数字的数.四位奇数有多少个?12.有6种不同颜色的笔,来写“学习改变命运”这六个字,要求相邻字的颜色不能相同,有多少种不同的方法?13.甲、乙、丙三个工厂共订300份报纸,每个工厂至少订了99份,至多101份,问:一共有多少种不同的订法?三.超常挑战:14.北京到广州之间有10个站,其中只有两个站是大站(不包括北京、广州,广州和北京是大站),从大站出发的车辆可以配卧铺,那么铁路局要准备多少种不同的卧铺车票?四.杯赛演练:15.(北京“数学解题能力展示”读者评选活动)袋中有3个红球,4个黄球和5个白球,小明从中任意拿出6个球,他拿出球的情况共有多少种可能?16.(希望杯)如图5所示的电子钟可显示从00:00:00到23:59:59的时间,在一昼夜内(24小时)钟表上显示的时间恰由数字1、2、3、4、5、6组成的共有种。
加法原理例题讲解
加法原理例题讲解2
常见题型1、从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。
一天中火车有4班,汽车有3班,轮船有2班。
问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法?
分析与解:一天中乘坐火车有4种走法,乘坐汽车有3种走法,乘坐轮船有2种走法,所以一天中从甲地到乙地共有:4+3+2=9(种)不同走法。
常见题型2、旗杆上最多可以挂两面信号旗,现有红色、蓝色和黄色的信号旗各一面,如果用挂信号旗表示信号,最多能表示出多少种不同的信号?
分析与解:根据挂信号旗的面数可以将信号分为两类。
第一类是只挂一面信号旗,有红、黄、蓝3种;第二类是挂两面信号旗,有红黄、红蓝、黄蓝、黄红、蓝红、蓝黄6种。
所以一共可以表示出不同的信号
3+6=9(种)。
奥数加法原理
奥数加法原理是指在数学问题中,当出现多个事件同时发生的情况时,我们可
以通过加法原理来求解这些事件的总数。
加法原理是组合数学中的基本原理之一,它在奥数竞赛和数学问题中经常被运用到。
首先,我们来看一个简单的例子,小明有一件红色的衣服和一件蓝色的衣服,
他还有一条红色的裤子和一条蓝色的裤子。
那么小明一共有多少种不同的穿法呢?根据加法原理,我们可以将红色的衣服和裤子的穿法分别相加,再将蓝色的衣服和裤子的穿法分别相加,最后再将两种颜色的穿法相加,就可以得到总的穿法数。
在这个例子中,我们可以看到加法原理的应用,当我们需要求解多个事件的总
数时,可以将这些事件分别相加,最后得到总的事件数。
这个原理在奥数竞赛中经常被用来解决排列组合、概率等问题。
除此之外,加法原理还可以应用在更复杂的问题中。
比如,在一个班级里,有
5个男生和7个女生,老师要选出一个学生代表,那么老师有多少种选法呢?根据
加法原理,我们可以将男生和女生的选法分别相加,最后再将两种情况的选法相加,就可以得到老师选学生代表的总数。
在实际问题中,加法原理可以帮助我们快速求解多种情况的总数,而不需要逐
一列举每种情况。
这对于奥数竞赛和数学问题的解答来说,是非常有帮助的。
总之,奥数加法原理是数学中的基本原理之一,它在排列组合、概率等问题中
有着广泛的应用。
通过加法原理,我们可以快速求解多个事件的总数,为解决奥数竞赛和数学问题提供了便利。
希望大家能够灵活运用加法原理,提高解决问题的效率。
小学生奥数加法原理、排列组合问题、分数百分数练习题1.小学生奥数加法原理练习题篇一1、学校组织读书活动,要求每个同学读一本书。
小明到图书馆借书时,图书馆有不同的外语书150本,不同的科技书200本,不同的小说100本。
那么,小明借一本书可以有多少种不同的选法?解答:分析在这个问题中,小明选一本书有三类方法。
即要么选外语书,要么选科技书,要么选小说。
所以,是应用加法原理的问题。
解:小明借一本书共有:150+200+100=450(种)2、从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。
一天中火车有4班,汽车有3班,轮船有2班。
问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法?分析与解:一天中乘坐火车有4种走法,乘坐汽车有3种走法,乘坐轮船有2种走法,所以一天中从甲地到乙地共有:4+3+2=9(种)不同走法。
2.小学生奥数加法原理练习题篇二1、如果两个四位数的差等于8921,那么就说这两个四位数组成一个数对,问这样的数对共有多少个?分析:从两个极端来考虑这个问题:最大为9999-1078=8921,最小为9921-1 000=8921,所以共有9999-9921+1=79个,或1078-1000+1=79个2、从1、2、3、4、5、6、7、8、9、10这10个数中,任取5个数相加的和与其余5个数相加的和相乘,能得到多少个不同的乘积。
分析:从整体考虑分两组和不变:1+2+3+4+5+6+7+8+9+10=55从极端考虑分成最小和最大的两组为(1+2+3+4+5)+(6+7+8+9+10)=15+40=55最接近的两组为27+28所以共有27-15+1=13个不同的积。
另从15到27的任意一数是可以组合的。
3.小学生奥数加法原理练习题篇三1、阳光小学四年级有3个班,各班分别有男生18人、20人、16人。
从中任意选一人当升旗手,有多少种选法?【答案解析】解决这个问题有3类办法:从一班、二班、三班男生中任选1人,从一班18名男生中任选1人有18种选法:同理,从二班20名男生中任选1人有20种选法;从三班16名男生中任意选1人有16种选法;根据加法原理,从四年级3个班中任选一名男生当升旗手的方法有:18+20+16=54种。
第一讲加乘原理加法原理:做一件事情,完成它有N类方式,第一类方式有M1种方法,第二类方式有M2种方法,……,第N类方式有M(N)种方法,那么完成这件事情共有M1+M2+……+M(N)种方法。
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2不同的方法,……,做第n步有mn不同的方法。
那么完成这件事共有N=m1×m2×m3×…×mn 种不同的方法。
核心:分布相乘、分步相加例题1:(1)从天津到上海的火车,上午、下午各发一列;也可以乘飞机,有3个不同的航班,还有一艘轮船直达上海。
那么从天津到上海共有多少种不同的走法?(2)请观察下面的树状图,请问从A到“树叶”节点的路线一共有多少条?练习1:(1)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。
一天中火车有4班,汽车有3班,轮船有2班。
问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法?(2)下图中,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过,问家中最多有多少种走法?例题2:泡泡有许多套服装,帽子数量为5顶、上衣有10件,裤子有8条,还有运动鞋6双,早晨要从几种服装中各取一个搭配,问:有多少种搭配?练习2:书架上有6本不同的外语书,4本不同的语文书,3本不同的数学书,从中任取外语、语文、数学书各一本,有多少种不同的取法?例题3:由数字1、2、3、4、5、6、7、8可组成多少个没有重复数字的三位数?百位为7的没有重复数字的三位数?练习3:利用数字1,2,3,4,5共可组成⑴多少个数字不重复的三位数?⑵多少个数字不重复的三位偶数?⑶多少个数字不重复的偶数?例题4:甲、乙、丙、丁、戊五人要驾驶A、B、C、D、E这五辆不同型号的汽车,一共有多少种不同的安排方式?如果会驾驶汽车A的只有甲和乙,一共有多少种安排方式?练习4:甲、乙、丙、丁、戊五人要驾驶A、B、C、D、E这五辆不同型号的汽车,汽车E 必须由甲、乙、丙三人中的某一人驾驶,则一共有多少种不同的安排方案?例题5:用5种颜色给如图4块区域染色,要求每块区域涂一种颜色,要使相邻区域不是同一种颜色,那么有多少种不同的染色方式?练习5:用5种颜色给如图图形染色,要求每块区域染一种颜色,要使相邻区域不是同一种颜色,有多少种染色方式?作业:1、小明用天平称物体时要用砝码,他在有1克、2克、4克、8克的砝码各一个,最多能称几种不同重量的物体?(要求砝码只放在一个托盘中)。
加法原理1、四年级加法原理:难度:中难度小明要登上10级台阶,他每一步只能登1级或2级台阶,他登上10级台阶共有多少种不同的登法?答:2、四年级加法原理:难度:中难度某工作需要钳工2人和电工2人共同完成。
现有钳工2人、电工2人,另有1人钳工、电工都会。
从这5人中挑选4人完成这项工作,共有多少种不同选法?答:3、四年级加法原理:难度:高难度如果一个大于9的整数,其每个数位上的数字都比他右边数位上的数字小,那么我们称它为迎春数.那么,小于2008的迎春数一共有多少个?答:4、四年级加法原理:难度:高难度有些五位数的各位数字均取自1,2,3,4,5,并且任意相邻两位数字(大减小)的差都是1.问这样的五位数共有多少个?答:5、四年级加法原理:难度:高难度某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9,那么确保打开保险柜至少要试几次?答:1、四年级加法原理习题答案:第1级台阶只有1种登法。
登上第2级台阶可由第1级台阶上去,或者从平地跨2级上去,故有2种登法。
同理,登上第3级台阶的方法数=登上第1级台阶的方法数+登上第2级台阶的方法数,共有1+2=3(种)……,一般地,登上第n级台阶,根据加法原理,如果登上第(n—1)级和第(n—2)级分别有a种和b种方法,则登上第n级有(a+b)种方法。
如下图,可得出下面一串数:1,2,3,5,8,13,21,34,55,89。
其中从第三个数起,每个数都是它前面两个数之和。
登上第10级台阶的方法数对应的就是89种。
2、四年级加法原理习题答案:按钳工、电工都会的人是否被挑选可分为三种:(1)没被选1种;(2)挑出来当钳工2种;(3)挑出来当电工2种;共5种.3、:四年级加法原理习题答案:4、四年级加法原理习题答案:5、四年级加法原理习题答案:。
1.如果两个四位数的差等于8921,那么就说这两个四位数组成一个数对.问这样的数对共有多少个?[分析与解]被减数最小可为1000,最大可为9999-8921=1078,且从1000到1078中任何一个数都可以作为被减数.共有79个被减数,从而这样的数对共有79个.2.一本书从第l页开始编排页码,共用数字2355个.那么这本书共有多少页?[分析与解]从1~9页,每页使用1个数字,共需9个数字;从10~99页,每页使用2个数字,共需90×2=180个数字;从100~999页,每页使用3个数字,共需900×3=2700个数字;显然这本书的页数在100~999之间,有2355-9-180=2166,而2166÷3=722,所以这本书有100+722-1=821页.3.上、下两册书的页码共有687个数字,且上册比下册多5页.问上册书有多少页?[分析与解]两本书页码所用的数字大致相当,从1~9页,每页使用1个数字,共需9个数字;从10~99页,每页使用2个数字,共需90×2=180个数字;从100~999页,每页使用3个数字,共需900×3=2700个数字.显然,两本书的页码均在100~999之间,而前99页两本书共用去(9+180)×2=378个数字,还剩下687-378=309个数字.上册书比下册书多的5页,每页均需3个数字作为页码,所以上册比下册多用5×3=15个数字.于是在剩下的309个数字种,上册用了(309+15)÷2=162个数字,即3位数的页码有162÷3=54页,所以上册有100+54-1=153页.4.从1,2,3,4,5,6,7,8,9,10这10个数中,任取5个数相加的和与其余5个数相加的和相乘,能得到多少个不同的乘积?[分析与解]题中的5个数相加最小为1+2+3+4+5=15,最大为6+7+8+9+10=40,即题中5个数相加的和有40-15+1=26种可能.而10个数的和为1+2+3+4+…+10=55.如果我们假定被乘数不超过乘数,那么被乘数有26÷2=13种可能,而当被乘数确定,乘数也就是确定为“55-被乘数”,并且这些的乘积没有重复.(如果被乘数大于乘数,都可将上面的被乘数、乘数互换而得).所以共有13种不同的乘积.5.将所有自然数,自1开始依次写下去得到:123456789101112……试确定在第206788个位置上出现的数字.[分析与解]有1~9为1位数,所以占有9×1=9个数字;10~99为2位数,所有占有90×2=180个数字;100~999为3位数,所以占有900×3=2700个数字;1000~9999为4位数,所有占有9000×4=36000个数字;10000~99999为5位数,所有占有90000×5=450000个数字.现在第206788个位置对应的5位数在10000~99999之间,有206788-9-180-2700-36000=167899,167899÷5=33579……4,所以对应的数字为10000+33579=43579的从左至右的第4个数字,即7.6.用1分、2分和5分的硬币凑成1元.共有多少种不同的凑法?[分析与解]5分的硬币最多可以有100÷5=20枚;当5分的硬币有20枚,那么只有这1种凑法;当5分的硬币有19枚,则剩下的5分由1分和2分的硬币凑成,有2+2+1=2+1+1+1=1+1+1+1+1=5,所以共有3种凑法;当5分的硬币有18枚,则剩下的10分由1分和2分的硬币凑成,有2+2+2+2+2,2分的可以替换为1分的,于是有5+1=6种凑法;当5分的硬币有17枚时,则剩下的15分由1分和2分的硬币凑成,有2+2+2+2+2+2+2+1,2分的可以替换为1分的,于是有7+1=8种凑法;当5分的硬币有16枚时,则剩下的20分由1分和2分的硬币凑成,有2+2+2+2+2+2+2+2+2+2,2分的可以替换为1分的,于是有10+1=11种凑法;于是,我们把两种情况作为一组,有(1,3),(6,8),(11,13),…,即每组数内两个数字相差2,从第2组开始,每组数的第一个数字比前一组的第一个数字大5,5分的硬币可以取20~0枚,即有21种情况,分成10组还剩下一种情况,有(1,3),(6,8),(11,13),(16,18),(21,23),(26,28),(31,33),(36,38),(41,43),(46,48),51所以共有(1+6+11+16+21+26+31+36+41+46+51)+(3+8+13+18+23+28+33+38+43+48)=(1+51)×11÷2+(3+48)×10÷2=286+255=541种.即用1分、2分和5分的硬币凑成1元.共有541种不同的凑法.7.在图8-1中,从“华”字开始,每次向下移动到一个相邻的字可以读出“华罗庚学校”.那么共有多少种不同的读法?[分析与解]从“华”到“罗”有2种读法;而从“罗”读到“庚”,每个“罗”有2种读法;而从“庚”读到“学”,每个“庚”有2种读法;从“学”到“校”,每个“学”有2种读法.显然是分步进行的,适用乘法原理,于是满足题意的读法有2×2×2×2=16种.8.在所有的两位数中,十位数字比个位数字大的两位数有多少个?[分析与解]我们将符合条件的两位数列出按箭头所示,走有一条路,到有2种办法;再往下到有从走和走两种方法,这样到有3条路线;到可从、走,有5种方法到.过可从、走,共有8条路线;到可走、,这样共有13种走法;经过可从、两条路走,有21种方法都到;到达可以走和,因而有34种路线到达.这样由A到B,可经过和两个交叉点,共有34+21=55条路线,如下图所示.11.如图8-4,把A,B,C,D,E这5部分用4种不同的颜色着色,且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色.那么,这幅图共有多少种不同的着色方法?[分析与解]A有4种着色方法;A着色后,B有3种着色方法;A、B着色后,C有2种着色方法;A、B、C着色后,D有2种着色方法;然后E有2种着色方式.所以,共有4×3×2×2×2=96种不同的着色方法.12.图8-5是一个中国象棋盘,如果双方准备各放一个棋子,要求它们不在同一行,也不在同一列,那么总共有多少种不同的放置方法?[分析与解]设甲方先放棋子,乙方后放棋子.那么甲方可以把棋子放在棋盘的任意位置,故甲方有10×9=90种不同的放置方法.对应甲方的第一种放法,乙方按规定必须去掉甲方棋子所在的行与列,而放置在剩下的任意位置,所以乙方有9×8=72种不同的放置方法.所以,共有72×90=6480种不同的放置方法.13.在如图8-6所示的阶梯形方格表的格子中放入5枚棋子,使得每行、每列都只有一枚棋子,那么这样的放法共有多少种?[分析与解]第一列有2种方法,第一列放定后,第二列又有2种方法,…,如此下去,共有2×2×2×2×1=16种不同的放法.14.有一种用六位数表示日期的方法是:从左到右第一、二位数表示年,第三、四位数表示月,第五、六位数表示日,例如890817表示1989年8月17日.如果用这种方法表示1991年的日期,那么全年中6个数都不相同的日期共有多少天?[分析与解]第1、2位分别为9、1,故第3位不能为1,而只能为0.由于第6位不能再为0、1,故第5位不能为3,当然,第5位也不能为0,1.于是,这样的日期是 910□2□的形式.第4位可取3~8中的任一个,有6种方法.第3位取定后,第6位有5种取法.从而,共有6×5=30种,即全年中六个数字都不相同的日期有30天.15.如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的,那么这样的四位数最多能有多少个?[分析与解]四位数的千位数字是1,百位数字a可在0、2、3、4、5、6、7中选择,这时三位数的百位数字是9-a;四位数的十位数字b可在剩下的6个数字中选择,三位数的十位数字是9-b.四位数的个位数字c可以在剩下的4个数字中选择,三位数的个位数字是9-c.因此,所说的四位数有7×6×4=168个。
六年级奥数题;加法原理【B】[1]———————————————答 案——————————————————————1, 15,取一枚的,有4种方法;取二枚的,有6种方法;取三枚的有4种方法;取四枚的,有1种方法,每种取法币值都不同,故共有4+6+4+1=15【种】不同币值,2, 10,放一本,有4种不同放法,放2本,有6种不同放法,共有4+6=10【种】不同放法,3, 10,最简分数的分母比分子大,分母为31的,有4种最简分数;分母为29的,有3个最简分数,分母为17的,有2个最简分数;分母为13的,有1个最简分数,故一共有4+3+2+1=10个最简分数,4, 6,10,三角形有6个:△ABC ·△ACD ·△ADE ·△ABD ·△ACE ·△ABE ,线段有10条:BC ·CD ·DE ·BD ·CE ·BE ·AB ·AC ·AD ·AE ,5, 30条,在每一条长线段上有4个点,它们可以连成6条线段,五条长线段共可连成6×5=30条线段,6, 18,以BD ·DE ·EC ·BE ·DC ·BC 为底的梯形各有2个,共12个; 以D B ''·E D ''·C E ''·E B ''·C D ''·C B ''为底的梯C' A形各有一个,共有6个,合计18个,7, 16,9分别与2·3·4·5·6·7·8的和大于10;8分别与3·4·5·6·7的和大于10;7分别与4·5·6的和大于10;6与5的和大于10,所以共有7+5+3+1=16种不同取法,8, 20,先考虑甲胜第一局的情况,列树形图如下:1 2 3 4 5一共有10种情况,同理,乙胜第一局也有10种情况,合计有20种情况,9, 6,列树形图如下,共有6种路线,10, 2种,设三人为A ·B ·C ,他们的帽子为a ,b ,c ,则有如下二种换法: A B Cb c a c a b11, 因为0和9是3的倍数,而1,4,7三数被3除都余1,故满足条件的四位数中应含有1,4,7三个数字,第四个数是0或9,将它由小到大排列是1047,1074,1407,……,第三个是1407,12, 将五个靶子标上字母如图:若第一次击碎A ,第二次击碎B ,有如下3种次序甲 甲 甲 乙 甲 乙甲乙 乙乙甲乙 甲 乙甲 乙 甲乙 A C AB A AC B AB A BC AC A B A C同理,第二次击碎C 也有3种次序,故第一次击中A 有6种次序, 若第一次击碎B ,第二次击碎A ,有如下3种次序:若第一次击碎B ,第二次击碎D ,有如下3种次序:若第一次击碎B ,第二次击碎C ,则有6种次序, 故第一次击碎B ,共有3+3+6=12【种】次序,同理,第一次击碎C 也有12种次序,于是总共有6+12+12=30【种】不同次序,13, 以长方形的长为底的三角形有2×4=8个,以长方形的宽为底的三角形有2个,共有8+2=10个,14, 除原题中的四种外,十六 加法原理【2】年级班 姓名 得分一·填空题1,从1写到100,一共用了 个“5”这个数字, 2,从19,20,21,…,92,93,94这76个数中,选取两个不同的数,使其和为偶数的选法总数是 ,3,用一个5分币·四个2分币,八个1分币买一张蛇年8分邮票,共有 种付币方式,4,用0,1,2,3这四个数字,可以组成一位数,两位数,三位数,四位数,这样的很多自然数【在一个数里,每个数字只用1次】,其中是3的倍数的自然数共有 个,5,在所有四位数中,各位上的数之和等于34的数有 种,6,从数字0·1·2·3·4·5中任意挑选出五个数字组成能被5整除而各个数位上数字不同的五位数,共有 个,C D E C B A E D E D C D E C AB DE D E A C E C DB EC E A7,至少有一个数字是1,并且能被4整除的四位数共有 个,8,在1,2,3,4,…,50这50个数中取出不同的两个数,要使取出的两个数相加的结果是3的倍数,有 种不同的取法,9,小明全家五口人到郊外春游,由其中一人轮换给其他人拍照,如果单人照各一张,每两个人合影各一张,第三个人合影各一张,每四个人合影各一张,用36张的彩色胶卷拍照最后还剩 张,10,光明小学六年级甲·乙·丙三个班组织了一次文艺晚会,共演出14个节目,如果每个班至少演出3个节目,那么,这三个班演出节目数的不同情况共有 种,二·填空题11,14名乒乓球运动员进行男子单打比赛,先是进行淘汰赛,获胜的运动员进行循环赛,每两人都要赛一场,决出冠·亚军,整个比赛【包括淘汰赛和循环赛】共要进行多少场?12,用 1 9 9 5 四个数字卡片,可以组成多少个不同的四位数?【其中 9 可以倒过来当6用】,13,数1447·1005·1231有一些共同特征,每个数都是以1开头的四位数,且每个数中恰好有两个数字相同,这样的数共有多少个?14,某城市的街道非常整齐【如图】,从西南角A 处走到对角线DB 处,共有多少种不同的走法?———————————————答 案——————————————————————1, 20在十位上,5出现了10次;在个位上,5也出现了10次,共出现了10+10=20【次】,2, 1236在这76个自然数中,奇数和偶数各有38个,选出两数都是奇数的方法有23738⨯种,选出的两数都是偶数的方法也有23738⨯种,共有23738⨯+23738⨯=38【37=1236【种】,3, 7种只用一种币值的方法有2种【都用1分或都用2分】;只用1分和2分两种币值的方法有3种;只用1分和5分两种币值方法有1种;三种币值都用上的有1种,共有2+3+1+1=7【种】,4, 33在一位数中,有两个3的倍数:0和3;在二位数中,数字和是3的倍数的有3个:12·21和30;在三位数中,三个数字可以是0,1,2或1,2,3,前者可组成4个三位数,后者可组成6个三位数,共可组成10个三位数;四位数中有3【【3【2【1】=18【个】三的倍数,故一共有2+3+10+18=33【个】3的倍数,5, 10当四位数码为9,9,8,8时,有3【2=6【种】,当四位数码为7,9,9,9时,有4【种】,故共有6+4=10【种】,6, 216若五位数末位为0,共有5【4【3【2=120【个】;若五位数的末位为5,共有4【4【3【2=96【个】,故一共有120+96=216【个】,7, 594后两位数是4的倍数时,其中含有1的只有12和16,此时前两位数有90种可能,共有2【90=180【个】,后两位数是4的倍数且不含有1的,有23种可能,前两位含1的有18种,共有23【8=414【个】,所以一共有180+414=549【个】, 8, 409在1~50这五十个自然数中,被3整除的数有16个,被3除余1的和被3除余2的数各有17个,当两个加数均为3的倍数时,有12021516=⨯【种】取法;当两个加数中一个被3除余1,另一个被3除余2时,有17【17=289【种】取法,共有120+289=409【种】不同取法, 9, 6单人照有5张;两人合影有101245=⨯⨯【张】,三人合影有10321345=⨯⨯⨯⨯【张】,四人照有5张,故还剩下36-【5+10+10+5】=6【张】,10, 21将14分成三个数之和,共有5组:【3·3·8】,【4·4·6】,【4·4·5】, 【3·4·7】, 【3·5·6】,其中前3组,每组的三个数有3种排列方法;后2组,每组的三个数有6种排列方法,共有不同的排列方法3【3+6【2=21【种】,每种排列方法对应三个班演出节目数的一种情况,故一共有21种不同情况, 11, 解答:在淘汰赛时,14名运动员比赛7场后就有7人被淘汰,另7人进入循环赛,在7人进行的循环赛中要比赛7【6【2=21【场】,所以整个比赛一共进行7+21=28【场】,12, 【1】当两张 9 都作9用时,可以分成三种类型:首位为1的,有3个;首位为5的,有3个;首位为9的,有3【2【1=6【个】,共计3+3+6=12【个】,【2】当两张 9 都作6用时,同理也有12个,【3】当两张 9 一个作9用,一个作6用时,有4【3【2【1=24【个】 所以,可以组成12+12+24=48【个】不同的四位数,13, 这样的数可以分成两大类:第一类,相同的数字是1,在后三位中,数字1可以有三种位置,另外两个是不同数字,这类数有3【9【8=216【个】,第二类相同的数字不是1,此时相同的数字有9种情况,剩下的数有8种情况,注意到剩下的数有3种位置,故这类数有3【9【8=216【个】根据加法原理,这样的数共有216+216=432【个】,14,用标数法计算对对角线BD上的每一个交叉点的走法总数,如图依次是1,8,28,56,70,56,28,8,1,由加法原理知,一共有1+8+28+56+70+56+28+8+1=256【种】不同的走法,。
加法原理例题讲解
加法原理例题讲解2
常见题型1、从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。
一天中火车有4班,汽车有3班,轮船有2班。
问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法
分析与解:一天中乘坐火车有4种走法,乘坐汽车有3种走法,乘坐轮船有2种走法,所以一天中从甲地到乙地共有:4+3+2=9(种)不同走法。
常见题型2、旗杆上最多可以挂两面信号旗,现有红色、蓝色和黄色的信号旗各一面,如果用挂信号旗表示信号,最多能表示出多少种不同的信号分析与解:根据挂信号旗的面数可以将信号分为两类。
第一类是只挂一面信号旗,有红、黄、蓝3种;第二类是挂两面信号旗,有红黄、红蓝、黄蓝、黄红、蓝红、蓝黄6种。
所以一共可以表示出不同的信号3+6=9(种)。