线性系统参数估计的最小二乘方法
- 格式:ppt
- 大小:683.50 KB
- 文档页数:24
递推最小二乘法协方差矩阵概述说明以及解释1. 引言1.1 概述在统计学和计量经济学中,递推最小二乘法(Recursive Least Squares,简称RLS)是一种常用的参数估计方法。
它通过不断更新样本数据进行参数的估计,并且可以适用于非静态数据场景。
协方差矩阵是统计分析中重要的概念,它描述了变量之间的线性关系强度和方向,并且在许多领域具有广泛应用。
1.2 文章结构本文首先介绍递推最小二乘法的定义和原理,在此基础上详细解释算法的步骤以及其应用领域。
接着,我们将引入协方差矩阵的概念并介绍其计算方法,同时探讨了它在实际问题中所起到的作用和应用场景。
最后,我们将对递推最小二乘法与协方差矩阵之间的关系进行解释,并通过实例分析来说明它们如何相互影响。
1.3 目的本文旨在全面介绍递推最小二乘法和协方差矩阵,并深入探讨它们之间的联系。
通过对这两个概念及其应用的理解,我们可以更好地理解参数估计方法和变量间关系的描述与分析。
此外,我们还将展望相关领域未来可能的研究方向,以促进学术和实践的进一步发展。
2. 递推最小二乘法2.1 定义和原理:递推最小二乘法是一种用于估计线性模型参数的方法。
它可以通过历史数据的不断更新来逐步拟合模型,以使得估计值与观测值之间的误差达到最小化。
该方法可以被形式化地描述为以下步骤:1. 初始化模型参数的初始值。
2. 从历史数据中选择一个样本,并使用当前参数估计出该样本对应的输出值。
3. 计算该样本的预测误差。
4. 根据预测误差对参数进行调整,使得预测误差尽量减小。
5. 重复步骤2至4,直到所有样本都被处理过一遍,或者满足终止条件。
递推最小二乘法是基于最小二乘原理,即将真实观测值与模型预测值之间的差异平方求和并最小化这个目标函数。
通过迭代地更新参数,递推最小二乘法可以逐渐优化模型,并获得更准确的参数估计。
2.2 算法步骤:具体而言,在每次迭代中,递推最小二乘法按照以下步骤进行操作:1. 根据历史数据选择一个样本,并根据当前的参数估计出预测值。
最小二乘参数估计1 系统辨识的概念 (1)2 最小二乘参数估计法 (1)最小二乘估计的统计特性 (2)加权最小二乘 (2)递推最小二乘估计 (3)相关最小二乘法 (3)1 系统辨识的概念系统辨识是研究建立被控对象或过程数学模型的一种理论和方法。
它是在输入和输出数据的基础上,从一组给定的模型类别中,确定一个与所研究系统等价的数学模型。
数学模型是指用数学形式来描述实际对象或过程行为特性和运动规律,微分方程、差分方程、传递函数和状态方程式常用的数学形式。
建立数学模型的主要方法有机理法和测试法。
而机理法的应用是十分有限的,实践中大量采用的还是测试法。
系统辨识就是一种测试法。
2 最小二乘参数估计法最小二乘估计是一种经典的数据处理方法,最早的应用可以追溯到18世纪,大约在1795年由高斯在他著名的星体运动轨道预报研究工作中提出的。
高斯提出:对于未知的但要求估计的参数的最适宜的值是最可能的值。
他定义:“未知量最可能的值是这样一个数值,它使得实测值与计算值的差的平方乘以测量测量精度后所得的积最小。
”后来,在控制系统的参数估计领域也发现个采用了这种方法,这样,最小二乘法就成了估计离乱的奠基石。
由于最小二乘法原理简单,编制程序也不困难,因而颇受人们重视,应用相当广泛。
目前它已成为动态系统辨识的主要手段。
从计算方法讲,它既可以离线计算,也可以在线递推计算,并可在非线性系统中扩展为迭代计算。
从计算的数学模型看,它既可以用于参数模型估计可以用于非参数模型估计。
最小二乘估计开始用于处理整批数据的静态参数估计,这里称为一般的最小二乘估计,它能提供一个在最小方差意义下与实验数据最好拟合的数学模型。
由最小二乘发获得的估计在一定条件下有最佳的统计特性,即估计的结果是无偏的、一致的和有效的,而经典辨识法中的相关辨识法、频率辨识法等也可以从最小二乘推导演绎而成。
最小二乘估计的统计特性对于一个估计算法除了计算简单和便于应用等要求外,更重要的是所得出的估计值能不能再某种意义下满足估计的精度要求,即满足估计值的优良性。
---------------------------------------------------------------最新资料推荐------------------------------------------------------各类最小二乘法比较最小二乘法(LS)最小二乘是一种最基本的辨识方法,最小二乘法可以用于线性系统,也可以用于非线性系统;可用于离线估计和在线估计。
在随机情况下,利用最小二乘法时,并不要求观测数据提供其概率统计方法的信息,而其估计结果,却有相当好的统计特性。
但它具有两方面的缺陷:一是当模型噪声是有色噪声时,最小二乘估计不是无偏、一致估计;二是随着数据的增长,将出现所谓的数据饱和现象。
针对这两个问题,出现了相应的辨识算法,如遗忘因子法、限定记忆法、偏差补偿法、增广最小二乘、广义最小二乘、辅助变量法、二步法及多级最小二乘法等。
广义最小二乘法(GLS)广义最小二乘法(GLS)广义最小二乘法的基本思想在于引入一个所谓成形滤波器(白化滤波器),把相关噪声转化成白噪声。
优:能够克服当存在有色噪声干扰时,基本最小二乘估计的有偏性,估计效果较好,在实际中得到较好的应用。
缺:1、计算量大,每个循环要调用两次最小二乘法及一次数据滤波,2、求差分方程的参数估值,是一个非线性最优化问题,不一定总能1 / 3保证算法对最优解的收敛性。
广义最小二乘法本质上是一种逐次逼近法。
对于循环程序的收敛性还没有给出证明。
3、GLS 算法的最小二乘指标函数 J 中可能存在一个以上局部极小值,(特别在信噪比不大时,J 可能是多举的)。
GLS 方法的估计结果往往取决于所选用参数的初始估值。
参数估计初值应选得尽量接近优参数。
在没有验前信息的情况下,最小二乘估值被认为是最好的初始条件。
4、广义最小二乘法的收敛速度不是很高。
递推最小二乘法(RLS)递推最小二乘法(RLS)优点:1、无需存储全部数据,取得一组观测数据便可估计一次参数,而且都能在一个采样周期中完成,所需计算量小,占用的存储空间小。
数值分析作业最小二乘法最小二乘法是提供“观测组合”的主要工具之一,它依据对某事件的大量观测而获得最佳”结果或最可能”表现形式。
如已知两变量为线性关系y= a+ bx,对其进行n(n> 2)次观测而获得n对数据。
若将这n对数据代入方程求解a,b之值则无确定解。
最小二乘法提供了一个求解方法,其基本思想就是寻找最接近”这n 个观测点的直线。
最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。
相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。
作为其进一步发展或纠正其不足而采取的对策,不少近现代的数理统计学分支也是在最小二乘法基础上衍生出来的。
正如美国统计学家斯蒂格勒(S.M. Stigler)所说,最小二乘法之于数理统计学犹如微积分之于数学”最小二乘法创立的历史过程充满着丰富的科学思想,这些对今日的数学创造仍有着重要的启示意义。
本文旨在全面认识最小二乘法的历史系统发育过程以及创立者的思路。
一先驱者的相关研究天文学和测地学的发展促进了数理统计学及其他相关科学的发展。
丹麦统计史家哈尔德曾指出天文学在数理统计学发展中所起的作用。
“天文学自古代至18 世纪是应用数学中最发达的领域。
观测和数学天文学给出了建立数学模型及数据拟合的最初例子,在此种意义下,天文学家就是最初的数理统计学家。
天文学的问题逐渐引导到算术平均,以及参数模型中的种种估计方法,以最小二乘法为顶峰。
” 这也说明了最小二乘法的显著地位。
有关统计计算思想记载的著作要首推天文学家罗杰柯茨的遗作,即1715年其所发论文中所蕴含的统计方法,亦即对各种观测值赋予加权后求其加权平均。
尽管当时得到认可,然而事实证明如此计算的结果不太精确。
1749年,欧拉(L. Euler,1707—1783)在研究木星和土星之间相互吸引力作用对各自轨道影响时,最后得到一个含8个未知量75个方程的线性方程组。
欧拉的求解方法繁杂而奇特,只能看作是一次尝试。
第四章 最小二乘法与组合测量§1概述最小二乘法是用于数据处理和误差估计中的一个很得力的数学工具。
对于从事精密科学实验的人们来说,应用最小乘法来解决一些实际问题,仍是目前必不可少的手段。
例如,取重复测量数据的算术平均值作为测量的结果,就是依据了使残差的平方和为最小的原则,又如,在本章将要用最小二乘法来解决一类组合测量的问题。
另外,常遇到用实验方法来拟合经验公式,这是后面一章回归分析方法的内容,它也是以最小二乘法原理为基础。
最小二乘法的发展已经经历了200多年的历史,它最先起源于天文和大地测量的需要,其后在许多科学领域里获得了广泛应用,特别是近代矩阵理论与电子计算机相结合,使最小二乘法不断地发展而久盛不衰。
本章只介绍经典的最小二乘法及其在组合测量中的一些简单的应用,一些深入的内容可参阅专门的书籍和文献。
§2最小二乘法原理最小二乘法的产生是为了解决从一组测量值中寻求最可信赖值的问题。
对某量x 测量一组数据n x x x ,,,21 ,假设数据中不存在系统误差和粗大误差,相互独立,服从正态分布,它们的标准偏差依次为:n σσσ ,,21记最可信赖值为x ,相应的残差x x v i i -=。
测值落入),(dx x x i i +的概率。
dx v P i i ii )2exp(2122σπσ-=根据概率乘法定理,测量n x x x ,,,21 同时出现的概率为n i ii ni i dx v P P )]()(21exp[)2(12∑-∏=∏=σπσ 显然,最可信赖值应使出现的概率P 为最大,即使上式中页指数中的因子达最小,即∑=iii Min v 22σ权因子:22o i i w σσ=即权因子i w ∝21iσ,则2[]i i wvv wv Min ==∑再用微分法,得最可信赖值x11ni ii nii w xx w===∑∑ 即加权算术平均值这里为了与概率符号区别,以i ω表示权因子。
一文让你彻底搞懂最小二乘法(超详细推导)要解决的问题在工程应用中,我们经常会用一组观测数据去估计模型的参数,模型是我们根据先验知识定下的。
比如我们有一组观测数据 ( x i , y i ) (x_i,y_i) (xi,yi)(一维),通过一些数据分析我们猜测 y y y和 x x x之间存在线性关系,那么我们的模型就可以定为: f ( x ) = k x + b f(x)=kx+bf(x)=kx+b这个模型只有两个参数,所以理论上,我们只需要观测两组数据建立两个方程,即可解出两个未知数。
类似的,假如模型有n n n个参数,我们只需要观测 n n n组数据就可求出参数,换句话说,在这种情况下,模型的参数是唯一确定解。
但是在实际应用中,由于我们的观测会存在误差(偶然误差、系统误差等),所以我们总会做多余观测。
比如在上述例子中,尽管只有两个参数,但是我们可能会观测 n n n组数据( x 1 , y 1 ) . . , ( x n , y n ) (x_1, y_1)..,(x_n, y_n) (x1,y1)..,(xn,yn),这会导致我们无法找到一条直线经过所有的点,也就是说,方程无确定解。
于是这就是我们要解决的问题:虽然没有确定解,但是我们能不能求出近似解,使得模型能在各个观测点上达到“最佳“拟合。
那么“最佳”的准则是什么?可以是所有观测点到直线的距离和最小,也可以是所有观测点到直线的误差(真实值-理论值)绝对值和最小,也可以是其它,如果是你面临这个问题你会怎么做?早在19世纪,勒让德就认为让“误差的平方和最小”估计出来的模型是最接近真实情形的。
为什么是误差平方而不是另一个?就连欧拉和拉普拉斯都没能成功回答这个问题。
后来高斯建立了一套误差分析理论,从而证明了系统在误差平方和最小的条件下是最优的。
证明这个理论并不难。
我写了另一篇关于最小二乘法原理理解的博客。
相信你了解后会对最小二乘法有更深的理解。
常用算法分析——最小二乘法目录1.引言2.普通最小二乘法(OLS)3.OLS实现4.广义最小二乘法(GLS)简介1、引言最小二乘法应该是我们最早接触的一种数值估计算法。
它的特殊形式,一元线性回归,被广泛地应用于多种数值统计分析场合。
例如,在验证欧姆定律(U = IR)时,通常的实验方法是分别测量出多个不同电压Ui下,通过电阻的电流值Ii,然后将这些(Ui, Ii)观测点,代入到一元最小二乘公式(1-1)中,便可计算出\hat{R}。
\begin{cases}a&=&\frac{\sum{xy}-\frac{1}{N}\sum{x}\sum{y}}{\sum{x^2}-\frac{1}{N}(\sum{x})^2}\\b&=&\frac{1}{N}\sum{y}-\frac{a}{N}\sum{x}\end{cases} (1-1)由此可得出线性拟合式(1-2)\hat{y}=a\hat{x}+b (1-2)其中,\hat{y}=\hat{U},\ \hat{x}=\hat{I},\ a=\hat{R},\ b 是残差。
通过此方法将观测点及拟合曲线绘制在同一个直角坐标系中,正常情况下可以直观地看到,观测点会均匀分布在直线附近,且每个点的残差平方和(即方差)最小。
“最小二乘法”由此得名。
2、普通最小二乘法(OLS)最小二乘法显然不只是一元线性回归那么简单,它还可以应用于多元参数的拟合。
本节将对普通最小二乘法(Ordinary Least Squares)的原理进行简单的推导和证明。
2.1、高斯—马尔可夫定理高斯—马尔可夫定理(the Gauss–Markov theorem,简称G-M定理)在给定经典线性回归的假定下,最小二乘估计量是具有最小方差的线性无偏估计量(即Best Linear Unbiased Estimator,简称BLUE)。
G-M定理共对OLS普通线性方程提出5个假设:假设1(线性关系):要求所有的母集团参数(population parameters)为常数,用来保证模型为线性关系。
线性回归模型的总体最小二乘平差算法及其应用研究一、本文概述本文旨在深入研究和探讨线性回归模型的总体最小二乘平差算法及其应用。
线性回归模型是统计学中一种重要的预测和解释工具,它用于描述和预测两个或多个变量之间的关系。
然而,在实际应用中,由于数据误差、异常值等因素的存在,传统的最小二乘法往往不能得到最优的估计结果。
因此,本文引入总体最小二乘平差算法,以期提高线性回归模型的稳定性和准确性。
总体最小二乘平差算法是一种基于总体误差最小化的优化方法,它同时考虑了自变量和因变量的误差,避免了传统最小二乘法中可能出现的模型偏差。
本文首先介绍了线性回归模型和最小二乘法的基本原理,然后详细阐述了总体最小二乘平差算法的理论基础和计算方法。
在应用方面,本文探讨了总体最小二乘平差算法在多个领域的应用,包括经济学、医学、工程学等。
通过实证分析和案例研究,本文验证了总体最小二乘平差算法在改善线性回归模型预测精度和稳定性方面的有效性。
本文还讨论了算法在实际应用中可能遇到的挑战和问题,并提出了相应的解决策略。
本文的研究不仅为线性回归模型的优化提供了新的思路和方法,也为相关领域的实证研究提供了有益的参考和借鉴。
未来,我们将继续深入研究总体最小二乘平差算法的理论和应用,以期在更广泛的领域发挥其作用。
二、线性回归模型的基本理论线性回归模型是一种经典的统计预测方法,其基本理论建立在数理统计和最小二乘法的基础上。
其核心思想是通过寻找一条最佳拟合直线,使得这条直线与一组观测数据点的误差平方和最小。
线性回归模型的基本形式为 (Y = \beta_0 + \beta_1 +\varepsilon),其中 (Y) 是因变量,() 是自变量,(\beta_0) 和(\beta_1) 是回归系数,(\varepsilon) 是随机误差项。
这个模型假设因变量与自变量之间存在线性关系,并通过最小二乘法来估计回归系数。
最小二乘法是一种数学优化技术,它通过最小化误差的平方和来寻找数据的最佳函数匹配。