两个变量之间的相关关系
- 格式:ppt
- 大小:1.91 MB
- 文档页数:37
两个连续变量之间的相关关系两个连续变量之间的相关关系,即指两个随机变量之间的相关性。
它是衡量两个连续变量之间相互依赖程度的重要指标。
在数据分析、统计学以及机器学习等领域,相关性分析是一项基础而重要的任务。
一、计算相关性系数在统计学中,通常通过相关系数来衡量两个连续变量之间的相关关系。
相关系数通常是在-1到1之间取值,其中-1表示完全的负相关关系,即两个变量之间有完全相反的关系;1则表示完全的正相关关系,即两个变量之间具有完全相同的变化趋势;而0则表示两个变量之间没有线性关系。
计算相关系数的方法有多种,其中比较常用的是皮尔逊相关系数和斯皮尔曼等级相关系数。
皮尔逊相关系数适用于连续型变量,并且假设变量服从正态分布。
斯皮尔曼等级相关系数则适用于序数型数据以及不满足正态分布的变量。
在这里以皮尔逊相关系数为例进行说明。
二、使用Python计算相关性系数在Python中,统计分析库numpy和pandas都提供了计算相关性系数的函数。
numpy提供的pearsonr函数可以计算两个变量之间的皮尔逊相关系数以及相关性显著性;而pandas提供的corr函数可以计算两个DataFrame对象中所有列的相关系数矩阵。
下面通过一个例子来说明如何使用Python计算相关系数。
```pythonimport numpy as npimport pandas as pd# 构造样本数据x = np.array([1, 2, 3, 4, 5])y = np.array([2, 4, 6, 8, 10])# 计算皮尔逊相关系数correlation, p_value = np.corrcoef(x, y)[0][1],scipy.stats.pearsonr(x, y)[0]print(f"皮尔逊相关系数: {correlation:.4f} (p-value:{p_value:.4f})")# 构造DataFrame对象df = pd.DataFrame({'x': [1, 2, 3, 4, 5], 'y': [2, 4, 6, 8, 10]})# 计算相关系数矩阵corr_matrix = df.corr()print(f"相关系数矩阵: \n{corr_matrix}")```以上代码首先构造了两个变量x和y,分别表示1到5的整数和2到10的偶数。
两个变量的相关关系知识点和典例1.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫做回归直线.(回归直线y ^=b ^x +a ^必过样本点的中心(x ,y ),其它点不一定过直线只是在直线附近,这个结论既是检验所求回归直线方程是否准确的依据,也是求参数的一个依据.)(2)回归方程为y ^=b ^x +a ^,其中b ^=∑i =1nx i y i -n xy∑i =1nx 2i -n x2=∑i =1n)(x i -x )(y i -y )∑i =1n)(x i -x )2,a ^=y -b ^x .(3)相关系数:相关系数r =∑i =1n)(t i -t )(y i -y )∑i =1n)(t i -t )2∑i =1n )(y i -y )2当r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性.(r 的符号表明两个变量是正相关还是负相关;|r |的大小表示线性相关性的强弱.)例一.某公司借助手机微信平台推广自己的产品,对今年前5个月的微信推广费用x 与月利润y (单位:百万元)进行了初步统计,得到下列表格中的数据:经计算,微信推广费用x 与月利润y 满足线性回归方程 6.517.5y x ∧=+.求p 的值.[解] ()()11245685,3040607040555p x y p =++++==++++=+, 因为样本中心(),x y 在回归直线 6.517.5y x ∧=+上, 所以40 6.5517.55p+=⨯+,解得50p = [变式练习]已知变量x ,y 之间的线性回归方程y ^=-0.7x +10.3,且变量x ,y 之间的一组相关数据如下表所示,则下列说法错误的是( )x 6 8 10 12 y6m32A.变量x ,y 之间呈负相关关系))))B.可以预测,当x =20时,b ^=-3.7 C.m =4))))))))))))))))))))))))D.该回归直线必过点(9,4)[解]由-0.7<0,得变量x ,y 之间呈负相关关系,故A 正确;当x =20时,y ^=-0.7×20+10.3=-3.7,故B 正确;由表格数据可知x -=14×(6+8+10+12)=9,y -=14(6+m +3+2)=11+m 4,则11+m 4=-0.7×9+10.3,解得m =5,故C 错;由m =5,得y -=6+5+3+24=4,所以该回归直线必过点(9,4),故D 正确.故选C.例二.下图是我国2011年至2017年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2019年我国生活垃圾无害化处理量.参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,)∑i =17)(y i -y )2=0.55,7≈2.646.参考公式:相关系数r =∑i =1n)(t i -t )(y i -y )∑i =1n )(t i -t )2∑i =1n )(y i -y )2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为b ^=∑i =1n)(t i -t )(y i -y )∑i =1n)(t i -t )2,a ^=y -b ^)t .[解] (1)由折线图中的数据和附注中的参考数据得 t =4,∑i =17)(t i -t)2=28,)∑i =17)(y i -y )2=0.55,∑i =17)(t i -t )(y i -y )=∑i =17t i y i -t ∑i =17y i =40.17-4×9.32=2.89,∴r ≈ 2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当大,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(1)得b ^=∑i =17)(t i -t )(y i -y )∑i =17)(t i -t )2=2.8928≈0.103. a ^=y -b ^)t ≈1.331-0.103×4≈0.92. 所以y 关于t 的回归方程为y ^=0.92+0.10t .将2019年对应的t =9代入回归方程得y ^=0.92+0.10×9=1.82. 所以,预测2019年我国生活垃圾无害化处理量约为1.82亿吨.[变式练习]1.(2019·广州调研)某基地蔬菜大棚采用无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (单位:小时)都在30小时以上,其中不足50小时的有5周,不低于50小时且不超过70小时的有35周,超过70小时的有10周.根据统计,该基地的西红柿增加量y (千克)与使用某种液体肥料的质量x (千克)之间的对应数据为如图所示的折线图.(1)依据折线图计算相关系数r (精确到0.01),并据此判断是否可用线性回归模型拟合y 与x 的关系.(若|r |>0.75,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较高,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪运行台数受周光照量X 限制,并有如下关系:对商家来说,若某台光照控制仪运行,则该台光照控制仪产生的周利润为3)000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1)000元.若商家安装了3台光照控制仪,求商家在过去50周的周总利润的平均值.参考数据:0.3≈0.55,0.9≈0.95. 解:(1)由已知数据可得x =2+4+5+6+85=5,y =3+4+4+4+55=4.因为∑i =15)(x i -x )(y i -y )=(-3)×(-1)+0+0+0+3×1=6,∑i =15)(x i -x )2=(-3)2+(-1)2+02+12+32=25,∑i =15)(y i -y )2=(-1)2+02+02+02+12=2,所以相关系数r =∑i =15)(x i -x )(y i -y )∑i =15)(x i -x)2)∑i =15)(y i -y )2=625×2=)910≈0.95. 因为|r |>0.75,所以可用线性回归模型拟合y 与x 的关系. (2)由条件可得在过去50周里,当X >70时,共有10周,此时只有1台光照控制仪运行, 每周的周总利润为1×3)000-2×1)000=1)000(元).当50≤X ≤70时,共有35周,此时有2台光照控制仪运行, 每周的周总利润为2×3)000-1×1)000=5)000(元).当30<X <50时,共有5周,此时3台光照控制仪都运行, 每周的周总利润为3×3)000=9)000(元).所以过去50周的周总利润的平均值为1)000×10+5)000×35+9)000×550=4)600(元),所以商家在过去50周的周总利润的平均值为4)600元.例三.某机构为研究某种图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的关系,收集了一些数据并进行了初步处理,得到了下面的散点图及一些统计量的值.x y u∑i=18)(x i-x)2∑i=18)(x i-x)(y i-y)∑i=18)(u i-u)2∑i=18)(u i-u)(y i-y) 15.25 3.630.2692)085.5-230.30.7877.049表中u i=1x i,u=18∑i=18u i.(1)根据散点图判断:y=a+bx与y=c+dx哪一个模型更适合作为该图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的回归方程?(只要求给出判断,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程(回归系数的结果精确到0.01).(3)若该图书每册的定价为10元,则至少应该印刷多少册才能使销售利润不低于78)840元?(假设能够全部售出.结果精确到1)附:对于一组数据(ω1,υ1),(ω2,υ2),…,(ωn,υn),其回归直线υ^=α^+β^ω的斜率和截距的最小二乘估计分别为β^=∑i=1n)(ωi-ω)(υi-υ)∑i=1n)(ωi-ω)2,α^=υ-β^ω.解:(1)由散点图判断,y=c+dx更适合作为该图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的回归方程.(2)令u=1x,先建立y关于u的线性回归方程,由于d ^=∑i =18)(u i -u )(y i -y )∑i =18)(u i -u )2=7.0490.787≈8.957≈8.96, ∴c ^=y -d ^·u =3.63-8.957×0.269≈1.22, ∴y 关于u 的线性回归方程为y ^=1.22+8.96u , ∴y 关于x 的回归方程为y ^=1.22+8.96x .(3)假设印刷x 千册,依题意得10x -⎝⎛⎭⎫1.22+8.96x x ≥78.840, 解得x ≥10,∴至少印刷10)000册才能使销售利润不低于78)840元.[变式练习](2015课标Ⅰ,19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响.对近8年的年宣传费x i )和年销售量y i ))(i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyw∑i=18(x i -x )2∑i=18(w i -w )2 ∑i=18(x i -x )(y i -y ) ∑i=18(w i -w )(y i -y )46.6 563 6.8 289.81.61 469108.8表中w i =√x ,w =18∑i=18w i.(1)根据散点图判断,y =a +bx 与y =c +d √x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x,y 的关系为z =0.2y −x .根据(2)的结果回答下列问题: (i)年宣传费x =49时,年销售量及年利润的预报值是多少? (ii)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ))),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β^=∑i=1n (u i -u )(v i -v )∑i=1n(u i -u )2,α^=v -β^)u .解析 (1)由散点图可以判断,y =c +d √x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2分)(2)令w =√x ,先建立y 关于w 的线性回归方程.由于 d ^=∑i=18(w i -w )(y i -y )∑i=18(w i -w )2=108.81.6=68,c ^=y -d ^)w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w,因此y 关于x 的回归方程为y ^=100.6+68√x .(6分) (3)(i)由(2)知,当x =49时,年销售量y 的预报值 y ^=100.6+68√49=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32.(9分) (ii)根据(2)的结果知,年利润z 的预报值 z ^=0.2(100.6+68√x )-x =-x +13.6√x +20.12. 所以当√x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.。
(完整word)两个变量的相关关系两个变量间的相关关系变量间的相互关系有两种:一类是确定性的函数关系,如正方形的边长和面积的关系;另一类是变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的。
例如,学生的总成绩和他的单科成绩,一般说来“总成绩高者,单科成绩也高”,我们说总成绩和单科成绩具有相关关系。
相关关系又分为两种:(1)正相关:两个变量具有相同的变化趋势。
(2)负相关:两个变量具有相反的变化趋势。
对相关关系的理解可以从下面三个角度把握:相关关系的概念:自变量取值一定时,因变量的取值带有一定的随机性,则两个变量之间的关系叫做相关关系.对相关关系的理解应当注意以下几点:其一是相关关系与函数关系不同.因为函数关系是一种非常确定的关系,而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系。
因此,不能把相关关系等同于函数关系.相关关系与函数关系的异同点为:相同点:均是指两个变量的关系.不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系。
函数关系是自变量与函数值之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系.其二是函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系。
然而,学会新词并不能使脚变大,而是涉及到第三个因素——年龄。
当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大.其三是在现实生活中存在着大量的相关关系,如何判断和描述相关关系,统计学发挥着非常重要的作用.变量之间的相关关系带有不确定性,这需要通过收集大量的数据,对数据进行统计分析,发现规律,才能作出科学的判断。
我们再来认识生活中的确定两个变量间的相关关系的两个例子:【例1】“名师出高徒”可以解释为教师的水平越高,学生的水平也越高。
两个变量之间的相关关系称为
统计学中,两个变量之间的相关关系被称为相关性。
它是一种检测和研究变量间关系的方法,它可以帮助研究人员探索实验结果的数据。
相关性测量两个变量的关联程度,帮助我们更多地了解被调查者中变量之间的因果关系,以及几种变量之间的结构关系。
相关性可以使企业在未来进行数据分析时,更好地推断某些事件发生的可能性。
它可以帮助研究者更深入地了解被调查者中变量之间的潜在相关性,因此可以有效地预测变量未来变化的趋势。
相关性分析也可以检查多个变量之间的关系,因此有助于确定定义变量和被调查者之间的关系,进而确定这些变量的分类组合。
另外,相关性分析还可以帮助企业识别出重要的变量,从而有效地预测业务结果。
总之,相关性可以说是统计学中一种重要的概念。
它能够有效地识别和解释变量之间的关系,并为企业在未来数据分析中应用提供重要的参考。
因此,我们可以看出,相关性对学习统计学和收集数据分析有着重要意义。
用于描述两个变量之间相关关系1. 引言嘿,大家好!今天我们要聊聊一个听起来有点严肃,但其实超级有趣的话题:两个变量之间的相关关系。
可能你会想,哎呀,什么是相关关系呢?别担心,我来给你捋一捋。
简单来说,相关关系就是当一个东西变化时,另一个东西也会跟着变化的情况。
就像吃冰淇淋的时候,天气变热一样,哈哈,没错,就是这么简单!1.1 相关关系的类型那么,相关关系其实可以分为几种类型哦。
首先是正相关,意思是当一个变量增加时,另一个变量也增加,听起来是不是很美好?比如说,运动量和快乐感,这两者常常是成正比的,越运动越开心,真是“越努力,越幸福”嘛!反过来,如果你懒得动,躺在沙发上追剧,那你的快乐感可能就会缩水,嘿嘿。
然后还有负相关,这就有点意思了。
当一个变量增加时,另一个变量却减少。
想象一下,当你加班到深夜,疲劳感飙升,而你的精神状态就像气球一样瘪下去,真是“越加班,越心累”呀!还有个经典的例子就是,吃得太多和体重,简直是一对“冤家”。
吃得多,体重就跟着上升,没办法,真是“羊肉串越吃越多,肚子也跟着鼓”!2. 生活中的相关关系2.1 亲密关系与快乐说到生活中的相关关系,我们不妨从人际关系开始。
研究发现,朋友越多,快乐感往往越高。
哎,真是“朋友多了路好走”!想象一下,你约上三五好友一起吃饭、唱歌,那种感觉简直是“乐在其中”。
但是如果朋友少得可怜,周末的聚会就是一场孤独的旅行,唉,孤单的感觉就像海绵一样吸水,越吸越重,越发难受。
当然,相关关系并不意味着因果关系哦。
你可能会想,朋友多了就一定快乐,但实际上,快乐的人可能更容易交到朋友,这就像是一个好人缘的循环。
就像一颗美丽的种子,发芽后就会吸引到更多的阳光和水分,形成一个良性循环,真是“良性互动,事半功倍”!2.2 学习与成绩再来看看学习和成绩之间的关系。
大家都知道,努力学习通常能带来好的成绩,但这其中的相关性可真复杂。
有时候,你拼命复习,结果考试却不理想,真是“付出与收获不成正比”!反之,有些同学轻轻松松就能考高分,这不禁让人心中感慨:“天上掉馅饼,真是天上有个王老五!”所以,学习的态度、方法和时间管理都在其中起着重要的作用。
变量间的相互关系是指两个或两个以上变量之间相联系的性质,主要有两种类型。
(1)因果关系:是指在两个有关系的变量中,因为一个变量的变化而引起另一个变量的变化。
应注意三点:第一,在两个变量中,只能一个是因,另一个是果,而不能互为因果。
第二,原因变量一定出现在结果变量之前。
第三,两者之间的变化关系是必然的,否则就不是因果关系。
社会现象的因果关系十分复杂,有一因一果、一果多因、一因多果以及多因多果等。
在社会调查研究中,调查者应注意区别事物之间因果关系的类型,对一果多因、一因多果以及多因多果等复杂的因果关系要仔细分析,逐一明确,这样才能清楚地认识社会现象和事物发展变化的规律。
(2)相关关系:是指变量的变化之间存在着非因果关系的一定联系和一定关系。
社会调查研究运用相关这一概念,其目的是了解社会现象和事物之间关系的密切程度,从中探寻其规律性。
变量之间的相关关系从变化的方向来看,可以分为正相关与负相关;从变化的表现形式来看,可以分为直线相关和曲线相关。
当一个变量的数值发生变化时,另一个变量的数值也随之发生同方向的变化,这种相关关系是正相关,也叫直接相关。
当一个变量的数值发生变化时,另一个变量的数值也随之发生反方向的变化,这种相关关系是负相关,也叫逆相关。
在社会调查研究中,掌握变量关系的正相关与负相关的概念,有利于了解社会现象和事物的发展方向和趋势。
当一个变量的数值发生变动(增加或减少),另一个变量的数值随着发生大致均等的变动时,这种关系称为直线相关;当一个变量的数值发生变动,另一个变量的数值随之发生不均等的变动时,这种关系称为曲线相关。
两个变量间的相关关系变量间的相互关系有两种:一类是确定性的函数关系,如正方形的边长和面积的关系;另一类是变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的.例如,学生的总成绩和他的单科成绩,一般说来“总成绩高者,单科成绩也高”,我们说总成绩和单科成绩具有相关关系.相关关系又分为两种:(1)正相关:两个变量具有相同的变化趋势.(2)负相关:两个变量具有相反的变化趋势.对相关关系的理解可以从下面三个角度把握:相关关系的概念:自变量取值一定时,因变量的取值带有一定的随机性,则两个变量之间的关系叫做相关关系.对相关关系的理解应当注意以下几点:其一是相关关系与函数关系不同.因为函数关系是一种非常确定的关系,而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系.因此,不能把相关关系等同于函数关系.相关关系与函数关系的异同点为:相同点:均是指两个变量的关系.不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系.函数关系是自变量与函数值之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系.其二是函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系.然而,学会新词并不能使脚变大,而是涉及到第三个因素——年龄.当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大.其三是在现实生活中存在着大量的相关关系,如何判断和描述相关关系,统计学发挥着非常重要的作用.变量之间的相关关系带有不确定性,这需要通过收集大量的数据,对数据进行统计分析,发现规律,才能作出科学的判断.我们再来认识生活中的确定两个变量间的相关关系的两个例子:【例1】“名师出高徒”可以解释为教师的水平越高,学生的水平也越高.那么,教师的水平与学生的水平成什么相关关系?你能举出更多的描述生活中的两个变量的相关关系的成语吗?解析:“名师出高徒”的意思是说有名的教师一定能教出高明的徒弟,通常情况下,高水平的教师有很大的趋势教出高水平的学生.所以,教师的水平与学生的水平成正相关关系.生活中这样的成语很多,如“龙生龙,凤生凤,老鼠的孩子会打洞”.【例2】历史上,有人认为人们的着装与经济好坏有关系,着装越鲜艳,经济越景气.你认为着装与经济真的有这种相关关系吗?解析:人们的着装只能反映个人的爱好以及个人心情状况,与经济的好坏没有任何关系,并不能反映经济的景气与否.所以,着装与经济并没有“着装越鲜艳,经济越景气”这种相关关系.。
两个变量之间存在显著相关关系
首先,我们可以通过计算皮尔逊相关系数来衡量两个变量之间
的线性相关性。
皮尔逊相关系数的取值范围在-1到1之间,0表示
没有线性相关性,1表示完全正相关,-1表示完全负相关。
如果计
算得到的皮尔逊相关系数显著大于0,那么可以认为这两个变量之
间存在正相关关系;反之,如果相关系数显著小于0,则可以认为
存在负相关关系。
其次,斯皮尔曼相关系数用于衡量两个变量之间的等级相关性,即使得两个变量之间的关系不是严格的线性关系,也可以通过斯皮
尔曼相关系数来进行衡量。
当斯皮尔曼相关系数显著大于0时,可
以认为两个变量之间存在正相关关系;反之,当相关系数显著小于
0时,则可以认为存在负相关关系。
除了相关系数,我们还可以通过散点图来观察两个变量之间的
关系。
如果散点图呈现出明显的趋势,比如向上或向下的趋势,那
么可以初步判断这两个变量之间存在相关关系。
此外,还可以进行假设检验来验证两个变量之间的相关性是否
显著。
通过计算相关系数的置信区间或者进行相关性检验,可以得
出两个变量之间的相关性是否显著。
综上所述,我们可以通过计算相关系数、绘制散点图以及进行假设检验来全面、多角度地判断两个变量之间是否存在显著相关关系。
当然,对于不同类型的数据和研究问题,需要综合考虑不同的方法来进行判断。
变量间的相关关系 【知识梳理】(1)相关关系:当自变量的取值一定时,因变量的取值带有 ,那么这两个变量之间的关系叫做 ,如果一个变量的值由小变大时,另一个变量的值也由小到大,这种相关称为 ,反之,如果一个变量的值由小变大,另一个变量的值由大到小,这种关系为 (2)线性相关关系、回归直线如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有 关系,这条直线叫做回归直线. (3)线性回归方程方程y=ˆbx+ˆa 是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中ˆb , ˆa 是待定参数.ˆˆb a ⎧=⎪⎨=⎪⎩【基础练习】1.(2009·海南高考题)对变量x ,y 有观测数据(x 1,y 1)(i =1,2,…,10),得散点图1;对变量u ,v 有观测数据(u 1,v 1)(i =1,2,…,10),得散点图2.由这两个散点图可以判断( ) A .变量x 与y 正相关,u 与v 正相关 B .变量x 与y 正相关,u 与v 负相关 C .变量x 与y 负相关,u 与v 正相关 D .变量x 与y 负相关,u 与v 负相关2.已知关于某设备的使用年限x 与所支出的维修费用y(万元),有如下统计资料:若y 对x 呈线性相关关系,则回归直线方程ˆy=ˆb x +ˆa 表示的直线一定过定点________.3. (原创题)经研究表明,学生的体重y(单位:kg)与身高x(单位:cm)有很强的线性相关关系,其回归方程为y=0.75x-68.2,如果一个学生的身高为170 cm ,则他的体重( ) A. 一定是59.3 kg B. 一定大于59.3 kg C. 有很大的可能性在59.3 kg 左右 D. 一定小于59.3 kg 【互动探究】【例1】(1)如图是两个变量统计数据的散点图,判断两个变量之间是否具有相关关系?画出散点图,并判断它们是否有相关关系【例2】 三点(3,10),(7,20),(11,24)的回归方程是( )A.y ∧=-5.75+1.75xB.y ∧=1.75x +5.75C.y ∧=-1.75x +5.75 D.y ∧=-1.75x -5.75练习:一家保险公司调查其总公司营业部的加班程度,收集了5周中每周加班工作时间y (小时)与签发新保单数目x 的数据如下表:【例3】(2007·广东卷)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y =ˆbx +ˆa ; (2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5)练习: (原创题)某服装厂引进新技术,其生产服装的产量x (百件)与单位成本y (元)满足回归直线方程y =149.36-16.2x ,则以下说法正确的是( ) A. 产量每增加100件,单位成本下降16.2元 B. 产量每减少100件,单位成本上升149.36元 C. 产量每增加100件,单位成本上升16.2元 D. 产量每减少100件,单位成本下降16.2元【当堂检测】1.观察下列散点图,则①正相关;②负相关;③不相关.它们的排列顺序与图形相对应的是( ) A .a —①,b -②,c -③ B .a -②,b -③,c -①C .a -②,b -①,c -③D .a -①,b -③,c -② 2.(2010·湖南,3)某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )A.y ∧=-10x +200 B.y ∧=10x +200 C.y ∧=-10x -200 D.y ∧=10x -200 3.设有一线性回归方程为y =2-1.5x ,则变量x 增加一个单位时,y 平均减少________个单位. 4.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的回归方程是( ) A.y ^=1.23x +4 B.y ^=1.23x +5 C.y ^=1.23x +0.08D.y ^=0.08x +1.235.若施化肥量x kg 与水稻产量y kg 在一定范围内线性相关,若回归方程为y ^=5x +250.当施化肥量为80 kg 时,预计水稻的产量为________.6. 实验测得4组(x,y )的值为(1,2),(2,3),(3,4),(4,5),则y 与x 之间的回归直线方程为 ( ) A. y =x+1B. y =x+2C. y =2x+1D. y =x-17.具有线性相关关系的两个变量满足如下关系:A. y =0.56x +997.4B. y =0.63x -231.2C. y =50.2x +501.4D. y =60.4x +400.7 8. 一般来说,一个人的脚越长,他的身高就越高.现对10名成年人的脚长x 与身高y 进行测量,得如下数据(单位:作出散点图后,发现散点在一条直线附近.经计算得到一些数据:x =24.5,y =171.5,()()101iii x x y y =--=∑577.5, ()2101ii x x =-∑=82.5.某刑侦人员在某案发现场发现一对裸脚印,量得每个脚印长26.5 cm ,请你估计案发嫌疑人的身高为 cm.。
两个变量间相关关系的举例相关关系是指两个变量之间的变化是否存在某种联系或者依赖。
在统计学中,我们可以通过计算相关系数来度量两个变量之间的相关程度。
下面,我将为你举例说明两个变量间的相关关系。
举例一:首先,我们来看身高和体重之间的相关关系。
身高和体重是人体的两个重要指标,一般来说,身高越高,体重也会相应增加。
我们可以通过一个调查统计来验证这种关系。
在调查中,我们随机选择了1000名男性被试,记录了他们的身高和体重。
通过运用统计学方法,我们计算得到了身高和体重之间的相关系数为0.8,这说明身高和体重之间存在着强正相关关系。
也就是说,身高增加会促使体重的增加。
举例二:其次,让我们来考察学习时间和考试成绩之间的相关关系。
有一种常见的观点是,学习时间越多,考试成绩也会越好。
我们可以通过一个实验证明这种关系。
我们在一所学校中随机选取了500名学生,将他们分为两组:一组进行了加强学习时间的训练,每天学习4个小时;另一组保持正常学习时间,每天学习2个小时。
在经过一段时间的训练后,我们进行了一次考试,记录了两组学生的考试成绩。
通过对比两组学生的考试成绩,我们发现加强学习时间组的平均分高于正常学习时间组,这说明学习时间和考试成绩之间存在着正相关关系。
举例三:再次,让我们来研究睡眠时间和工作效率之间的相关关系。
一般来说,充足的睡眠对于提高工作效率很重要。
为了验证这个假设,我们进行了一项睡眠实验。
我们让20名被试者进行七天的实验,在前三天,他们每晚只睡4个小时;在后四天,他们每晚睡眠时间恢复到正常的8个小时。
在每天的工作结束后,我们记录了被试者当天的工作成绩。
通过实验数据的分析,我们发现在睡眠时间缺乏的前三天,被试者的工作效率明显降低;而在恢复充足睡眠的后四天,工作效率也得到了明显的提高。
这表明睡眠时间和工作效率之间存在着正相关关系。
以上三个例子表明,两个变量之间的相关关系可以通过实验证明或者调查统计来证实。
将变量之间的相关关系研究清楚,对我们了解事物的本质以及提高效率具有重要意义。
具有相关关系的两个变量的关系式具有相关关系的两个变量的关系式【引言】在数学和统计学中,很多研究都关注于两个变量之间的相关关系。
相关关系是指两个或多个变量之间的相互依赖程度。
了解变量之间的关系可以帮助我们理解事物的本质和变化规律,从而做出更准确的预测和决策。
本文将探讨具有相关关系的两个变量之间的关系式,旨在帮助读者了解相关性的概念以及如何建立和解读关系式。
【正文】一、相关关系的概念和度量相关关系是指两个变量之间的相互依赖程度。
在统计学中,常用的相关性度量方式包括皮尔逊相关系数、斯皮尔曼等级相关系数和判定系数等。
其中,皮尔逊相关系数是最常见且广泛应用的一种度量方法。
皮尔逊相关系数(Pearson correlation coefficient)是用于衡量两个连续变量之间线性关系的强度和方向的统计量。
它的取值范围在-1到1之间,值越接近1或-1表示两个变量之间关系越强,值越接近0表示两个变量之间关系越弱。
当系数为正值时,表示两个变量之间正向线性关系;而当系数为负值时,表示两个变量之间负向线性关系。
二、建立具有相关关系的两个变量之间的关系式在研究中,我们可以通过实际观察或实验来获得变量之间的数据,并通过统计分析确定它们之间的关系。
下面以简单线性回归作为例子来介绍如何建立具有相关关系的两个变量之间的关系式。
简单线性回归是一种用于描述一个因变量和一个自变量之间关系的统计模型。
它的关系式可以表示为y = a + bx,其中y表示因变量,x 表示自变量,a和b分别表示截距和斜率。
通过最小二乘法可以估计出关系式中的参数。
具体建立关系式的步骤如下:1. 提出研究问题:确定自变量和因变量的关系,并给出观察或实验数据。
2. 绘制散点图:将观察或实验得到的数据绘制成散点图,以观察变量之间的整体趋势。
3. 计算相关系数:使用合适的方法计算出两个变量之间的相关系数,判断它们是否具有相关关系以及相关性强度。
4. 拟合线性回归模型:通过最小二乘法拟合出最符合数据的线性回归模型。
变量间的相关关系知识集结知识元变量之间的相关关系知识讲解1、变量之间的相关关系两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系.当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系.相关关系是一种非确定性关系,如长方体的高与体积之间的关系就是确定的函数关系,而人的身高与体重的关系,学生的数学成绩好坏与物理成绩的关系等都是相关关系.2、线性相关和非线性相关:两个变量之间的相关关系又可分为线性相关和非线性相关,如果所有的样本点都落在某一函数曲线的附近,则变量之间具有相关关系(不确定性的关系),如果所有样本点都落在某一直线附近,那么变量之间具有线性相关关系,相关关系只说明两个变量在数量上的关系,不表明他们之间的因果关系,也可能是一种伴随关系.3、两个变量相关关系与函数关系的区别和联系(1)相同点:两者均是两个变量之间的关系.(2)不同点:函数关系是一种确定的关系,如匀速直线运动中时间t与路程s的关系,相关关系是一种非确定的关系,如一块农田的小麦产量与施肥量之间的关系,函数关系是两个随机变量之间的关系,而相关关系是非随机变量与随机变量之间的关系;函数关系式一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例题精讲变量之间的相关关系例1.用线性回归模型求得甲、乙、丙3组不同的数据的线性相关系数分别为0.81,-0.98,0.63,其中___(填甲、乙、丙中的一个)组数据的线性相关性最强.例2.如图所示,有A,B,C,D,E,5组数据,去掉___组数据后,剩下的4组数据具有较强的线性相关关系.(请用A、B、C、D、E作答)例3.对两个变量的相关系数r,有下列说法:(1)|r|越大,相关程度越大;(2)|r|越小,相关程度越大;(3)|r|趋近于0时,没有非线性相关系数;(4)|r|越接近于1时,线性相关程度越强,其中正确的是_________.例4.下列两个变量之间的关系是相关关系的是___.①正方体的棱长和体积;②单位圆中圆心角的度数和所对弧长;③单产为常数时,土地面积和总产量;④日照时间与水稻的亩产量.两个变量的线性相关知识讲解1.散点图【知识点的知识】1.散点图的概念:在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图.2.曲线拟合的概念:从散点图可以看出如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这种近似的过程称为曲线拟合.3.正相关和负相关:(1)正相关:对于相关关系的两个变量,如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关,正相关时散点图的点散布在从左下角到右上角的区域内.(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关,负相关时散点图的点散布在从左上角到右下角的区域.3、注意:画散点图的关键是以成对的一组数据,分别为此点的横、纵坐标,在平面直角坐标系中把其找出来,其横纵坐标的单位长度的选取可以不同,应考虑数据分布的特征,散点图只是形象的描述点的分布,如果点的分布大致呈一种集中趋势,则两个变量可以初步判断具有相关关系,如图中数据大致分布在一条直线附近,则表示的关系是线性相关,如果两个变量统计数据的散点图呈现如下图所示的情况,则两个变量之间不具备相关关系,例如学生的身高和学生的英语成绩就没有相关关系.4、散点图又称散点分布图,是以一个变量为横坐标,另一变量为纵坐标,利用散点(坐标点)的分布形态反映变量统计关系的一种图形.特点是能直观表现出影响因素和预测对象之间的总体关系趋势.优点是能通过直观醒目的图形方式反映变量间关系的变化形态,以便决定用何种数学表达方式来模拟变量之间的关系.散点图不仅可传递变量间关系类型的信息,也能反映变量间关系的明确程度.2.线性回归方程【概念】线性回归是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,运用十分广泛.分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析.如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析.如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析.变量的相关关系中最为简单的是线性相关关系,设随机变量与变量之间存在线性相关关系,则由试验数据得到的点将散布在某一直线周围.因此,可以认为关于的回归函数的类型为线性函数.【实例解析】例:对于线性回归方程,则=解:,因为回归直线必过样本中心(),所以.故答案为:58.5.方法就是根据线性回归直线必过样本中心(),求出,代入即可求.这里面可以看出线性规划这类题解题方法比较套路化,需要熟记公式.【考点点评】这类题记住公式就可以了,也是高考中一个比较重要的点.3.最小二乘法【概念】最小二乘法(又称最小平方法)是一种数学优化技术.它通过最小化误差的平方和寻找数据的最佳函数匹配.利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小.最小二乘法还可用于曲线拟合.其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达.【例题解析】例:关于x与y有如表数据:请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程为y=0.7x+0.35.解:∵由题意知,,∴=0.7∴要求的线性回归方程是y=0.7x+0.35,故答案为:y=0.7x+0.35.集体步骤就是先做出x,y的平均数,代入的公式,利用最小二乘法做出线性回归直线的方程的系数,写出回归直线的方程,得到结果.【考点解析】最小二乘法一般在线性拟合中应用的比较多,主要是一种方法,能够熟记如何操作就可以了,剩下的就是计算要认真.例题精讲两个变量的线性相关例1.'2018年9月17日,世界公众科学素质促进大会在北京召开,国家主席习近平向大会致贺信中指出,科学技术是第一生产力,创新是引领发展的第一动力某企业积极响应国家“科技创新”的号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据{x i,y i)(i=1,2,3,4,5,6),如表(1)求出p的值;(2)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价:x(百元)的线性国归方程y=bx+a(计算结果精确到整数位);(3)用表示用正确的线性回归方程得到的与x对应的产品销的估计值当销售数据(x i,y i)的残差的绝对值|y i-y|<1时,则将销售数据称为一个“有效数据”现从这6组销售数中任取2组,求抽取的2组销售数据都是“有效数据”的概率.参考公式及数据=y i=80,=1606,=91,,'例2.'某地种植常规稻α和杂交稻β,常规稻α的亩产稳定为485公斤,今年单价为3.70元/公斤,估计明年单价不变的可能性为10%,变为3.90元/公斤的可能性为70%,变为4.00的可能性为20%.统计杂交稻β的亩产数据,得到亩产的频率分布直方图如图①.统计近10年杂交稻β的单价(单位:元/公斤)与种植亩数(单位:万亩)的关系,得到的10组数据记为(x i,y i)(i=1,2,..10),并得到散点图如图②.(1)根据以上数据估计明年常规稻α的单价平均值;(2)在频率分布直方图中,各组的取值按中间值来计算,求杂交稻β的亩产平均值;以频率作为概率,预计将来三年中至少有二年,杂交稻β的亩产超过795公斤的概率;(3)①判断杂交稻β的单价y(单位:元/公斤)与种植亩数x(单位:万亩)是否线性相关?若相关,试根据以下的参考数据求出y关于x的线性回归方程;②调查得知明年此地杂交稻β的种植亩数预计为2万亩.若在常规稻α和杂交稻β中选择,明年种植哪种水稻收入更高?统计参考数据:=1.60,=2.82,(x i)(y i)=-0.52,(x i)2=0.65,附:线性回归方程=bx+a,b=.'当堂练习单选题练习1.用模型y=ce kx拟合一组数据时,为了求出回归方程,设z=lny,其变换后得到线性回归方程z=0.3x+2,则c=()A.e2B.e4C.2D.4练习2.根据最小二乘法由一组样本点(x i,y i)(其中i=1,2,…,300),求得的回归方程是=x+,则下列说法正确的是()A.至少有一个样本点落在回归直线=x+上B.若所有样本点都在回归直线=x+上,则变量间的相关系数为1C.对所有的解释变量x i(i=1,2….300).bx i+的值一定与y i有误差D.若回归直线=x+的斜率b>0,则变量x与y正相关练习3.已知一组数据点(x1,y1),(x2,y2),(x3,y3),…,(x7,y7),用最小二乘法得到其线性回归方程为,若数据x1,x2,x3,…x7的平均数为1,则=()A.2B.11C.12D.14练习4.根据如下样本数据得到的回归直线方程为=bx+a,则()A.a>0,b>0B.a>0,b<0C.a<0,b<0D.a<0,b>0练习5.下列表格所示的五个散点数据,用最小二乘法得出y与x的线性回归直线方程为,则表格中m的值应为()A.8.3B.8.2C.8.1D.8练习6.一车间为规定工时定额,需要确定加工零件所花费的时间,为此进行了4次试验,测得的数据如下根据上表可得回归方程,则实数a的值为()A.37.3B.38C.39D.39.5练习1.如图所示,有A,B,C,D,E,5组数据,去掉___组数据后,剩下的4组数据具有较强的线性相关关系.(请用A、B、C、D、E作答)练习2.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系,其中是相关关系的为_____.练习3.对两个变量的相关系数r,有下列说法:(1)|r|越大,相关程度越大;(2)|r|越小,相关程度越大;(3)|r|趋近于0时,没有非线性相关系数;(4)|r|越接近于1时,线性相关程度越强,其中正确的是_________.练习4.下列两个变量之间的关系是相关关系的是___.①正方体的棱长和体积;②单位圆中圆心角的度数和所对弧长;③单产为常数时,土地面积和总产量;④日照时间与水稻的亩产量.练习1.'2013年以来精准扶贫政策的落实,使我国扶贫工作有了新进展,贫困发生率由2012年底的10.2%下降到2018年底的1.4%,创造了人类减贫史上的中国奇迹.“贫困发生率”是指低于贫困线的人口占全体人口的比例,2012年至2018年我国贫困发生率的数据如表:(1)从表中所给的7个贫困发生率数据中心任选两个,求两个都低于5%的概率;(2)设年份代码x=t-2015,利用线性回归方程,分析2012年至2018年贫困发生率y与年份代码x的相关情况,并预测2019年贫困发生率.'练习2.'某企业为确定下一年投入某种产品的研发费用,需了解年研发费用x(单位:千万元)对年销售量y(单位:千万件)的影响,统计了近10年投入的年研发费用x i与年销售量y i(i=1,2…,10)的数据,得到散点图如图所示.(1)利用散点图判断y=a+bx和y=c∙x d(其中c,d均为大于0的常数)哪一个更适合作为年销售量y和年研发费用x的回归方程类型(只要给出判断即可,不必说明理由);(2)对数据作出如下处理,令u i=lnx i,v i=lny i,得到相关统计量的值如表:根据第(1)问的判断结果及表中数据,求y关于x的回归方程;(3)已知企业年利润z(单位:千万元)与x,y的关系为z=18y-x(其中e≈2.71828),根据第(2)问的结果判断,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线=+的斜率和截距的最小二乘估计分别为=,=.'基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验,某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,设月份代码为x,市场占有率为y(%),得结果如表(1)观察数据看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明(精确到0.001):(2)求y关于x的线性回归方程,并预测该公司2019年4月份的市场占有率;(3)根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元/辆和800元/辆的甲,乙两款车型报年限各不相同.考虑到公司的经济效益,该公司决定先对两款单车各100辆行科学模拟测试,得到两款单车使用寿命表如下经测算,平均每辆单车每年可以为公司带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据.如果你是该公司的负责人,你会选择采购哪款车型?参考数据(x i)2=17.5,(y i)2=76,(x i)(y i)=35,≈36.5参考公式:相关系数r=回归方程=x中斜率和截距的最小二乘估计公式分别为=,=近期,某公交公司与银行开展云闪付乘车支付活动,吸引了众多乘客使用这种支付方式.某线路公交车准备用20天时间开展推广活动,他们组织有关工作人员,对活动的前七天使用云闪付支付的人次数据做了初步处理,设第x天使用云闪付支付的人次为y,得到如图所示的散点图.由统计图表可知,可用函数y=a∙b x拟合y与x的关系(1)求y关于x的回归方程;(2)预测推广期内第几天起使用云闪付支付的人次将超过10000人次.附:①参考数据表中v i=lgy i,=lgy i②参考公式:对于一组数据(u1,v1),(u2,v2)…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为β=,α=-β.'习近平总书记在十九大报告中指出,必须树立和践行“绿水青山就是金山银山”的生态文明发展理念,某城市选用某种植物进行绿化,设其中一株幼苗从观察之日起,第x的高度为ycm,测得一些数据图如下表所示作出这组数的散点图如图.(1)请根据散点图判断,y=ax+b与y=c+d中哪一个更适宜作为幼苗高度y关于时间x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程,并预测第144天这株幼苗的高度(结果保留1位小数)附:=,参考数据:'某老小区建成时间较早,没有集中供暖,随着人们生活水平的日益提高热力公司决定在此小区加装暖气该小区的物业公司统计了近五年(截止2018年年底)小区居民有意向加装暖气的户数,得到如下数据(Ⅰ)若有意向加装暖气的户数y与年份编号x满足线性相关关系求y与x的线性回归方程并预测截至2019年年底,该小区有多少户居民有意向加装暖气;(Ⅱ)2018年年底郑州市民生工程决定对老旧小区加装暖气进行补贴,该小区分到120个名额物业公司决定在2019年度采用网络竞拍的方式分配名额,竞拍方案如下:①截至2018年年底已登记在册的居民拥有竞拍资格;②每户至多申请一个名额,由户主在竞拍网站上提出申请并给出每平方米的心理期望报价;③根据物价部门的规定,每平方米的初装价格不得超过300元;④申请阶段截止后,将所有申请居民的报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则认为申请时问在前的居民得到名额,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的50位居民进行调查统计了他们的拟报竞价,得到如图所示的频率分布直方图:(1)求所抽取的居民中拟报竞价不低于成本价180元的人数;(2)如果所有符合条件的居民均参与竞拍,请你利用样本估计总体的思想预测至少需要报价多少元才能获得名额(结果取整数)参考公式对于一组数据(x1,y1),(x2,y2),(x3,y3),…(x n,y n),其回归直线=x+的斜率和截距的最小二乘估计分别为,=,=-。