制动主缸与真空助力器结构及原理知识分享
- 格式:doc
- 大小:4.77 MB
- 文档页数:16
真空助力器带制动主缸和比例阀的结构原理及故障分析真空助力器带制动主缸和比例阀的结构原理及故障分析一真空助力器与制动主缸的结构及原理(一)液压管路联接形式奇瑞轿车采用液压对角线双回路制动系统联接.如图1所示。
制动主缸3的第一腔出油口通过比例阀与右前轮、左后轮的制动管路4联接相通。
制动主缸3的第二腔出油口通过比例阀与左前轮、右后轮的制动管路5联接相通。
两个制动管路4、5呈交叉型对角线布置。
这种液压对角线双回路制动系统的联接形式.能保证在某一个回路出现故障时仍能得到总制动效率的50%。
此外.这种制动系统结构简单.而且直行时紧急制动的稳定性好。
(二)串联式双腔制动主缸1 带补尝孔串联式双腔制动主缸奇瑞轿车采用补尝孔串联式双腔制动主缸.其结构原理如图2所示。
制动时.驾驶员踩下制动踏板.真空助力器推动第一活塞13左移.在主皮碗盖住补尝孔15后.第一工作腔9的制动液建立起压力.在此压力下及第一回位簧的抗力作用下.又推动第二活塞7.并克服第二回位簧抗力2左移.在主皮碗盖住补尝孔4后.第二工作腔3随之产生压力.制动液通过四个出油口进入前、后制动管路.对汽车施行制动。
解除制动时.驾驶员松开制动踏板.活塞在弹簧作用下开始回位.高压制动液顺管路回流入制动主缸。
由于活塞回位速度迅速.工作腔内容积相对增大.致使制动液压力迅速降低.管路中的制动液受到管路阻力的影响.制动液来不及充分流回工作腔充满活塞移动让出的空间.这样使工作腔形成一定的真空度.贮液罐里的制动液便经回油孔14、16和活塞上面的四个小孔推开阀片6经主皮碗5、11的边缘流入工作腔。
当活塞完全回到位时.工作腔通过补尝孔与贮液罐相通.这时多余的制动液经补尝孔流回到贮液罐。
等待下一次制动.这样往复循环进行。
2 带ABS的中心阀式双腔制动主缸ABS系统配备于奇瑞豪华轿车.大大提高了整车的安全性和制动稳定性.为了提高ABS系统工作的可靠性.奇瑞轿车采用了中心阀式双腔制动主缸. 其结构如图3所示。
真空助力器的工作原理
真空助力器是一种通过增加刹车系统的压力来提高刹车效果的装置。
它利用汽车发动机进气歧管或者其他地方产生的真空来创建负压,从而吸引空气进入真空助力器内部。
工作原理如下:
1. 真空增压:助力器与发动机的进气歧管通过真空管连接。
当发动机工作时,活塞在进气冲程期间会产生低压,将空气抽出助力器内部,形成真空环境。
2. 传递力量:当驾驶员踩下刹车踏板时,刹车液压系统会施加力量到助力器内部的主缸上。
这个力量将被传递到真空助力器内的活塞上。
3. 助力增加:活塞会因为刹车液压系统施加的力量而向前推动。
在活塞前面有一个隔膜,当活塞移动时,它将分隔压力腔和真空腔。
由于真空腔的压力较低,活塞在移动时将形成一个压力差。
这将导致隔膜稍向后移动,进一步增加助力器内部的真空程度。
4. 助力传递:当助力器内部的真空增加时,它会通过一个活塞将外部的大气压力传递到刹车主缸上。
这将增加刹车主缸内的压力,并将力量传递到车轮刹车系统上。
5. 增强刹车效果:由于真空助力器提供了额外的力量,驾驶员只需要施加较小的力量就能实现更有效的刹车。
这提高了刹车反应时间和刹车距离的控制能力。
总之,真空助力器通过利用汽车发动机产生的真空来增加刹车系统的压力,从而提高刹车效果。
它的工作原理在于通过真空差异将力量传递到刹车系统中,使得驾驶员能够更轻松地实现快速且有效的刹车。
制动主缸与真空助力器结构及原理真空助力器带制动主缸和比例阀的结构原理及故障分析真空助力器带制动主缸和比例阀的结构原理及故障分析一真空助力器与制动主缸的结构及原理(一)液压管路联接形式奇瑞轿车采用液压对角线双回路制动系统联接,如图1所示。
制动主缸3的第一腔出油口通过比例阀与右前轮、左后轮的制动管路4联接相通。
制动主缸3的第二腔出油口通过比例阀与左前轮、右后轮的制动管路5联接相通。
两个制动管路4、5呈交叉型对角线布置。
这种液压对角线双回路制动系统的联接形式,能保证在某一个回路出现故障时仍能得到总制动效率的50%。
此外,这种制动系统结构简单,而且直行时紧急制动的稳定性好。
(二)串联式双腔制动主缸1 带补尝孔串联式双腔制动主缸奇瑞轿车采用补尝孔串联式双腔制动主缸,其结构原理如图2所示。
制动时,驾驶员踩下制动踏板,真空助力器推动第一活塞13左移,在主皮碗盖住补尝孔15后,第一工作腔9的制动液建立起压力,在此压力下及第一回位簧的抗力作用下,又推动第二活塞7,并克服第二回位簧抗力2左移,在主皮碗盖住补尝孔4后,第二工作腔3随之产生压力,制动液通过四个出油口进入前、后制动管路,对汽车施行制动。
解除制动时,驾驶员松开制动踏板,活塞在弹簧作用下开始回位,高压制动液顺管路回流入制动主缸。
由于活塞回位速度迅速,工作腔内容积相对增大,致使制动液压力迅速降低,管路中的制动液受到管路阻力的影响,制动液来不及充分流回工作腔充满活塞移动让出的空间,这样使工作腔形成一定的真空度,贮液罐里的制动液便经回油孔14、16和活塞上面的四个小孔推开阀片6经主皮碗5、11的边缘流入工作腔。
当活塞完全回到位时,工作腔通过补尝孔与贮液罐相通,这时多余的制动液经补尝孔流回到贮液罐。
等待下一次制动,这样往复循环进行。
2 带ABS的中心阀式双腔制动主缸ABS系统配备于奇瑞豪华轿车,大大提高了整车的安全性和制动稳定性,为了提高ABS系统工作的可靠性,奇瑞轿车采用了中心阀式双腔制动主缸,其结构如图3所示。
真空助力器的原理真空助力器是一种用于改善汽车制动系统性能的装置。
它的原理基于利用了压力差和真空的作用。
下面我将详细介绍真空助力器的工作原理。
首先,我们来看一下真空助力器的构造。
真空助力器由主体、隔膜室、真空室和弹簧膜组成。
主体通常由金属材料制成,而隔膜室和真空室之间的隔膜则由橡胶材料制成。
在主体内部有两个连接口,一个连接到制动踏板,另一个连接到制动器。
当驾驶员踩下制动踏板时,压力被传递到了真空助力器的隔膜室内。
此时,隔膜室内的压力增加,同时真空室内的压力保持低值。
这种压力差导致隔膜室的隔膜向真空室方向运动。
当隔膜运动时,它会推动连接在隔膜的一侧的弹簧膜。
同时,真空室与制动器之间的连接也打开了。
这使得真空助力器内部形成了一个真空效应。
真空效应是真空助力器工作的关键环节。
它是由于隔膜室和真空室的压力差导致的。
由于大气压力远高于真空室内的压力,就会产生一个从高压区向低压区移动的力。
这个力将传递到制动器,从而实现了辅助制动。
在辅助制动过程中,由于真空助力器的存在,驾驶员只需用较小力度踩下制动踏板,就能施加足够的力量来实现制动。
因为隔膜室内的压力较高,这也就意味着制动器所需要的力量大幅降低。
当驾驶员松开制动踏板时,压力作用在隔膜室上消失,同时弹簧的作用下,隔膜室的隔膜返回到初始位置。
这使得制动器的连接关闭,真空助力器内的压力恢复到正常状态。
总结起来,真空助力器利用压力差和真空效应来辅助汽车的制动。
当驾驶员踩下制动踏板时,隔膜室内的压力增加,真空室保持低压力,这导致隔膜室的隔膜向真空室方向运动,产生真空效应。
真空效应使得驾驶员只需用较小力度就能实现制动,提高了制动系统的性能。
真空助力器的工作原理使得汽车的制动更加轻松和有效,提高了行车的安全性。
它广泛应用于现代汽车制动系统中,为驾驶员提供了更加舒适和可靠的驾驶体验。
真空助力器结构与原理
真空助力器结构与原理:
I. 结构特点
1. 由真空发生器、真空容器、真空助力器三部分组成;
2. 使用完全封闭的真空容器制作,外表面镀锌板或涂胶处理,防止真空受损;
3. 真空助力器内润滑,使用密封环挡圈圆柱齿轮主令,确保助力器的安全操作;
4. 由液压介质和压差控制设备带动旋转;
5. 还配备有活塞、连杆及其活塞杆连接块、滚珠轴承等元件。
II. 原理
1. 真空助力器(板片式真空液压器)是利用系统内部真空容器内排气和排气阀的自动控制,使活塞实现不受空气压力而维持恒定的真空应力作用;
2. 活塞空气压力对等的下拉力,可使活塞上的连杆产生连续的螺旋线运动,变换至输出端;
3. 同时,只有在活塞的上部充满空气的真空容器使得活塞具有超出入口处气压变化而维持恒定输出力的作用;
4. 当系统中真空助力器的液压介质或者气压发生变化时,活塞也会相应的改变,实现可控的液压力输出、变速功能;
5. 采用真空助力器设计的元件组合可以实现更理想的运动性能。
制动主缸与真空助力器结构及原理制动主缸是汽车制动系统的关键部件之一,主要负责将踩下的制动踏板力转化为液压力,并将液压力传递给制动器,从而实现制动的目的。
而真空助力器作为辅助装置,则通过增加制动力的倍数和减小制动踏板所需力矩,使驾驶员在制动时更加轻松和方便。
下面详细介绍制动主缸与真空助力器的结构与原理。
制动主缸的结构主要包括主缸壳体、活塞、密封装置以及一个出口管道。
主缸壳体上面有一个进口,用于接收制动踏板的力,而内部则分为两个密封腔室。
每个密封腔室都有一个活塞,当踩下制动踏板时,活塞会随之向前移动,压缩泄漏闭塞件和密封环,使得压缩室内的液体流动,并把液体压力传递给制动器。
而密封环和活塞之间的间隙,则可以保证制动液体从一个密封腔室流动到另一个密封腔室。
当驾驶员松开制动踏板时,活塞会自动回到初始位置。
真空助力器的结构主要包括壳体、隔膜、控制活塞、进气阀和排气阀等部件。
壳体内部分为两个隔膜室和一个传动杆室。
隔膜室与汽车进气歧管相连,可以利用引擎进气时产生的负压来产生吸力。
而传动杆室则与制动主缸连接,用于传递助力力矩。
进气阀和排气阀则用于控制真空助力器的进气和排气。
制动主缸和真空助力器的工作原理是相互配合的。
当驾驶员踩下制动踏板时,制动主缸的活塞会向前移动,把制动液体压入制动系统中,从而实现制动。
同时,制动主缸的活塞行程也会压缩真空助力器隔膜,使得助力器内部形成真空,进而产生助力效果。
随着助力器内部真空的减小,控制活塞会受到调节阀的偏转,改变进气阀和排气阀的开启和关闭程度,对助力器的助力力矩进行调整,以使得驾驶员在制动时感觉更加轻松和方便。
总之,制动主缸和真空助力器在汽车制动系统中起到了至关重要的作用。
制动主缸将驾驶员的力量转化为制动液体压力,而真空助力器则通过增加制动力的倍数和减小制动踏板所需力矩,提供辅助力矩,使驾驶员在制动时更加轻松和方便。
两者的配合工作,促使汽车制动系统更加高效和安全。
真空助力器工作原理真空助力器是一种用于汽车制动系统的装置,它可以增强制动器的制动力,从而提高汽车的制动性能。
它的工作原理涉及到真空力学和液压原理,下面将详细介绍真空助力器的工作原理。
首先,让我们来了解一下真空助力器的结构。
真空助力器通常由真空室、活塞、活塞杆、弹簧、进气阀和出气阀等部件组成。
其中,真空室是一个密封的容器,内部是真空状态。
活塞和活塞杆连接在一起,活塞杆的一端连接着制动踏板,另一端连接着真空助力器的活塞。
进气阀和出气阀分别用于控制真空室内外的气体流动。
接下来,让我们来看一下真空助力器的工作原理。
当司机踩下制动踏板时,活塞杆会向真空助力器内部施加力,使得活塞向真空室内移动。
同时,进气阀关闭,出气阀打开,真空室内的空气被抽走,形成真空状态。
在这个过程中,真空助力器内部的压力降低,而外部大气压力则推动活塞向内移动,从而形成一个负压区域。
当活塞向内移动时,真空助力器内部的负压会使得活塞上方的弹簧被压缩,从而储存了一定的弹性能量。
当司机松开制动踏板时,活塞会向外移动,弹簧释放储存的能量,从而帮助活塞向外移动,提供制动力。
此外,真空助力器还可以通过液压原理来增强制动力。
当活塞向内移动时,真空助力器内部的负压会使得真空助力器的液压泵工作,将液压油送入制动器,从而增强制动力。
总的来说,真空助力器的工作原理是通过活塞的运动和真空状态下的压力差来增强制动力,同时利用液压原理来提高制动性能。
它可以提高汽车的制动效率,减少司机的制动压力,提高行车安全性。
因此,真空助力器在汽车制动系统中起着非常重要的作用。
真空助力器和主缸工作原理
真空助力器是一种被动式辅助制动装置,通过利用发动机进气歧管中产生的负压,来提供额外的制动力,减轻驾驶员对制动踏板的踩踏力,并提高制动效果。
真空助力器的工作原理如下:
1. 发动机进气歧管中产生的负压将真空助力器中的大气压降低,使其内部形成负压状态。
2. 当驾驶员踩下制动踏板时,真空助力器内部的负压将主缸内部的活塞向前推动,从而产生液压力。
3. 液压力通过制动管路传递到制动器,使制动器的摩擦片夹紧制动盘,从而达到制动效果。
4. 随着驾驶员松开制动踏板,真空助力器内部的负压消失,主缸内部的活塞回弹,制动器释放,车辆恢复行驶。
总的来说,真空助力器通过利用发动机进气歧管中的负压,将主缸内部的液压力增加,从而增加制动力,提高制动效果。
制动主缸工作原理制动主缸是汽车制动系统中的重要组成部分,它起着将踏板力量转换成液压力量的作用。
其工作原理是利用液体不可压缩的特性,将踏板上的力量转化为液压力,从而推动制动系统中的制动器实现制动的目的。
制动主缸通常由两个独立的腔室组成,分别对应前后轮的制动系统。
当踏板被踩下时,踏板上的力量通过连杆传递给制动主缸内的活塞。
活塞在受到力量的作用下向前移动,压缩主缸内的液体(通常是制动油)。
液体的不可压缩性使得压缩后的液体会产生液压力,这一液压力会通过制动管路传递给车轮上的制动器。
在制动主缸中,还设有一个称为真空助力器的装置。
真空助力器通过真空泵或真空增压器产生负压,帮助减少踏板上的踩踏力量。
当踏板被踩下时,真空助力器会感应到踏板上的力量,从而启动助力装置,减少踏板的踩踏力量,提高制动的效率。
制动主缸内的液体压力会通过制动管路传递到车轮上的制动器。
制动器通常分为盘式制动器和鼓式制动器两种。
在盘式制动器中,制动主缸传递的液压力会使制动器内的活塞向外推动,从而使制动器夹紧在刹车盘上,实现制动的目的。
而在鼓式制动器中,液压力会使制动器内的鼓式活塞向外推动,使制动鼓内的制动鞋与鼓壁摩擦,实现制动的目的。
在整个制动系统中,制动主缸起着将踏板上的力量转化为液压力的重要作用。
它的工作原理是利用液体的不可压缩性质,通过活塞的移动产生液压力,从而推动制动系统中的制动器实现制动的目的。
同时,真空助力器的辅助作用也提高了制动的效率,使得驾驶者能够更轻松地控制车辆的制动。
因此,制动主缸的正常工作对于汽车的安全驾驶至关重要。
真空助力器的工作原理当驾驶者踩下制动踏板时,制动总泵将液压力传递给制动器,进而施加在车轮上。
同时,制动总泵也通过活塞杆向真空助力器传递力量。
这里,真空助力器发挥作用的两个重要组件是真空腔和活塞。
首先是真空腔的作用。
当发动机工作时,进气门会吸入空气。
一部分空气通过进气道进入发动机,而另一部分则进入真空腔。
由于在发动机中的燃烧过程中,气缸内会产生负压,这个负压也会传导到进气道中的空气。
因此,真空腔内的空气压力低于大气压。
当制动踏板被踩下时,活塞杆会向真空助力器传递驾驶者的力量。
这时,真空助力器的活塞也会收到同样的力量并移动。
由于活塞与真空室相连,活塞移动会改变真空腔的体积。
当活塞向上移动时,真空腔的体积增大;当活塞向下移动时,真空腔的体积减小。
接下来是活塞的作用。
当活塞向上移动时,真空腔的体积增大,而其中的空气相对密度降低。
根据气体物理学的原理,气体相对密度的降低会导致气体的压力降低。
因此,真空腔内的压力会更低于大气压。
在制动过程中,真空助力器通过气压差来提供额外力量。
当活塞向上移动时,真空腔内的低压会吸引大气腔中的空气进入真空腔,造成压力差。
这个压力差会将驾驶者的制动力放大,从而提供较大的制动力。
值得注意的是,在进行制动时,制动踏板踩下的力量不仅用于驱动活塞向上移动,还会用于克服由气压差引起的反向力。
因此,真空助力器的设计使得驾驶者只需施加比较小的力量就能达到相同或更强的制动效果。
综上所述,真空助力器通过利用气压差和真空效应来提供额外的力量来帮助驾驶者施加制动力。
它的工作原理主要包括活塞和真空腔的协同作用,通过调整真空腔的容量来产生气压差,从而实现制动力的放大。
这项技术显著提高了制动系统的效能,使得驾驶者能够更加轻松地操作汽车。
真空助力器总成一、工作原理1非工作状态(装配状态)在阀杆回动簧的作用下,阀杆和空气阀座处于右极限位置,橡胶阀部件被阀门弹簧压紧在空气阀座上,从而空气阀口关闭,真空阀口打开,此时前、后气室相通,并于大气隔绝。
在发动机工作时,前后两气室的气压相同,即具有相同的真空度。
2工作状态踏动踏板时,踏板力经杠杆放大(踏板比),作用于真空助力器的阀杆上,并压缩阀杆回动簧,推动空气阀座向前移动,经过反馈盘和主缸推杆传递,使制动主缸的第一活塞移动,产生液压,制动轮缸产生张开力,推动制动蹄片产生制动力。
与此同时,橡胶阀部件在阀杆簧的作用下,随同空气阀座一起移动,关闭真空阀口,使前后气室隔开,即后气室与真空源断开。
(这是一瞬间过程)随着阀杆的继续移动,空气阀座与橡胶阀部件脱离,空气阀口打开,外界空气经泡沫滤芯、橡胶阀部件的内孔和大气阀口进入后气室,这样前后两气室产生气压差,这个气压差在助力器的膜片、助力盘、阀体上产生作用力,除一小部分用来平衡弹簧抗力和系统阻力外,大部分经阀体作用在反馈盘上,并传递到制动主缸。
在这个过程中,真空阀口始终处于关闭状态。
在踏动踏板的过程中,阀杆向前移动,空气经打开的空气阀口,不断地进入后气室,阀体不断地向前移动。
当踏板停留在某一位置时,阀体则移动到空气阀口关闭的位置,此时空气阀口和真空阀口均处于关闭状态,助力器处于一平衡状态,即阀杆的输入力、2224D A π=2334D A π=2114D A π=SP F Fo F +=P A A P A A F S •−+Δ•−=)()(2331前后气室产生的伺服力和主缸液压产生的作用力(助力器的输出力的反作用力)三者之间保持平衡。
当前后气室的气压差达到最大,即后气室的气压完全为大气气压时,则真空助力器达到最大助力点,此后,输入力的变化与输出力的变化相等,即没有伺服力的增加。
3 释放释放制动踏板,阀杆回动簧立即将阀杆和空气阀座推回,使空气阀口关闭,真空阀品开启,阀体在回位簧的作用下,回到初始位置,助力器回到非工作状态。
汽车制动真空助力器工作原理汽车知识真空助力器工作原理制动助力器,它是一个黑色圆罐,位于驾驶员侧发动机舱后部,固定在车身上,借推杆与制动踏板连接。
加力气室由前后壳体组成,其间夹装有膜片和座,它的前腔经单向阀通进气管或真空筒;后腔膜片座毂筒中装有控制阀,其中装有与推杆固接的空气阀和限位板、真空阀和推杆等零件。
膜片座前端滑装有推杆,其间有传递脚感的橡胶反作用盘,橡胶反作用盘是两面受力;右面的中心部分要受推杆及空气阀的推力,盘边环部分还要承受膜片座的推力;左面要承受推杆传来的主缸液压反作用力。
实际上它是一个膜片,利用它的弹性变形来完成渐进随动,同时使脚无悬空感。
单向阀有两个功能:一是保证发动机熄火后有一次有效地助力制动;二是发动机偶尔回火时,保护真空助力室的膜片免于损坏。
一般和刹车总泵一体,助力器成圆筒形状,当中有个皮碗把助力器分成两个腔,当中和前面各有一个单向阀,平时这两个腔全是真空的,当踏下刹车踏板时,前面的单向阀打开,前腔开始进气,但后面的腔还是真空的,当中的单向阀关闭,因为前腔和后腔产生负压,所以皮碗带动顶杆一起推动刹车总泵工作;当收回刹车踏板时当中的单向阀打开,前面的单向阀关闭,前腔的空气流入后腔,两个腔没有负压,顶杆随着踏板回位弹簧一起回到原来的位置,同时当中的单向阀也关闭。
制动助力器利用发动机真空来增大脚施加给主缸的力,真空助力器是一个含有智能阀和膜片的金属罐。
一根杆穿过罐的中央,两头分别连接主缸活塞和踏板连杆。
动力制动系统的另一个关键零件是单向阀。
单向阀只允许将空气吸出真空助力器。
如果关闭发动机,或者真空管发生泄漏,则单向阀将确保空气不进入真空助力器。
这点很重要,因为在发动机停止运转时,真空助力器必须得提供足够的推进力来让驾驶员再刹几次车。
在公路上驾车行驶时,如果汽油耗尽,您当然不希望在此时失去制动功能。
真空助力器的设计非常简单、精致。
该装置需要真空源才能运行。
汽油动力车的发动机可以提供适用于助力器的真空。
制动主缸与真空助力器结构及原理真空助力器带制动主缸和比例阀的结构原理及故障分析真空助力器带制动主缸和比例阀的结构原理及故障分析一真空助力器与制动主缸的结构及原理(一)液压管路联接形式奇瑞轿车采用液压对角线双回路制动系统联接,如图1所示。
制动主缸3的第一腔出油口通过比例阀与右前轮、左后轮的制动管路4联接相通。
制动主缸3的第二腔出油口通过比例阀与左前轮、右后轮的制动管路5联接相通。
两个制动管路4、5呈交叉型对角线布置。
这种液压对角线双回路制动系统的联接形式,能保证在某一个回路出现故障时仍能得到总制动效率的50%。
此外,这种制动系统结构简单,而且直行时紧急制动的稳定性好。
(二)串联式双腔制动主缸1 带补尝孔串联式双腔制动主缸奇瑞轿车采用补尝孔串联式双腔制动主缸,其结构原理如图2所示。
制动时,驾驶员踩下制动踏板,真空助力器推动第一活塞13左移,在主皮碗盖住补尝孔15后,第一工作腔9的制动液建立起压力,在此压力下及第一回位簧的抗力作用下,又推动第二活塞7,并克服第二回位簧抗力2左移,在主皮碗盖住补尝孔4后,第二工作腔3随之产生压力,制动液通过四个出油口进入前、后制动管路,对汽车施行制动。
解除制动时,驾驶员松开制动踏板,活塞在弹簧作用下开始回位,高压制动液顺管路回流入制动主缸。
由于活塞回位速度迅速,工作腔内容积相对增大,致使制动液压力迅速降低,管路中的制动液受到管路阻力的影响,制动液来不及充分流回工作腔充满活塞移动让出的空间,这样使工作腔形成一定的真空度,贮液罐里的制动液便经回油孔14、16和活塞上面的四个小孔推开阀片6经主皮碗5、11的边缘流入工作腔。
当活塞完全回到位时,工作腔通过补尝孔与贮液罐相通,这时多余的制动液经补尝孔流回到贮液罐。
等待下一次制动,这样往复循环进行。
2 带ABS的中心阀式双腔制动主缸ABS系统配备于奇瑞豪华轿车,大大提高了整车的安全性和制动稳定性,为了提高ABS系统工作的可靠性,奇瑞轿车采用了中心阀式双腔制动主缸,其结构如图3所示。
其特点是取消了串联式双腔制动主缸的补尝孔,采用中心单向阀来取代它们的作用。
该中心单向阀结构安装在第一、二活塞内,其结构如图4所示。
制动时,活塞在助力器的推力作用下开始左移,当中心阀芯5、14脱离控制销8、17时,中心阀芯在中心阀簧作用下将中心阀口关闭,这时工作腔3、12建立起液压并通过出油口传递给制动管路。
解除制动时,活塞在回位簧作用下,迅速退回,在真空度的作用下,中心阀打开,贮液罐里的制动液经回油孔18、19并通过中心阀口充满工作腔3、12。
等待下一次制动。
采用中心阀式的结构优点是:由于ABS系统中液压泵的作用,使制动系统的制动液压发生波动,正是这种作用使制动主缸内的液压产生波动,且活塞同时发生相对移动,其液压的变化频率可达每秒4~10次,液压可达20MPa高压,当活塞相对缸体移动时,由于高压的作用,在补尝孔和回油孔处就会发生密封皮碗的过度磨损或切削现象,这样就会造成制动主缸失效,从而造成制动系统失效,所以,奇瑞轿车的ABS系统所采用的中心阀制动主缸结构,克服了以上不足,从而提高了制动系统的安全可靠性。
(三)真空助力器为了提高驾员的操纵轻便性,降低制动踏板力,奇瑞轿车采用了7英寸真空助力器。
真空助力器其结构如图5所示。
真空助力器的后壳体螺栓21固定在车身前围板上,阀杆1与制动踏板杆连接。
真空助力器前壳体螺栓17与制动主缸连接.助力器由前、后壳体27、11组成工作腔,由膜片12、助力盘13、阀体22共同组成助力器工作腔,并分成前、后(A、B)两腔,前腔A真空管16接发动机进气歧管,以获得发动机的真空度,使助力器工作。
后腔B通过真空阀口E及空气阀口G的开关,或与前腔相通,或与大气相通,真空助力器工作腔与外界大大气隔绝。
橡胶阀部件与阀体组成真空阀口E,与空气阀座组成空气阀口G。
未制动时,真空助力器处于非工作状态。
在阀门弹簧6的作用下,橡胶阀部件7紧压在空气阀座18的端面上,空气阀口G被关闭,使A气室和B气室与外界空气隔绝。
此时真空阀口E而开启,通往A气室的通道C与通往B气室的通道D相通,A、B两气室压力差为零。
在发动机工作时, A、B两气室的度绝对值与发动机进气管处相同。
制动时,驾驶员踩下制动踏板,踏板力F1推动阀杆1连同空气阀座18向左移动,消除反馈盘20与压块19之间间隙后,压缩反馈盘20并推动主缸推杆26左移动,使制动主缸产生一定的液压。
与此同时,橡胶阀部件7在阀门弹簧6的作用下与阀体22接触,真空阀口E被关闭,A、B两气室被隔绝。
阀杆1继续左移,空气阀座18在阀杆1的作用下与橡胶阀部件7脱离,空气阀口G打开。
外界空气经毛毡滤芯2和通道D进入B气室。
这时A、B两气室之间产生压力差。
于是在主缸推杆上产生助推力。
当踏板力达到一定值时,阀杆1也停止左移,由于两腔压力差的存在,而整个阀体部件与膜片12和助力盘13一起继续向左移,这时空气阀口G逐渐关闭,于是出现了真空阀口E和空气阀口G同时关闭的平衡状态。
此时主缸推杆26作用于反馈盘上的力与阀杆1和阀体部件作用于反馈盘上的合力相平衡,当B腔气压达到大气压时,助力器达到最大助力点。
解除制动时,在主缸回位簧力的作用下,推动阀体部件右移,使真空阀口E打开,助力器的A、B两气室相通,这时A、B两腔均成为真空状态,膜片12、助力盘13和阀体22在回位簧15力的作用下,推回到原始位置,制动主缸即解除制动状态。
若真空助力器失效或真空管路无真空度时,踏板上阀杆通过空气阀座直接推动阀体和主缸推杆26向左移动,使制动主缸产生制动压力。
二比例阀结构与原理比例阀是汽车制动系统中的压力调节装置,安装于制动系统的制动主缸和后轮轮缸的后制动管路中,汽车在制动过程中,自动调节后轮的制动压力,防止后轮抱死引起汽车侧滑现象,从而提高整车制动时的稳定性和安全作用。
比例阀的结构原理如图7所示,采用的是两端承压面积不等的差径式活塞结构,主要由阀体、活塞、阀门、弹簧、定位座、密封圈等零件组成,设有输入油口和输出油口,输入油口与制动主缸联接,输出油口与后轮轮缸联接。
差径活塞上端的导向圆柱表面与阀体内定位座间隙配合,并与密封圈密封配合,活塞下端表面的圆柱与阀体间隙配合,活塞直径D的轴向与阀门之间形成阀口。
比例阀属于定值阀,它不虽汽车的载重变化而变化,其工作原理是,当输入端液压P1与输出端液压P2增长到一定值P S后,即自动地对输出液压P2的增长按一定比例加以节制(见图8),由于输出液压P2的增长量小于输入液压P1的增长量,所以P2按固定比例增加。
未制动时,在弹簧4预紧力F1的作用下,活塞2处在极限位置,橡胶阀门3被活塞2压靠在阀体的台阶上,阀口保持开启状态。
(见图7左侧)制动开始时,由制动主缸前、后腔产生的液压输出到比例阀的输入端,经开启的阀口输到输出端,此时输入液压P1和输出液压P2从零同步增长,输入液压等于输出液压;即P1=P2随着输入液压的增长,作用在活塞2上液压作用力F达到并超过设定的弹簧预紧力F1时,活塞2开始向上移动,当输入液压P1和输出液压P2增长到一定值P S时,活塞2与橡胶阀门3间的阀口关闭(见图7右侧),此时输入腔与输出腔被隔绝,活塞2达到平衡状态,此瞬间的关闭点液压P S称为折点压力,(见图8)此时液压P1=P2=P S。
由于活塞输出端的承压面积A2大于活塞输入端的承压面积A1,所以活塞输出端的液压作用力大于输入端的液压作用力。
那么两端液压作用力之差:F=A2P2-A1P1。
同时作用活塞上液压作用力之差F与平衡状态下的弹簧抗力F1相平衡F=F1。
若输入液压P1继续增加,作用在活塞输入端的液压作用力F随之增大,当大于输出端活塞上的作用力时,活塞2向下移动,阀口再度开启,从而使输出端液压继续升高。
由于A2>A1,输出液压P2尚未增长到新的输入液压P1时,活塞又回复到平衡状态,这过程是循环往复瞬间完成。
三贮液罐结构与原理贮液罐是贮存制动液并为制动系统提供和补充足够能量的刹车制动液,保证汽车在行驶制动过程中的可靠性。
贮液罐下壳体的出口处与制动主缸联接,开关体与架驶室的液面报警装置相接。
其结构主要由下壳体、上壳体、旋盖、浮子、磁铁、舌簧管、开关体等零件组成。
当贮液罐里的液面上升或下降时,浮子带动磁铁虽着液面同时上升或下降,当浮子上升到MAX的位置时,磁铁的磁力远离舌簧管开关接点,接点断开,报警装置处在非工作状态;浮子下降到MIN的位置时,磁铁的磁力接近舌簧管开关接点,接点接通,报警装置处在工作状态;通知司机该往贮液罐加制动液,用眼观察制动液面加到最大位置(MAX)四真空助力器带制动主缸、贮液罐、比例阀外形结构和技术参数1)真空助力器带制动主缸、比例阀、贮液罐外形结构2)真空助力器带制动主缸和比例阀特性曲线3)真空助力器带制动主缸、比例阀技术参数表1表2表3三真空助力器、制动主缸和比例阀安装要求及注意事项1 真空助力器与制动主缸勿轻易解体,若解体则应更换两部件间密封圈。
2 真空助力器与制动主缸间的螺栓拧紧力矩为25±4 N·m 。
3 真空助力器与踏板支架间的螺栓拧紧力矩为25±4 N·m 。
4 拆卸制动主缸时,小心勿将其它矿物油粘滴到皮碗上。
以免损坏皮碗,造成制动失效。
5 制动油管与制动主缸出油口、比例阀的进出油口螺纹联接的拧紧力矩为12~16 N·m 。
6 真空助力器后壳体端面到调整叉叉孔中心尺寸距离出厂时已经调整合格,不允许再进行调整。
7 真空助力器输入推杆在车上必须是自由状态。
8 制动主缸出油口与油管接口处应保持清洁,避免杂质进入制动管路。
9 加入制动液时,要保持贮液罐加注口及制动液的清洁,不允许进入杂质。
10 贮液罐的液面高度应在“MAX”线与“MIN”线之间。
11 所用制动液应与贮液罐盖上要求一致。
四制动主缸、真空助力器产生故障原因和排除方法(一)制动踏板硬产生主要原因:1 真空助力器损坏而失效。
检查活塞、螺钉、真空弯管是否损坏2 真空助力器泄漏或无真空度。
检查真空进气单向阀是否堵塞,打不开。
3 制动主缸活塞运动不灵活,皮碗溶涨。
分解检查主缸皮碗。
4 发动机真空度不够,保证66.7MPa,检查发动机真空度5 制动踏板与真空助力器连接角度不对,大气阀口顶开漏气.出现以上问题必须更换新的总成。
(二)制动效果不良,踏板逐渐低下产生主要原因:1制动管路与制动主缸、轮缸、比例阀联接处泄漏。
2 制动系统排气不好。
3 制动液液面过低。
4 制动主缸内的中心阀泄漏或皮碗损坏,应更换新制动主缸。
5 轮缸泄漏或皮碗损坏,应更换轮缸。
6 制动软管膨胀系数太大。
7 制动鼓失圆。
摩擦片接触不良。
(三)制动踏板软产生主要原因:1 真空助力器带制动主缸空行程大。