2 用关系式表示的变量间关系
- 格式:pptx
- 大小:1001.77 KB
- 文档页数:12
2 用关系式表示的变量间关系原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!令公桃李满天下,何用堂前更种花。
出自白居易的《奉和令公绿野堂种花》教学目标一、基本目标1.能根据具体情境用关系式表示某些变量之间的关系.2.能根据关系式求值,初步体会自变量和因变量的数值对应关系.二、重难点目标【教学重点】找出题中的自变量和因变量.【教学难点】根据关系式找自变量和因变量之间的对应关系.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P66~P67的内容,完成下面练习.【3 min反馈】1.(教材P66引入问题)如图,三角形ABC底边BC上的高是6 cm.当三角形的顶点C沿底边所在直线向点B运动时,三角形的面积发生了变化.(1)在这个变化过程中,自变量是底边BC长,因变量是△ABC的面积;(2)如果三角形的底边长为x( cm),那么三角形的面积y( cm2)可以表示为y =3x;(3)当底边长从12 cm变化到3 cm时,三角形的面积从36 cm2变化到9 cm2.2.(教材P67“议一议”)“低碳生活”是指人们生活中尽量减少所耗能量,从而降低碳(特别是二氧化碳)的排放量的一种生活方式.如下表:排碳计算公式家居用电的二氧化碳排放量(kg)=耗电量(kW·h)×0.785开私家车的二氧化碳排放量(kg)=耗油量(L)×2.7家用天然气二氧化碳排放量(kg)=天然气使用量(m3)×0.19家用自来水二氧化碳排放量(kg)=自来水使用量(t)×0.91(1)用字母表示家居用电的二氧化碳排放量的公式为y=0.785x,其中的字母表示y表示家居用电的二氧化碳排放量,x表示耗电量;(2)在上述关系式中,耗电量每增加1 kW·h,二氧化碳排放量增加0.875 kg.当耗电量从1 kW·h增加到100 kW·h时,二氧化碳排放量从0.875 kg增加到87.5 kg;(3)小明家本月用电大约110 kW·h、天然气20 m3、自来水5 t、耗油75 L,请你计算一下小明家这几项的二氧化碳排放量.解:110×0.785+75×2.7+20×0.19+5×0.91=297.2(kg).即小明家这项的二氧化碳排放量是297.2 kg.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】一个小球由静止开始沿一个斜坡向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s)的数据如下表:写出用t表示【互动探索】(引发学生思考)观察表中给出的t与s的对应值→分析数据→归纳得出关系式.【分析】t=1时,s=2×12;t=2时,s=2×22;t=3时,s=2×3;t=4时,s=2×42,…所以s与t的关系式为s=2t2,其中t≥0.【答案】s=2t2(t≥0)【互动总结】(学生总结,老师点评)(1)关系式一般是用含有自变量的代数式表示因变量的等式;(2)关系式通常把因变量写在等号的左边,含有自变量的代数式写在等号的右边;(3)利用关系式可以根据任何一个符合条件的自变量的值求出因变量的值,但已知一个变量的值求另一个变量的值时,一定要分清已的是自变量还是因变量,不要代错了.【例2】一辆加满汽油的汽车在匀速行驶中,油箱中的剩余油量Q(L)与行驶的时间t h)的关系如下表所示:(1)请直接写出Q与t的关系式,并求出这辆汽车在连续行驶6 h后,油箱中的剩余油量;(2)辆车在中途不加油的情下,最多能连续行驶的时间是多少?【互动探索】(引发学生思考)(1)分析表中数据可知,每行驶1 h耗油量为7.5 L,由此可写出油箱中剩余油量Q(L)与行驶时间t(h)的关系式;(2)由(1)知,汽车每小时耗油7.5 L,油箱原有汽油54 L,用后者除以前者即可求出油箱中原有汽油可以供汽车行驶多少小时.【解答】(1)Q=54-7.5t.把t=6代入,Q=54-7.5×6=9.即这辆汽车在连续行驶6 h后,油箱中剩余油量为9 L.(2)54÷7.5=7.2(h).即这辆车在中途不加油的情况下,最多能连续行驶7.2 h.【互动总结】(学生总结,老师点评)观察表中的数据,发现其中的变化规律,然后根据其增减趋势写出自变量与因变量之间的关系式.活动2 巩固练习(学生独学)1.变量x与y之间的关系式是y=x2-3,当自变量x=2时,因变量y的值是( C )A.-2 B.-1C.1 D.22.图中的圆点是有规律地从里到外逐层排列的,设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是( B )A.y=4n-4 B.y=4nC.y=4n+4 D.y=n23.如图是一个简单的数值运算程序,当输入x的值为1时,则输出的数值为2.输入x―→×-1―→+3―→输出4.已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的关系式;(2)6小时后池中还有多少水?(3)几小时后,池中还有200立方米的水?解:(1)Q=800-50t(0≤t≤16).(2)当t=6时,Q=800-50×6=500.即6小时后池中还剩500立方米水.(3)当Q=200时,800-50t=200,解得t=12.即12小时后,池中还有200立方米的水.环节3 课堂小结,当堂达标(学生总结,老师点评)求变量之间关系式的“三途径”:(1)根据表格中所列的数据,归纳、总结两个变量的关系式;(2)利用公式写出两个变量之间的关系式;(3)结合实际问题写出两个变量之间的关系式.练习设计请完成本课时对应练习!【素材积累】1、人生只有创造才能前进;只有适应才能生存。
第三章变量之间的关系3.2 用关系式表示的变量间关系一、学情分析在上节课的学习中,学生已通过分析表格中的数据,感受到变量之间的相互关系,在平时的生活中又经常接触到一些具有变化关系的量,初步理解了自变量及因变量之间的关系,具备了从一个具体问题中辨别自变量与因变量的能力,这些都为本节课程的深入学习奠定了基础。
二、教学目标1、经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。
2、能根据具体情景,用关系式表示某些变量之间的关系。
3、能根据关系式求值,初步体会自变量和因变量的数值对应关系。
三、教学重难点学习重点:1、找问题中的自变量和因变量。
2、根据关系式找自变量和因变量之间的对应关系。
学习难点:根据关系式找自变量和因变量之间的对应关系。
四、教学过程设计分析:本节课共设计了九个教学环节:回顾与思考、观察思考、诱导探究、学习新知、巩固提高、合作交流、随堂练习、反思升华、课后作业。
(一)、激趣引入1、视频:一个民族复兴的故事。
2.汽车以60 km/h的速度匀速行驶,行驶路程为s km行驶时间为t h. t h. … 1 2 3 4 5 6 7 …s km ……活动目的:复习巩固上一节的内容。
这个问题中谁是变量,谁是常量?能否用一个式子来表示这两个变量之间的关系呢?今天我们一起来学习如何用关系式表示变量间的关系。
(板书课题)【设计意图】通过观看视频,让学生获得变化量的直观体验,感受新中国成立以来的发展变化形成强烈的民族自信心,问题的提出引起学生对本节课的探究兴趣。
(二)、诱导探究、学习新知1、观察思考活动内容:三角形是日常生活中很常见的图形,三角形的形状各种各样,面积有大有小,那么决定一个三角形面积的因素有哪些?①操作多媒体,演示“三角形面积的变化”②问题探究:(1) 问题:决定一个三角形面积的因素有哪些?板书:三角形的面积(2) 课件演示:(高一定)变化中的三角形师:在这个变化过程中,哪些因素发生了变化?哪些因素没变?那么随着的变化而变化?设计意图:先直观感受三角形面积的变化,为下一环节的探究作了铺垫。
用关系式表示变量之间的关系
关系式是用符号和运算符来表示变量之间的关系的数学表达式。
它可以描述数量之间的等式、不等式、相对关系等。
一些常见的关系式包括:
1. 等式:使用等号(=)表示相等关系,如:a = b。
2. 不等式:使用不等号(<、>、≤、≥)表示大小关系,如:a < b。
3. 复合关系:使用逻辑运算符(与、或、非)结合多个条件表达关系,如:a >
b 并且a < c。
4. 函数关系:使用函数符号和自变量来表示依赖关系,如:y = f(x)。
需要注意的是,关系式通常使用数学符号来表示,而不是具体的数值。
它们可以用于建立数学模型、解决问题、分析数据等。
北师大版七下数学3.2用关系式表示的变量间关系教案一. 教材分析本节课的主题是“用关系式表示的变量间关系”,属于北师大版七下数学的第三章“多变量的关系”的第二节。
通过本节课的学习,学生能够理解变量间的关系,并能够用关系式进行表示。
教材通过丰富的实例,引导学生探究变量之间的关系,从而达到理解并掌握关系式的目的。
二. 学情分析学生在学习本节课之前,已经掌握了变量和函数的概念,能够理解一个变量随另一个变量的变化而变化。
但是,对于用关系式表示变量间的关系,可能还存在一定的困难。
因此,在教学过程中,教师需要通过实例引导学生,让学生能够逐步理解和掌握关系式的表示方法。
三. 教学目标1.理解变量间的关系,并能够用关系式进行表示。
2.能够分析实际问题中的变量关系,并用关系式进行表达。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.教学重点:理解变量间的关系,并能够用关系式进行表示。
2.教学难点:对于复杂的关系式,能够理解和运用。
五. 教学方法采用问题驱动的教学方法,通过丰富的实例,引导学生探究变量之间的关系,从而达到理解并掌握关系式的目的。
在教学过程中,注重学生的参与和思考,培养学生的逻辑思维能力和解决问题的能力。
六. 教学准备1.准备相关的实例,用于引导学生探究变量之间的关系。
2.准备关系式的模板,方便学生进行填写和练习。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出变量间的关系,例如“两个人共同完成一项任务,他们的工作效率与工作时间之间的关系是什么?”让学生思考并回答。
2.呈现(10分钟)呈现一些实例,让学生观察并分析变量间的关系。
例如,一个人跑步的速度与时间的关系,一个人的工资与工作时间的关系等。
引导学生发现,变量间的关系可以用关系式进行表示。
3.操练(10分钟)让学生分组讨论,每组找出一个实例,分析变量间的关系,并用关系式进行表示。
教师巡回指导,给予学生帮助和指导。
4.巩固(10分钟)让学生独立完成一些练习题,巩固所学的关系式的表示方法。
关系式表示的变量间关系总结
用关系式表示的变量间关系,一种是表格法,另一种是关系式法。
什么是表格法
表格法是根据测试的目的和要求,将测量数据制成表格,然后再进行其他的处理的方法。
表格法显示了各变量间的对应关系,反映出变量之间的变化规律,是进一步处理数据的基础。
表格法具有简单、方便、易于参考比较和发现问题等优点。
但要进行深入的分析,表格法就不适宜了,因为表格法的缺点是不直观,不易看出数据变化的趋势。
变量之间的关系是相关关系。
相关关系是客观现象存在的一种非确定的相互依存关系,即自变量的每一个取值,因变量由于受随机因素影响,与其所对应的数值是非确定性的。
相关分析中的自变量和因变量没有严格的区别,可以互换。
变量相关关系:当一个或几个相互联系的变量取一定的数值时,与之相对应的另一变量的值虽然不确定,但它仍按某种规律在一定的范围内变化。
变量间的这种相互关系,称为具有不确定性的相关关系。
用关系式表示的变量间关系各位评委上午好,我是号考生,今天我说课的题目是北师版初中数学七年级上册第三章第二节《用关系式表示的变量间关系》,在教材的第66页到68页。
下面我将从教材,学情,教法,教学程序等方面来进行分析。
一、说教材本节内容是建立在学生已理解变量、自变量、因变量的意义和体会到了因变量是随自变量变化而变化的基础上,教材通过对三角形的底边的变化引起三角形面积的变化问题的探索,探索出了变量间的变化规律可用关系式来表达,运用表达式可以描述出自变量和因变量具体变化的情况。
教材通过机器图直观地表示了自变量和因变量的数值对应关系,即“输入”一个 x 值就可以“输出”一个 y 值,隐含了函数的思想。
教材通过“做一做”和“随堂练习”进一步地体现了这一数学思想,让学生体会到变量与变量之间的相互依赖关系是生活中广泛存在的。
通过本节的学习,让学生学会了用数学工具直观地表示事物的变化情况。
本节的教学目标如下:1.知识与技能目标:(1) 经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。
(2) 能用适当的关系式表示方法刻画简单实际问题中变量之间的关系。
(3) 能根据关系式求值,初步体会自变量和因变量的数字对应关系。
2.过程与方法目标:(1) 如何将生活中的实际问题转化为数学问题。
(2) 如何用数学方法解决实际生活中的问题。
3.情感态度与价值观目标:培养学生动手的能力,探索问题、研究问题的能力及应用数学知识的能力。
通过教学让学生领悟探索问题和研究问题的方法。
教学重点与难点通过用关系式表示变量之间的关系,体会变量之间的数值对应关系,根据关系式找自变量和因变量之间的对应关系。
二﹑说学情学生的知识技能基础:学生在前面已经学习了变量之间的关系、在平时的生活中又经常接触到一些具有变化关系的量,初步理解了自变量及因变量之间的关系,具备了从一个具体问题中辨别自变量与因变量的能力。
学生活动经验基础:在相关知识的学习探索过程中,学生已经经历了一些由于自变量发生变化而引起因变量变化的活动,解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习和生活中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。