函数的解析式
- 格式:ppt
- 大小:293.00 KB
- 文档页数:11
求函数解析式的六种常用方法一、换元法已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可.例1 已知f (xx 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 11-t (t ≠1), ∴f (t )= 111)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1).评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.二、配凑法例2 已知f (x +1)= x+2x ,求f (x )的解析式.解: f (x +1)= 2)(x +2x +1-1=2)1(+x -1,∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x ,则有f (x )= x 2-1 (x ≥1).评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三、待定系数法例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式.解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ①f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.x ≥0, x <0. 四、消去法例4 设函数f (x )满足f (x )+2 f (x1)= x (x ≠0),求f (x )函数解析式. 分析:欲求f (x ),必须消去已知中的f (x 1),若用x1去代替已知中x ,便可得到另一个方程,联立方程组求解即可. 解:∵ f (x )+2 f (x1)= x (x ≠0) ① 由x 1代入得 2f (x )+f (x 1)=x1(x ≠0) ② 解 ①② 构成的方程组,得 f (x )=x 32-3x (x ≠0). 五、特殊值法例5 设是定义在R 上的函数,且满足f (0)=1,并且对任意的实数x ,y , 有f (x -y )= f (x )- y (2x -y+1),求f (x )函数解析式.分析:要f (0)=1,x ,y 是任意的实数及f (x -y )= f (x )- y (2x -y+1),得到f (x )函数解析式,只有令x = y.解: 令x = y ,由f (x -y )= f (x )- y (2x -y+1) 得f (0)= f (x )- x (2x -x+1),整理得 f (x )= x 2+x+1.六、对称性法即根据所给函数图象的对称性及函数在某一区间上的解析式,求另一区间上的解析式.例6 已知是定义在R 上的奇函数,当x ≥0时,f (x )=2x -x 2,求f (x )函数解析式.解:∵y=f (x )是定义在R 上的奇函数, ∴y=f (x )的图象关于原点对称. 当x ≥0时,f (x )=2x -x 2的顶点(1,1),它关于原点对称点(-1,—1),因此当x<0时,y=2)1(+x -1= x 2 +2x.故 f (x )=⎩⎨⎧+-xx x x 2222 评注: 对于一些函数图象对称性问题,如果能结合图形来解,就会使问题简单化.。
求函数解析式的六种常用方法函数解析式指的是用代数式或公式来表示函数的方式。
以下是六种常用方法:一、明确函数定义域和值域在确定函数解析式之前,首先需要明确函数的定义域和值域。
函数的定义域是指函数可以取值的自变量的范围,而值域则是函数的函数值可以取的范围。
明确函数的定义域和值域可以帮助我们确定函数解析式的形式和特点。
二、利用已知条件和性质确定函数解析式在求函数解析式时,可以利用已知条件和性质来确定函数解析式的形式。
例如,已知函数的导函数,可以通过求导的逆运算确定原函数的解析式。
又如,已知函数的周期性质,可以利用周期性质来确定函数解析式的形式。
三、从实际问题中建立函数关系函数解析式可以从实际问题中建立起来。
在解决实际问题时,可以首先建立自变量和函数值之间的关系,然后根据问题中给出的条件来确定函数解析式。
例如,求解经济学中的需求函数、生长模型等。
四、利用已知函数的性质和运算建立函数解析式在求函数解析式时,可以利用已知函数的性质和运算来建立函数解析式。
例如,可以利用已知函数的线性性质、对称性质、指数性质等来建立函数解析式。
又如,可以利用已知函数的运算性质,如加减乘除、复合等来建立函数解析式。
五、利用恒等式和方程组建立函数解析式在求解一些复杂的函数问题时,可以利用恒等式和方程组来建立函数解析式。
通过列方程并求解,可以得到函数解析式中的一些未知系数。
例如,可以通过建立差分方程求解离散函数的解析式。
六、利用已知函数的级数展开建立函数解析式在求解一些函数的解析式时,可以利用已知函数的级数展开式来建立函数解析式。
通过逐项求和,可以得到函数解析式的形式。
例如,可以利用幂级数展开来确定一些特殊函数的解析式。
求函数解析式的几种方法函数的表示方法有三种:解析式法、图像法、列表法,其中最常用的是解析式法,下面介绍几种求函数解析式的方法。
一、利用换元法求函数的解析式。
例1、已知函数f(ex)=x2+1,求函数f(x)的解析式。
解:设ex=t,t>0,则x=㏑t, f(t)=㏑2t+1.则f(x)=㏑2x+1 (x>0).注:已知f[g(x)]是关于x的函数即f[g(x)]=F(x) 求函数f(x)的解析式。
通常令g(x)=t,解出x=φ将x=φ代入f[g(x)]=F(x)中,求得f(t) 的解析式,再用x替换t便得f(x) 的解析式。
用换元法求函数解析式时,如果所求函数的定义域不是全体实数,需要根据实际情况标明函数的定义域.二、根据函数的奇偶性求函数的解析式。
例2、设f(x)是定义在R上的奇函数,且当x∈(0,﹢∞)时f(x)=x2+lg(1+x), 求函数f(x)的解析式。
解:设x∈(-∞,0),则-x∈(0,﹢∞)。
f(x)=-f(-x)=-x-lg(1-x)则当x∈(0,﹢∞),f(x)=x2+lg(1+x),x=0时,f(x)=0 x∈(-∞,0),f(x)=-x2-lg(1-x)三、消元法求函数的解析式。
例3、已知函数f(x)满足3f(x)+2f()=4x, 求函数f(x)的解析式.解:用代换x,列方程组解f(x)3f(x)+2f()=4x, 3f()+2f(x)=解得f(x)=x- 。
注:此题是利用消元法和函数奇偶性求函数的解析式.四、根据对称性求函数的解析式。
例4、已知函数f(x)=x2-2x, x∈[2,3],且f(x)关于(2,0)中心对称,求x∈[1,2]上的解析式。
解:设p(x,y)是x∈[1,2]图像上的点,则其关于(2,0)的对称点为Q(4-x,-y),则-f(x)=(4-x)2-2(4-x) f(x)=-(4-x)2+2(4-x)。
五、利用赋值法求函数的解析式。
例5、已知函数y= f(x)对任意实数x. y均满足f(x-y)=f(x)-y(2x-y+1)且f(0)=1,求函数y= f(x)的解析式。
求函数解析式的几种方法一.配凑法例: 已知2(1)2f x x -=+,求()f x .解:22(1)2(1)2(1)3f x x x x -=+=-+-+,即2()23f x x x =++.练习: 1.、已知f(x+1 )= 2x +1 ,求f(x)解析式。
2、已知f(x-1)= 2x -4x ,解方程f(x+1)=0二.换元法例: 若2(1)21f x x +=+,求()f x .解:令1t x =+,则1x t =-,22()2(1)1243f t t t t ∴=-+=-+.练习:1、已知f( x +1)=x+2x ,求f(x)的解析式2、若xx x f -=1)1(,求)(x f . 说明:已知[]()()f h x g x =,求)(x f 的解析式,常用配凑法、换元法;换元时,如果中间量涉及到定义域的问题,必须要确定中间量的取值范围.三.解方程组法若已知()f x 满足某个等式,这个等式除()f x 是未知量外,还出现其他未知量(如()f x -,1f x ⎛⎫ ⎪⎝⎭等).可以利用相互代换得到方程组,消去()f x -或1f x ⎛⎫ ⎪⎝⎭,进而得到()f x 的解析式. 例: 若2()()1f x f x x --=+,求()f x .解: 2()()1f x f x x --=+,用x -去替换式中的x ,得2()()1f x f x x --=-+,即有2()()12()()1f x f x x f x f x x --=+⎧⎨--=-+⎩,,解方程组消去()f x -,得 ()13x f x =+.练习:1、设函数)(x f 是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足关系式x x f x f 4)1(2)(3=+,求)(x f 的解析式。
2、已知f(x)满足12()()3f x f x x +=,求()f x .四.待定系数法说明:(1)已知函数类型,求函数解析式,常用“待定系数法”;(2)基本步骤:设出函数的一般式(或顶点式或两根式等),代入已知条件,通过解方程(组)确定未知系数。
求函数解析式的九种常用方法一、换元法已知复合函数f [g (x)]的解析式,求原函数f(x)的解析式, 把g (x)看成一个整体t ,进行换元,从而求出f(x)的方法。
例1 已知f(xx 1+)= x x x 1122++,求f(x)的解析式. 解: 设x x 1+= t ,则 x= 11-t (t ≠1), ∴f (t)= 111)11(1)11(22-+-+-t t t = 1+2)1(-t +(t-1)= t 2-t+1 故 f (x)=x 2-x +1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.二、配凑法例2 已知f(x +1)= x+2x ,求f (x)的解析式.解: f (x +1)= 2)(x +2x +1-1=2)1(+x -1,∴ f(x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x,则有f(x)= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三、待定系数法已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式的方法。
例3 已知二次函数f(x)满足f(0)=0,f(x+1)= f(x)+2x+8,求f (x )的解析式.解:设二次函数f(x )= ax 2+bx+c,则 f(0)= c= 0 ①f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a +b)x+a+b ② 由f(x+1)= f (x)+2x +8 与①、② 得⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f(x)= x 2+7x.评注: 已知函数类型,常用待定系数法求函数解析式.四、消去法(方程组法)例4 设函数f (x )满足f(x )+2 f(x 1)= x (x ≠0),求f (x )函数解析式. 分析:欲求f(x),必须消去已知中的f(x 1),若用x 1去代替已知中x,便可得到另一个方程,联立方程组求解即可.解:∵ f(x )+2 f(x1)= x (x ≠0) ① 由x 1代入得 2f(x)+f(x 1)=x1(x ≠0) ② 解 ①② 构成的方程组,得 f(x )=x 32-3x (x ≠0). 评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程 练习:已知定义在R 上的函数满足,求的解析式。
七种求法求函数解析式七种求函数解析式的方法一、待定系数法:已知函数的解析式时,可以使用待定系数法构造函数。
例如,设$f(x)$是一次函数,且$f[f(x)]=4x+3$,求$f(x)$的解析式。
设$f(x)=ax+b(a\neq0)$,则$f[f(x)]=af(x)+b=a(ax+b)+b=a^2x+ab+b$。
根据题意,有$a^2=4$,解得$a=2$或$a=-2$。
再代入$f[f(x)]=4x+3$中,解得$b=1$或$b=3$。
因此,$f(x)=2x+1$或$f(x)=-2x+3$。
二、配凑法:已知复合函数$f[g(x)]$的表达式,求$f(x)$的解析式,可以使用配凑法。
但需要注意所求函数$f(x)$的定义域不是原复合函数的定义域,而是$g(x)$的值域。
例如,已知$f(x+1)=(x+1)^2-2$,求$f(x)$的解析式。
将$x$换成$x-1$,得$f(x)=(x-1)^2-2(x\geq2)$。
三、换元法:已知复合函数$f[g(x)]$的表达式时,可以使用换元法求$f(x)$的解析式。
与配凑法类似,需要注意所换元的定义域的变化。
例如,已知$f(x+1)=x+2x$,求$f(x)$的解析式。
令$t=x+1$,则$t\geq1$,$x=(t-1)$,$f(t)=(t-1)^2+2(t-1)=t^2-1$,因此$f(x)=x^2-1(x\geq1)$。
四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般使用代入法。
例如,已知函数$y=x+\sqrt{x}$与$y=g(x)$的图像关于点$(-2,3)$对称,求$g(x)$的解析式。
设$M(x,y)$为$y=g(x)$上任一点,且$M'(x',y')$为$M(x,y)$关于点$(-2,3)$的对称点,则$x'+x=-4$,$y'+y=6$,解得$y=-x-7+\sqrt{x+4}$,因此$g(x)=-x^2-7x-6$。
高中数学:求函数解析式的10种常见方法一、配凑法:给定$f(x+1)=x-3x+2$,求$f(x)$。
练1:设函数$f(x)=2x+3$,$g(x+2)=f(x)$,求$g(x)$。
练2:设$f(f(x))=x^2+2$,求$f(x)$。
练3:设$f(x+2)+f(x)=x^3+x$,求$f(x)$。
二、待定系数法:例1:如果反比例函数的图像经过点$(1,-2)$,那么这个反比例函数的解析式为$\frac{-2}{x-1}$,求$f(x)$。
练1:在反比例函数$y=\frac{k}{x}$的图像上有一点P,它的横坐标$m$与纵坐标$n$是方程$t^2-4t-2=0$的两个根,求$k$。
练2:已知二次函数$f(x)$满足$f(x+1)=f(x)+2x+8$,求$f(x)$的解析式。
练3:已知$f(x-2)=2x-9x+13$,求$f(x)$。
三、换元(或代换)法:例1:已知函数$f(\frac{1-x}{1+x})=\frac{1+x}{1-x}$,求:(1)$f(2)$的值;(2)$f(x)$的表达式。
练1:已知$f(x+1)=x+2x$,求$f(x)$及$f(x^2)$;练2:已知$f(x)=\frac{1}{2}x+\frac{1}{x}$,求$f(x+1)$.四、消去法:例1:设函数$f(x)$满足$f(x)+2f(\frac{1}{x})=x$,求$f(x)$.练1:已知$f(x)-2f(-x)=3x+2$,求$f(x)$.练2:已知定义在R上的函数$f(x)$满足$f(-x)+2f(x)=x+1$,求$f(x)$.练3:已知$f(x)+3f(-x)=2x+1$,求$f(x)$.练4:设函数$f(x)$满足$af(x)+bf(\frac{1}{x})=cx$(其中$a,b,c$均不为$0$,且$a\neq\pm b$),求$f(x)$.五、反函数法:例1:已知$f(a^2-x^2)=x$,求$f(x)$。
高中数学-求函数解析式的六种常用方法求函数解析式是高中数学中的重要内容之一,常用的方法有六种。
下面分别介绍这六种方法。
一、换元法如果已知复合函数$f[g(x)]$的解析式,要求原函数$f(x)$的解析式,可以令$g(x)=t$,求$f(t)$的解析式,再把$t$换为$x$即可。
例如,已知$f(x)=\frac{x^2+11x+1}{x(x+1)}$,要求$f(x)$的解析式。
设$g(x)=\frac{1}{x}$,则$x=\frac{1}{g(x)}$,代入$f(x)$得$f(g(x))=\frac{g(x)^2+11g(x)+1}{g(x)+1}$,再令$t=g(x)$,则$f(t)=\frac{t^2+11t+1}{t+1}$,最后把$t$换为$x$,得到$f(x)=\frac{x^2+11x+1}{x(x+1)}$。
二、配凑法如果已知$f(x+1)=x+2x^2$,要求$f(x)$的解析式,可以使用配凑法。
首先,把$x+1$视为自变量$x$,则有$f(x)=x^2-1$,但要注意函数的定义域的变化,即$x+1\geq 1$,即$x\geq 0$。
三、待定系数法如果已知函数类型,可以使用待定系数法求函数的解析式。
例如,已知二次函数$f(x)$满足$f(0)=0$,$f(x+1)=f(x)+2x+8$,要求$f(x)$的解析式。
设$f(x)=ax^2+bx+c$,代入已知条件得到$c=0$,$a+b=8$,$2a+b=0$,解得$a=1$,$b=7$,$c=0$,所以$f(x)=x^2+7x$。
四、消去法如果已知$f(x)+2f(\frac{1}{x})=\frac{x}{x-1}$,要求$f(x)$的解析式,可以使用消去法。
把已知中的$f(\frac{1}{x})$用$f(x)$表示出来,得到$2f(x)+f(\frac{1}{x})=\frac{x}{x-1}$,再把$x$换成$\frac{1}{x}$,得到$2f(\frac{1}{x})+f(x)=\frac{1}{x-1}$,解得$f(x)=-\frac{x}{3(x-1)}$。
函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f解:设b ax x f +=)( )0(≠a ,则b ab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 练习1. 已知x 2x )1x (f +=+,求)x (f 。
解:因为)1x (1x )x (f ,11x ,1]1)x [(x 2x )1x (f 22≥-=≥+-+=+=+所以二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+x x x x f , 21≥+xx 2)(2-=∴x x f )2(≥x 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例3 已知x x x f 2)1(+=+,求)1(+x f解:令1+=x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥x x x x x f 21)1()1(22+=-+=+∴ )0(≥x 练习3:已知f(3x+1)=4x+3, 求f(x)的解析式.令t=3x+1, x=31-t 354)(3314)(-=⇒+-⨯=⇒t t f t t f 354)(-=⇒x x f四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。