八年级实际问题与反比例函数教案(一)
- 格式:doc
- 大小:28.60 KB
- 文档页数:2
17.2 实际问题与反比例函数(一)教学过程(4)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完?【分析】当蓄水总量一定时,每小时的排水量与排水所用时间成反比例.解:(1)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例,•所以根据图象提供的信息可知此蓄水池的蓄水量为:4 000×12=48 000(m3).(2)因为此函数为反比例函数,所以解析式为:V=48000t;(3)若要6h排完水池中的水,那么每小时的排水量为:V=480006=8000(m3);(4)如果每小时排水量是5 000m3,那么要排完水池中的水所需时间为:t=480006=8000(m3)备选例题(中考·四川)制作一种产品,需先将材料加热到达60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x完成一次函数关系;停止加热进行操作时,温度y与时间x•成反比例关系(如图所示).已知该材料在操作加工前的温度为15℃,加热5•分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?【答案】(1)将材料加热时的关系式为:y=9x+15(0≤x≤5),•停止加热进行操作时的关系式为y=300x(x>5);(2)20分钟.第三步:课堂练习:1.A、B两城市相距720千米,一列火车从A城去B城.(1)火车的速度v(千米/时)和行驶的时间t(时)之间的函数关系是v=720t.(2)若到达目的地后,按原路匀速原回,并要求在3小时内回到A城,则返回的速度不能低于240千米/小时.2.有一面积为60的梯形,其上底长是下底长的13,若下底长为x,高为y,则y与x的函数关系是y=90x.3.(中考·长沙)已知矩形的面积为10,则它的长y与宽x之间的关系用图象大致可表示为(A)4.下列各问题中,两个变量之间的关系不是反比例函数的是(C)A.小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的关系B.菱形的面积为48cm2,它的两条对角线的长为y(cm)与x(cm)的关系C.一个玻璃容器的体积为30L时,所盛液体的质量m与所盛液体的体积V之间的关系D.压力为600N时,压强p与受力面积S之间的关系5.面积为2的△ABC,一边长为x,这边上的高为y,则y与x•的变化规律用图象表示大致是(C)开放探究6.为了预防流行性感冒,某学校对教室采用药熏消毒法进行消毒.已知,•药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,•药物燃烧后,y与x成反比例(如图所示).现测得药物8分钟燃毕,此室内空气中每立方米的含药量为6毫克,请你根据题中所提供的信息,解答下列问题:(1)药物燃烧时y关于x的函数关系式为:y=34x ,自变量的取值范围是:0<x<•8 ;药物燃烧后y与x的函数关系式为:y=48x;(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过30 分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10•分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?【答案】有效,因为燃烧时第4分钟含药量开始高于3毫克,当到第16分钟含药量开始低于3毫克,这样含药量不低于3毫克的时间共有16-4=12分钟,故有效.总结反思,拓展升华。
实际问题与反比例函数(1)【学习目标】1.能灵活运用反比例函数的知识解决实际问题;2.经历“实际问题——建立模型——拓展应用”的进程,进展分析问题,解决问题的能力;3.体验反比例函数是有效地描述现实世界的重要手腕,体验数学的有效性,提高“用数学”的意识.【学习重点】运用反比例函数的意义和性质解决实际问题. 及数形结合及转化的思想方式【学习难点】从实际问题中寻觅变量之间的关系,成立数学模型.【自主学习】(这部份要求同窗们课前独立完成,记下不明白的问题,课堂小组交流讨论)1.温习旧知:1).写出反比例函数的概念:______________________________________2).反比例函数的图象是_________,当k>0时,_____________ _____________________;当k<0时,____________3).有一面积为60的梯形,其下底长是上底长的2倍,假设上底长为x,高为y,那么y与x的函数关系是________4).已知矩形的面积为10,那么它的长y与宽x之间的关系用图象大致可表示为()5).以下各问题中,两个变量之间的关系不是反比例函数的是()A.小明完成100m赛跑时,时刻t(s)与他跑步的平均速度v(m/s)之间的关系;B.三角形形的面积为48cm2,它的底y(cm)与高x(cm)的关系;C.电压为6V时,电流I(A)与电阻R(Ω)之间的关系;D.长方形的周长为12cm,它的长y(cm)与宽x(cm)的关系.几何中的反比例函数关系一、三角形中,当面积S一按时,高h与相应的底边长a关系。
二、矩形中,当面积S一按时,长a与宽b关系。
3、长方体中当体积V一按时,高h与底面积S的关系二、预习疑难摘要:【合作探讨】(这部份要求同窗们课堂完成。
分为小组交流讨论、展现结论、提出问题、解决问题)二、探讨新知(认真阅读教材50—51页内容)(一)例题研讨:一、例1:某煤气公司要在地下修建一个容积为104m3的圆柱形煤气贮存室。
课题:17.2实际问题与反比例函数本节课选自数学人教版八年级下册十七章第二小节第一课时,是在之前学习过反比例函数的概念、图象及其性质之后,进一步引导学生探索生活中的反比例函数的情境,并且运用数学的建模思想将实际问题转化成反比例函数的模型,再借助其图像和性质解决实际问题。
二、教学目标:(一)知识与技能1.能灵活利用反比例函数的知识分析、解决实际问题2.利用反比例函数求出问题中的值3.渗透数形结合思想,提高学生用函数观点解决问题的能力(二)过程与方法在运用反比例函数解决实际问题的过程中,进一步体会数学建模思想,培养学生的数学应用意识,在“实际问题——建立模型——拓展应用”的过程中,发展学生分析问题、解决问题的能力。
(三)情感、态度与价值观运用反比例函数解决实际问题的过程中,体验数学的实用性,提高学生学习数学方的兴趣,同时也进一步培养了学生合作交流的意识。
三、教学重点运用反比例函数的意义和性质解决实际问题四、教学难点从实际问题中寻找变量之间的关系.关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想.难点的突破方法:用函数观点解实际问题,一要搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。
教学中要让学生领会这一解决实际问题的基本思路。
五、课型课时:新授课、标准课六、教学手段:多媒体辅助教学七、学法解析1.认知起点:前面已经学过了函数、一次函数、•反比例函数并且积累了一定的经验,以此为基础,加强对反比例函数的应用.2.知识线索:根据反比例函数的图象和性质3.学习方式:以生活情境为素材,采用自主、合作、交流、汇报的方式,解决“数学建模”问题八、学生准备:1.复习已学的反比例函数的概念、图象、性质;2.预习本节课内容,尝试收集有关本节课的情境资料.九、教学过程:(一)复习引入:(出示幻灯片1)k(k为常数,且k≠0)的函数称为反比例函1.反比例函数的概念:形如y=x数,其中x是自变量,y是函数,自变量x的取值范围是不等于零的一切实数。
26.2 实际问题与反比例函数第1课时反比例函数的实际应用(1)【知识与技能】进一步运用反比例函数的知识解决实际问题.【过程与方法】经历“实际问题一建立模型一问题解决”的过程,发展学生分析问题,解决问题的能力.【情感态度】运用反比例函数知识解决实际应用问题的过程中,感受数学的应用价值,提高学习兴趣.【教学重点】运用反比例函数的意义和性质解决实际问题.【教学难点】用反比例函数的思想方法分析、解决实际应用问题.一、情境导入,初步认识问题我们知道,确定一个一次函数y = kx+b的表达式需要两个独立的条件,而确定一个反比例函数表达式,则只需一个独立条件即可,如点A(2,3)是一个反比例函数图象上的点,则此反比例函数的表达式是,当x=4时,y的值为,而当y=13时,相应的x的值为,用反比例函数可以反映很多实际问题中两个变量之间的关系,你能举出一个反比例函数的实例吗?二、典例精析,掌握新知例1 市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2 )与其深度 d(单位:m)有怎样的函数关系?(2 )公司决定把储存室的底面积定为 500m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰到坚硬的岩石,为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应地,储存室的底面积应改为多少才能满足需要(精确到0.01m2)?【分析】已知圆柱体体积公式V=S • d,通过变形可得S=Vd,当V—定时,圆柱体的底面积S是圆柱体的高(深)d的反比例函数,而当S= 500m2时,就可得到d的值,从而解决问题(2),同样地,当d= 15m —定时,代入S = Vd可求得S,这样问题(3)获解.例2 码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度V(单位:吨/天)与卸货时间t 单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多货?【分析】由装货速度×装货时间=装货总量,可知轮船装载的货物总量为240吨;再根据卸货速度=卸货总量÷卸货时间,可得V与t的函数关系式为V=240t,获得问题(1)的解;在(2)中,若把t=5代入关系式,可得V=48,即每天至少要卸载48吨,则可保证在5天内卸货完毕.此处,若由V=240t得到t=240V,由t≤5,得240V≤5,从而V≥48,即每天至少要卸货48吨,才能在不超过5天内卸货完毕.【教学说明】例2仍可由学生自主探究,得到结论.鼓励学生多角度出发,对问题(2)发表自己的见解,在学生交流过程中,教师可参与他们的讨论,帮助学生寻求解决问题的方法,对有困难的学生及时给予点拨,使不同层次的学生在学习中都有所收获.例3如图所示是某一蓄水池每1h的排水量V(m3/h)与排完水池中的水所用时间t(h)之间的函数图象.(1) 请你根据图象提供的信息求出此蓄水的蓄水量.(2) 写出此函数的函数关系式.(3) 若要6h排完水池的水,那么每1h的排水量应该是多少?(4) 如果每1h排水量是5m3,那么水池中【分析】解此题关键是从图象中获取有关信息,会根据图象回答.解:(1)由图象知:当每1h排水4m3时,需12h排完水池中的水,∴蓄水量为4×12 = 48(m3 )(2)由图象V与t成反比例,设V=kt(k≠0).把V=4,t=12代入得k=48,∴V =48t(t>0).(3)当t=6时,486V== 8,即每1h排水量是8m3⑷当V=5时,5 = 48t,485t∴== 9.6(h),即水池中的水需要用9.6h排完.【教学说明】例3相比前面两例,难度增加,教师在讲解本题时,要辅导学生从图象中获取信息,会根据图象回答问题.三、运用新知,深化理解1.某玻璃器皿公司要挑选一种容积为1升 (1升=1立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?2.市政府计划建设一项水利工程,工程需要运送的土石方总量为106m3,某运输公司承办了这项工程运送土石方的任务.(1)运输公司平均每天的工作量V(单位:m3/天)与完成运送任务所需的时间t (单位:天)之间具有怎样的函数关系?(2)这个运输公司共有100辆卡车,每天一共可运送土石方104m3.则公司完成全部运输任务需要多长时间?【教学说明】以上两题让学生相互交流,共同探讨,获得结果,使学生通过对上述问题的思考,巩固所学知识,增强运用反比例函数解决问题的能力.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.解:(1)13Sd=1,S =3d(d>0)(2)100cm2 = 1dm2,当S = 1dm2时,3d=1,d=3dm.2.解:(1)661010,(Vt V tt==>0) .(2)t=662410101010V== .即完成任务需要100天.四、师生互动,课堂小结谈谈这节课的收获和体会,与同伴交流.1.布置作业:从教材“习题26. 2”中选取.2.完成创优作业中本课时的“课时作业”部分.本节课是用函数的观点处理实际问题,其中蕴含着体积、面积这样的实际问题.而解决这些问题的关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么,可以是什么,从而逐步形成考察实际问题的能力.在解决问题时,应充分利用函数的图象,渗透数形结合的思想.学生已经有了反比例函数的概念及其图象与性质这些知识作为基础,另外在小学也学过反比例,并且上学期已经学习了正比例函数、一次函数,学生已经有了一定的知识准备.因此,本节课教师可从身边事物入手,使学生真正体会到数学知识来源于生活,有一种亲切感.在学习中要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来进行交流活动,不断引导学生利用数学知识来解决实际问题.26.2 实际问题与反比例函数第1课时实际问题与反比例函数(1)——面积问题与装卸货物问题一、新课导入1.课题导入前面我们结合实际问题讨论了反比例函数,看到了反比例函数在分析和解决问题中所起的作用.这节课我们进一步探讨如何利用反比例函数解决实际问题.2.学习目标(1)掌握常见几何图形的面积(体积)公式.(2)能利用工作总量、工作效率和工作时间的关系列反比例函数解析式.(3)从实际问题中抽象出数学问题,建立函数模型,运用所学的数学知识解决实际问题.3.学习重、难点重点:面积问题与装卸货物问题.难点:分析实际问题中的数量关系,正确写出函数解析式.二、分层学习1.自学指导(1)自学内容:教材P12例1.(2)自学时间:8分钟.(3)自学指导:抓住问题的本质和关键,寻求实际问题中某些变量之间的关系.(4)自学参考提纲:①圆柱的体积=底面积×高,教材P12例1中,圆柱的高即是d,故底面积410Sd .②P12例1的第(2)问实际是已知S=500,求d.③例1的第(3)问实际是已知d=15,求S.④如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m,设AD的长为x m,DC的长为y m.a.求y与x之间的函数关系式;60 yx ⎛=⎫ ⎪⎝⎭b.若围成矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC 的长都是整米数,求出满足条件的所有围建方案.(AD=5 m,DC=12 m;AD=6m,DC=10 m;AD=10 m,DC=6 m.)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否掌握利用面积(体积)公式列反比例函数关系式.②差异指导:辅导关注学困生.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)教材例1的解题思路和解答过程.(2)面积公式与体积公式中的反比例关系.(3)练习:已知某矩形的面积为20 cm2.①写出其长y与宽x之间的函数表达式;②当矩形的长为12 cm时,宽为多少?当矩形的宽为4 cm,长为多少?③如果要求矩形的长不小于8 cm,其宽最多是多少?答案:①20yx=②53cm;5 cm③52cm1.自学指导(1)自学内容:教材P13例2.(2)自学时间:5分钟.(3)自学方法:认真分析例题,积极思考,结合自学参考提纲自学.(4)自学参考提纲:①工作总量、工作时间和工作效率(或速度)之间的关系是怎样的?②教材例2中这艘船共装载货物240吨,卸货速度v(吨/天)与卸货时间t(天)的关系是240 vt =.③如果列不等式求“平均每天至少要卸载多少吨”,你会怎样做?写出你的解答过程.④一司机驾汽车从甲地去乙地,以80千米/小时的平均速度用6小时到达目的地.a.当他按原路匀速返回时,汽车速度v(千米/小时)与时间t(小时)有怎样的函数关系?480 vt⎛=⎫ ⎪⎝⎭b.如果该司机必须在4小时之内返回甲地,则返程时的速度不得低于多少?(120千米/小时)c.若返回时,司机全程走高速公路,且匀速行驶,根据规定:最高车速不得超过120千米/小时,最低车速不得低于60千米/小时,试问返程所用时间的范围是多少?(4~8小时)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否会列函数关系式,是否会根据反比例函数关系解决实际问题.②差异指导:指导学生从形式和自变量的取值范围两个方面对比正比例函数理解反比例函数.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)教材例2的解题思路和解答过程.(2)练习:某学校食堂为方便学生就餐,同时又节约成本,常根据学生多少决定开放多少售饭窗口,假定每个窗口平均每分钟可以售饭给3个学生,开放10个窗口时,需1小时才能对全部学生售饭完毕.①共有多少学生就餐?②设开放x 个窗口时,需要y 小时才能让当天就餐的同学全部买上饭,试求出y 与x 之间的函数关系式;③已知该学校最多可以同时开放20个窗口,那么最少多长时间可以让当天就餐的学生全部买上饭?答案:①1800个;②10y x=;③30分钟. 三、评价1.学生自我评价.2.教师对学生的评价:(1)表现性评价;(2)纸笔评价(评价检测).3.教师的自我评价(教学反思).函数是初中数学的难点之一,当函数遇到实际应用,可谓是难上加难,但也使解题多了几种途径.对于这些实际问题,要善于运用函数的观点去处理.因此在教学过程要注意培养学生的审题能力,理解文字中隐藏的已知条件,合理地建立函数模型,然后根据模型找出实际生活中的数据与模型中的哪些量相对应.将实际问题置于已有的知识背景中,用数学知识重新解释这是什么,可以是什么,逐步培养解决实际问题的能力.一、基础巩固(70分)1.(10分)某轮船装载货物300吨,到港后,要求船上货物必须不超过5日卸载完毕,则平均每天至少要卸载(B )A.50吨B.60吨C.70吨D.80吨2.(10分) 用规格为50 cm×50 cm 的地板砖密铺客厅恰好需要60块.如果改用规格为a cm×a cm 的地板砖y 块也恰好能密铺该客厅,那么y 与a 之间的关系为(A ) A.2150000y a = B.150000y a = C.y=150000a 2 D.y=150000a3.(10分) 如果以12 m 3/h 的速度向水箱注水,5 h 可以注满.为了赶时间,现增加进水管,使进水速度达到Q (m 3/h ),那么此时注满水箱所需要的时间t (h )与Q (m3/h)之间的函数关系为(A)A.60tQ= B.t=60QC.6012tQ=- D.6012tQ=+4.(10分) 如果等腰三角形的底边长为x,底边上的高为y,当它的面积为10时,x与y 的函数关系式为(D)A.10yx= B.5yx= C.20xy= D.20yx=5.(10分) 已知圆锥的体积V=13Sh(其中S表示圆锥的底面积,h表示圆锥的高).若圆锥的体积不变,当h为10 cm时,底面积为30 cm2,则h关于S的函数解析式为300 hS =.6.(10分)小艳家用购电卡购买了1000度电,那么这些电能够使用的天数m 与小艳家平均每天的用电度数n有怎样的函数关系?如果平均每天用电4度,这些电可以用多长时间?解:1000mn=;250天.7.(10分)某农业大学计划修建一块面积为2×106 m2的长方形试验田.(1)试验田的长y(单位:m)关于宽x(单位:m)的函数关系式是什么?(2)如果试验田的长与宽的比为2∶1,则试验田的长与宽分别是多少?解:(1)6210yx⨯=;(2)长:2×103 m,宽:103 m.二、综合应用(20分)8. (10分)某地计划用120~180天(含120天与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万立方米.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万立方米)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000立方米,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万立方米?解:(1)360yx=(2≤x≤3);(2)设原计划每天运送土石方x万立方米,实际每天运送土石方(x+0.5)万立方米.则360360240.5x x+=+().解得x=2.5.因此,原计划每天运送土石方2.5万立方米,实际每天运送土石方3万立方米.9.(10分)正在新建中的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103 m2.(1)所需瓷砖的块数n与每块瓷砖的面积S有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块砖的面积都是80 cm2,灰、白、蓝瓷砖使用比例为2∶2∶1,则需三种瓷砖各多少块?解:(1)n=5×103S;(2)设需灰、白、蓝三种瓷砖分别为2x、2x、x块.(2x+2x+x)·80=5×103×104x=1.25×105因此,需灰、白、蓝三种瓷砖分别为2.5×105块、2.5×105块、1.25×105块.三、拓展延伸(10分)10.(10分) 水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现这种海产品每天的销售量y(千克)是销售价格x(元/千克)的函数,且这种函数是反比例函数、一次函数中的一种.(1)请你选择一种合适的函数,求出它的函数关系式,并简要说明不选择另外一种函数的理由;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且以后每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?解:(1)12000y x;不选一次函数是因为y 与x 之间不成正比例关系. (2)30+40+48+12000240+60+80+96+100=504(千克), (2104-504)÷12000150=20(天). (3)(20-15)×12000150÷2=200(千克),12000÷200=60(元/千克).。
17.2实际问题与反比例函数(1)一、教学目标1.利用反比例函数的知识分析、解决实际问题2.渗透数形结合思想,提高学生用函数观点解决问题的能力二、重点、难点1.重点:利用反比例函数的知识分析、解决实际问题2.难点:分析实际问题中的数量关系,正确写出函数解析式三、例题的意图分析教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。
补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题四、课堂引入寒假到了,小明正与几个同伴在结冰的河面上溜冰,突然发现前面有一处冰出现了裂痕,小明立即告诉同伴分散趴在冰面上,匍匐离开了危险区。
你能解释一下小明这样做的道理吗?五、例习题分析例1.见教材第57页分析:(1)问首先要弄清此题中各数量间的关系,容积为104,底面积是S,深度为d,满足基本公式:圆柱的体积=底面积×高,由题意知S是函数,d是自变量,改写后所得的函数关系式是反比例函数的形式,(2)问实际上是已知函数S的值,求自变量d的取值,(3)问则是与(2)相反例2.见教材第58页分析:此题类似应用题中的“工程问题”,关系式为工作总量=工作速度×工作时间,由于题目中货物总量是不变的,两个变量分别是速度v和时间t,因此具有反比关系,(2)问涉及了反比例函数的增减性,即当自变量t取最大值时,函数值v取最小值是多少?例1.(补充)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (千帕)是气体体积V(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)(1)写出这个函数的解析式;(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?分析:题中已知变量P与V是反比例函数关系,并且图象经过点A,利用待定系数法可以求出P与V的解析式,得,(3)问中当P大于144千帕时,气球会爆炸,即当P不超过144千帕时,是安全范围。
初二数学实际问题与反比例函数教案17.2实际问题与反比例函数(1)一、教学目标1.利用反比例函数的知识分析、解决实际问题2.渗透数形结合思想,提高学生用函数观点解决问题的能力二、重点、难点1.重点:利用反比例函数的知识分析、解决实际问题2.难点:分析实际问题中的数量关系,正确写出函数解析式三、例题的意图分析教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。
补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题四、课堂引入寒假到了,小明正与几个同伴在结冰的河面上溜冰,突然发现前面有一处冰出现了裂痕,小明立即告诉同伴分散趴在冰面上,匍匐离开了危险区。
你能解释一下小明这样做的道理吗?五、例习题分析例1.见教材第57页分析:(1)问首先要弄清此题中各数量间的关系,容积为104,底面积是S,深度为d,满足基本公式:圆柱的体积 =底面积高,由题意知S是函数,d是自变量,改写后所得的函数关系式是反比例函数的形式,(2)问实际上是已知函数S的值,求自变量d的取值,(3)问则是与(2)相反例2.见教材第58页分析:此题类似应用题中的工程问题,关系式为工作总量=工作速度工作时间,由于题目中货物总量是不变的,两个变量分别是速度v和时间t,因此具有反比关系,(2)问涉及了反比例函数的增减性,即当自变量t取最大值时,函数值v 取最小值是多少?例1.(补充)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气体体积V(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)(1)写出这个函数的解析式;(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?分析:题中已知变量P与V是反比例函数关系,并且图象经过点A,利用待定系数法可以求出P与V的解析式,得,(3)问中当P大于144千帕时,气球会爆炸,即当P不超过144千帕时,是安全范围。
人教版八年级下册17.2:实际问题与反比例函数(1)教学设计一、教学目标1.掌握反比例函数的概念和性质;2.学会用反比例函数解决实际问题;3.培养学生的数学建模能力;4.培养学生的分析问题及解决问题的能力。
二、教学重难点1.重点:学会如何用反比例函数解决实际问题;2.难点:培养学生的数学建模能力。
三、教学过程3.1 课前预习让学生在课前预习教材17.2节内容,理解反比例函数的概念和性质,尝试解决教材中的例题。
3.2 导入新课1.回顾上节课学习的内容,介绍本节课的主要内容:实际问题与反比例函数;2.引入一个实际问题:甲、乙、丙三个人分别用相同的时间完成一项工作,甲一人完成这项工作需要5天,乙一人完成需要6天,丙一人完成需要10天,问三人一起完成这项工作需要多长时间?3.让学生思考这个问题,让学生自己通过数据分析得出结论,引入反比例函数的概念。
3.3 新知讲解和讨论1.讲解反比例函数的概念:若量x与y成反比例关系,则函数$f(x)=\\dfrac{k}{x}$,其中k为常数,称为反比例函数。
2.列举反比例函数的性质,如当x>0时,f(x)>0;当x<k时,f(x)>1等。
3.结合实际问题,引导学生列出模型:假设用t天可以完成这项工作,则有$\\dfrac{5}{t}+\\dfrac{6}{t}+\\dfrac{10}{t}=1$,让学生通过等式解法,解得t=3。
4.让学生再从数据入手,理解反比例函数的性质和特点,探究反比例函数与实际问题之间的联系。
3.4 练习和巩固1.让学生针对教材中的例题和习题进行练习,再次巩固反比例函数的内容和相关知识点。
2.引导学生自己寻找反比例函数与实际问题之间的联系,让学生自己列举实例并解决问题。
3.5 总结和拓展1.帮助学生总结反比例函数的相关内容,强化学生对反比例函数的理解和运用;2.引导学生拓展更广泛的实际问题,让学生了解如何应用反比例函数解决更多的实际问题。
课题:23.2实际问题与反比例函数(1)编写人:郭金凤审核人:王丽校对人:李波编号:5学习目标:1、灵活列反比例函数表达式解决现实世界中的实际问题.2、能综合利用几何、方程、反比例函数的知识解决一些实际问题.学习重点:1、利用反比例函数的知识分析、解决实际问题。
学习难点:2、分析实际问题中的数量关系,正确写出函数解析式。
思维导航:1、先要弄清题目中的基本数量关系,将实际问题转化为数学问题,再看各变量间满足什么样的关系式,建立数学模型。
2、要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围。
本节课所用的数量关系:圆柱体的体积=底面积×高工作总量=工作效率×工作时间矩形(即长方形)面积=长×宽学习过程:一、自学环节:【活动1】问题:市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)?分析:圆柱形煤气储存室的容积、底面积、深度之间的等量关系为:根据这个等量关系得到底面积S与其深度d的函数关系式为:解:自学方法小结:【活动2】问题:码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载宪毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5日内卸载完毕,那么平均每天至少要卸多少吨货物?分析:根据装货速度×装货时间=货物总量,可以求出轮船装载货物总量,再根据卸货速度=货物总量÷卸货时间,得到v与t的函数式。
17·2实际问题与反比例函数(一)
教学目标:
1、 能灵活列反比例函数解决一些实际问题。
2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。
3、经历分析实际问题中变量间的关系,建立反比例函数模型,进而解决问题。
教学重点:掌握从实际问题中建构反比例函数模型。
教学难点:从实际问题中寻找变量间的关系。
关键是充分运用所学知识分析实际问题,实际情况,建立函数模型,教学时注意分析过程,渗透数形结合思想。
教学过程:
一、 创设问题情景,引入新课
活动1
问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成任务的情境。
(1)请你解释他们这样做的道理。
(2)当人和木板对湿地的压力一定时,随着木板面积S (m 2)的变化,人和木板对地面的压强p (Pa )将如何变化?
(3)如果人和木板对湿地的压力合计600N ,那么?
①用含S 的代数式表示p ,p 是S 的反比例函数吗?为什么?
②当木板面积为0.2m 2时,压强是多少?
③如果要求压强不超过6000 Pa ,木板面积至少要多大?
④在直角坐标系中作出相应的函数图象。
⑤请利用函数图象对(2)(3)作出直观解释,并与同伴交流。
师生行为:学生分成四个小组进行探讨、交流,领会实际问题的数学意义,体会数与形的统一。
教师可引导、启发学生解决实际问题。
在此活动中教师应重点关注学生:
①能灵活列反比例函数表达式解决一些实际问题;
②能积极地与小组成员合作交流;
③能否有强烈的求知欲。
分析:
在物理中,我们曾学过,当人和木板对湿地的压力一定时,随着木板面积S 的增大,人和木板对地面的压强p 将减小。
在(3)中,①()06000>=S S
p p 是S 的反比例函数;②当S =0.2m 2时,p=3000Pa ;③如果要求压强不超过6000 Pa ,根据反比例函数的性质,木板面积至少为0.1m 2;那么,为什么作图象在第一象限呢?因为物理学中,S >0,p>0。
总结:从此活动中我们可以发现,生活中存在大量反比例函数的现实。
从这节课开始我们就来学习“17·2实际问题与反比例函数”,你会发现有了反比例函数,很多实际问题解决起来很方便。
二、讲授新课
活动2
【例1】 市煤气公司要在地下修建一个容积为104m 3的圆柱形储存室。
(1) 储存室的底面积S (单位:m 2)与其深度(单位:m )有怎样的函数关系?
(2) 公司决定将储存室的底面积S 定为500m 2,施工队施工时应该向下挖进多深?
(3) 当施工队按(2)中的计划挖进到15m 时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计
划把储存室的深改为15m ,相应的储存室的底面积应改为多少才能满足需要(保留两位小数)。
师生行为:先由学生独立思考,然后小组内合作交流,教师和学生合作完成此活动。
在此活动中教师应重点关注学生:
①能否从实际问题中抽象出函数模型;
②能否用函数模型解释实际问题中的现象;
③能否积极主动阐述自己的见解。
分析:我们知识圆柱的容积是底面积×深度,而现在容积一定为104m 3。
所以S ·d =104。
变形就可得到底面积S 与其深度d 的函数关系,即d
S 4
10=。
所以储存室的底面积S 是其深度d 的反比例函数。
根据函数d
S 4
10=,我们知道给出一个d 的值就有唯一的S 值和它相对应,反过来,知道S 的一个值,也可以求出的d 值。
题中告诉我们“公司决定将储存室的底面积S 定为500m 2”,即,“施工队施工时应该向下挖进多深”实际上
就是求当时S=500m 2时,d=?。
根据d S 410=得d
410500=,解得d=20。
即施工队施工时应该向下挖进20米。
当施工队按(2)中的计划挖进到地下15m 时,碰上了坚硬的岩石。
为了节约建设资金,公司临时改变计划,把储存室的深度改为15m ,即d=15m ,相应的储存室的底面积应改为多少才能满足需要:即当d=15m ,S =?呢? 根据d
S 4
10=,把d=15代入此式子,得67.66615104≈=S
当储存室的深为15m 时,储存室的底面积应改为666.67m 2才能满足需要。
我们把这个“煤气公司修建地下煤气储存室”的问题转化成反比例函数的数学模型时,后面的问题就变成了已知函数的数学模型求相应自变量的值或已知自变量的值求相应的函数值,借助于方程,问题变得迎刃而解。
三、巩固提高
活动3
练习P61. 1
师生行为:
由两位学生板演,其余学生在练习本上完成,老师可巡视学生完成,情况,对“学困生”要提供一定的帮助,
活动4
练习:(1)已知某矩形的面积为20cm 2,写出其长y 与守宽x 之间的函数表达式;
(2)当矩形的长为12cm 时,求宽为多少?当矩形的宽为4cm ,求其长为多少?
(3)如果要求矩形的长不小于8cm ,其宽至多要多少?
师生行为:由学生独立完成,教师根据学生完成情况及时给予评价。
四、课时小结
本节课是用函数的观点处理实际问题,并且是蕴含着体积、面积这样的实际问题,面解决这些问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么?可以是什么?逐步形成考察实际问题的能力,在解决问题时,应充分利用函数的图象,渗透数形结合的思想。