2016年温州市高三第一次适应性测试数学里
- 格式:doc
- 大小:513.50 KB
- 文档页数:2
2015-2016学年浙江温州高三上学期五校开学第一次考试试卷数 学 试 题2015.07.15 第I 卷 选择题(60分)一.选择题:从下列所给的A 、B 、C 及D 四个选项中选出符合题意的最佳选项,并用2B 铅笔标在试卷相应位置。
每题5分,共12题,60分.1.已知集合A 为{0,4,5,6},集合B 为{3,6,7,5,9},集合C 为{0,5,9,4,7},则CuA∩(B∪C)为( ) (A){7,9} (B){0,3,7,9,4,5} (C){5} (D)∅ 2.已知等差数列}{n a 前四项中第二项为606,前三项和n S 为1818,则该数列第4项为( )(A)2004 (B)3005 (C)2424 (D)2016 3.下列说法正确的是( )(A)对于任意的x都有|x|≤2x恒成立.(B)同时向上抛掷2枚硬币,2枚都是反面朝上的概率是1/4. (C)回归直线必须过(0,0)并呈现一条直线.(D)在k 班高三数学期中测试中,平均数能够代表K 班数学总体水平. 4. 点(cos ,tan )P αα在第二象限是角α的终边在第三象限的( ) (A)充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件5. 已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( ) (A)(1,0)- (B )(1,0) (C )(0,1)- (D )(0,1)6.根据右边框图,当输出的y=10时,输入的x 为( ) (A )4 (B )6或0 (C )0 (D )4或67.下列同时具有性质“①最小正周期是π,②图象关于直线3π=x 对称”的一个函数是 ( ) (A ))62sin(π+=x y (B ))3cos(π+=x y(C ))62cos(π-=x y (D ))62sin(π-=x y 8.已知x ,y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02yx y x y x 若ax y z -=取得最大值的最优解不唯一...,则实数a 的值为( ) (A)21或-1(B)2或21(C)2或1 (D)2或-1 9.已知函数()5f x x =-当19x ≤≤时,()1f x >有解,则实数m 的取值范围为( ) (A )313<m (B )5<m (C )4<m (D )5≤m 10.已知椭圆22122:1(0)x y C a b a b+=>>与圆2222:C x y b +=,若在椭圆1C 上不存在点P ,使得由点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是( )(A )0,2⎛ ⎝⎭(B )⎛ ⎝⎭ (C ) (D ) 11. 设,αβ是两个不同的平面,l 是一条直线,以下命题不正确的是( ) ①若,l ααβ⊥⊥,则l β⊂ ②若//,//l ααβ,则l β⊂ ③若,//l ααβ⊥,则l β⊥ ④若//,l ααβ⊥,则l β⊥(A)①③ (B)②③④ (C)①②④ (D)①④ 12.(文)已知复数Z=6+8i,则-||z =( )(A)-5 (B)-10 (C)14/9 (D)-16/9 12.(理)第II 卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分. 13.某几何体的三视图如右图所示→则该几何体的体积为____________。
2016年温州市高三第一次适应性测试数学(文科)试题参考答案 2016.1一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
9.1- ;2. 10.135;5 11.14;1.12.12;36. 13.28. 14.),4[+∞. 15.3 三、解答题 16.(本题15分)解:(Ⅰ)由已知得ααcos 3sin 22=,则02cos 3cos 22=-+αα…………… 3分所以21cos =α或2cos -=α(舍)…………………………………5分 又因为πα<<0所以 3πα=……………………………………………………………7分(Ⅱ)由(Ⅰ)得)3cos(cos 4)(π-=x x x f)sin 23cos 21(cos 4x x x +=……………………9分x x x cos sin 32cos 22+= x x 2sin 32cos 1++=)62sin(21π++=x ………………………………11分由40π≤≤x 得32626πππ≤+≤x ……………………………………12分所以 当0=x 时,)(x f 取得最小值2)0(=f当6π=x 时,)(x f 取得最大值3)6(=πf ……………………14分所以函数)(x f 在]4,0[π上的值域为]3,2[……………………………15分17.(本题15分)解:(Ⅰ) 3212,3,4S S S 成等差数列.312246S S S +=∴……………………………………………2分 即)(24)(6321121a a a a a a +++=+………………………………4分 则 232a a =n n a q 22=∴=∴……………………………………6分 (Ⅱ) 当2,1=n 时,0<n a ,当3≥n 时,0>n a ………………………………7分 10,621==T T ……………………………………………………………………9分当3≥n 时,n n n T 2)52(23211043⋅-++⨯+⨯+=1542)52(2)72(2321202+⋅-+⋅-++⨯+⨯+=n n n n n T ………10分 两式相减,得1542)52()222(2810+⋅--+++++-=-n n n n T ………………11分1342)52(21)21(222+-⋅----⨯+-=n n n 12)27(34+⋅-+-=n n12)72(34+⋅-+=∴n n n T …………………………………………13分⎪⎩⎪⎨⎧⋅-+===∴+12)72(342,101,6n n n n n T ………………………15分 18.(本题15分)(Ⅰ)如图,由题意知⊥DE 平面ABC所以 DE AB ⊥,又DF AB ⊥所以 ⊥AB 平面DEF ,………………3分又⊂AB 平面ABD 所以平面⊥ABD 平面DEF …6分 (Ⅱ)解法一: 由DC DB DA ==知EC EB EA == 所以 E 是ABC ∆的外心又BC AB ⊥ 所以E 为AC 的中点 …………………………………9分 过E 作DF EH ⊥于H ,则由(Ⅰ)知⊥EH 平面DAB所以EBH ∠即为BE 与平面DAB 所成的角…………………………………12分由4=AC ,60=∠BAC 得2=DE ,3=EF所以 7=DF ,732=EH 所以721sin ==∠BE EH EBH …………………………………15分 解法二:如图建系,则)0,2,0(-A ,)2,0,0(D ,)0,1,3(-B所以)2,2,0(--=,)2,1,3(--= ……………………………………9分 设平面DAB 的法向量为),,(z y x n =由⎪⎩⎪⎨⎧=⋅=⋅00得⎩⎨⎧=--=--023022z y x z y ,取)1,1,33(-= ………………12分 设与的夹角为θ 所以7213722||||cos ==⋅=n EB θ 所以BE 与平面DAB 所成的角的正弦值为721………………………………15分19.(本题15分) 解:(Ⅰ)设),(y x DB ∴=2 为AD 的中点…………1分 则)2,0(),0,(yB x A -…………………………3分)2,1(),2,(y y x -==∴………………4分 20(0)4y AB BF x x ⊥∴-=≠即24(0)y x x =≠……7分(Ⅱ)设直线l 的方程为b x y +=21,),4(),,4(222121y y Q y y P联立方程组08842122=+-⇒⎪⎩⎪⎨⎧=+=b y y x y bx y …………………………………8分 则03264,08,82121>-=∆>==+b b y y y y ………………………………9分 则20<<b22121114,44y k y y y k ===2121212132)(4y y y y y y k k =+=+∴………………………11分 21212120,0y y y y y y ≥+∴>>则<01621≤y y 当且仅当21y y =时,取等号,但21y y ≠…………………13分 16021<<∴y y 221>+∴k k21k k +∴的取值范围为),2(+∞…………………………………………………15分第19题图20.(本题14分)解:(Ⅰ)⎪⎩⎪⎨⎧<+-≥-=0,0,)(22x tx x x tx x x f ,………………………………………………………1分当0>t 时,)(x f 的单调增区间为)0,(),,2[-∞+∞t,单调减区间为]2,0[t ……………4分 当0=t 时,)(x f 的单调增区间为),(+∞-∞………………………………………………5分 当0<t 时,)(x f 的单调增区间为),0[+∞,]2,(t -∞,单调减区间为)0,2[t …………8分(Ⅱ)设⎩⎨⎧-∈-+-∈+-=-=]0,1[)1(]2,0[)1()()(22x xt x x xt x x x f x g]2,0[∈x 时,)2,0(21∈+t,2min 1(1)()()24t t g x g ++==-……………………9分 ]0,1[-∈x 时,min (1),(0)0()g t g g x t -=-=∴=-………………10分故只须)2,0(∈∃t ,使得:⎪⎩⎪⎨⎧>->+-at a t 4)1(2成立,即⎪⎩⎪⎨⎧≥≥-a a 041………………………13分 所以41-≤a …………………………………………………………………………………14分另解:设()()||||,(0,2)h t f x x x t x x x t =-=-+-∈……………………9分 只须max (),[1,2]h t a x ≥∈-对都成立。
温州市2016届高三数学4月适应性试题(理有答案)2016年温州市高三第二次适应性测试理科数学选择题部分(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则()A.B.C.D.2.已知实数满足,则()A.最小值为-1,不存在最大值B.最小值为2,不存在最大值C.最大值为-1,不存在最小值D.最大值为2,不存在最小值3.直线与直线,则“”是“”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件4.已知某个几何体的三视图如下,根据图中标出的尺寸,可得这个几何体的体积是()A.4B.C.8D.5.设集合,在上定义运算:,其中为被4除的余数,,若,则的值为()A.0B.1C.2D.37.数列是递增数列,且满足,,则不可能是()A.B.C.D.8.棱长为2的正方体中,为棱的中点,点分别为面和线段上的动点,则周长的最小值为()A.B.C.D.非选择题部分(共110分)二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.以椭圆的焦点为顶点,长轴顶点为焦点的双曲线的渐近线方程是,离心率为.10.函数的图象如图所示,则,.11.已知等差数列的公差为-3,且是和的等比中项,则通项,数列的前项和的最大值为.12.设奇函数,则的值为,不等式在上的解集为.13.若正数满足,则的值为.14.若存在使得不等式成立,则实数的取值范围是.15.如图,矩形中,,,分别为线段上的点,且满足,若,则的最小值为.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(本题满分14分)在中,角所对的边分别为,已知,. (1)求的值;(2)设为的中点,若的面积为,求的长.17.(本题满分15分)如图,矩形中,,将其沿翻折,使点到达点的位置,且二面角为直二面角.(1)求证:平面平面;(2)设是的中点,二面角的平面角的大小为,当时,求的取值范围.18.(本题满分15分)已知二次函数的图象过点.(1)记函数在上的最大值为,若,求的最大值;(2)若对任意的,存在,使得,求的取值范围.19.(本题满分15分)已知椭圆的两个焦点为,焦距为2,设点满足是等腰三角形.(1)求该椭圆方程;(2)过轴上的一点作一条斜率为的直线,与椭圆交于点两点,问是否存在常数,使得的值与无关?若存在,求出这个的值;若不存在,请说明理由.20.(本题满分15分)设正项数列满足:,且对任意的,,均有成立.(1)求,的值,并求的通项公式;(2)(ⅰ)比较与的大小;(ⅱ)证明:.2016年温州市高三第二次适应性测试数学(理科)试题参考答案2016.4一、选择题:本大题共8小题,每小题5分,共40分。
2016年温州市高三第一次适应性测试数学(理科)试题参考答案 2016.1一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.二、填空题:本大题共7小题,前4题每题6分,后3题每题4分,共36分.9.14;1. 10.43π;5. 11.12;36. 12.21;6463. 13.),4[+∞. 14.43-. 15.),2(+∞.三、解答题 16.(本题15分)解:(Ⅰ)由已知得ααcos 3sin 22=,则02cos 3cos 22=-+αα…………3分所以21cos =α或2cos -=α(舍)……………………………………5分 又因为πα<<0 所以3πα= ……………………………7分(Ⅱ)由(Ⅰ)得)3cos(cos 4)(π-=x x x f)sin 23cos 21(cos 4x x x +=……………………………9分x x x cos sin 32cos 22+= x x 2sin 32cos 1++=)62sin(21π++=x ……………………………………11分由40π≤≤x 得32626πππ≤+≤x …………………………………………12分所以 当0=x 时,)(x f 取得最小值2)0(=f当6π=x 时,)(x f 取得最大值3)6(=πf ……………………………14分所以函数)(x f 在]4,0[π上的值域为]3,2[…………………………………15分17.(本题15分)(Ⅰ)如图,由题意知⊥DE 平面ABC 所以 DE AB ⊥,又DF AB ⊥所以 ⊥AB 平面DEF ,………………3分又⊂AB 平面ABD 所以平面⊥ABD 平面DEF…………………6分 (Ⅱ)解法一:由DC DB DA ==知EC EB EA == 所以 E 是ABC ∆的外心又BC AB ⊥ 所以E 为AC 的中点 …………………………………9分 过E 作DF EH ⊥于H ,则由(Ⅰ)知⊥EH 平面DAB所以EBH ∠即为BE 与平面DAB 所成的角…………………………………12分由4=AC ,60=∠BAC 得2=DE ,3=EF所以 7=DF ,732=EH 所以721sin ==∠BE EH EBH …………………………………15分 解法二:如图建系,则)0,2,0(-A ,)2,0,0(D ,)0,1,3(-B所以)2,2,0(--=,)2,1,3(--= ……………………………………9分 设平面DAB 的法向量为),,(z y x =由⎪⎩⎪⎨⎧=⋅=⋅00得⎩⎨⎧=--=--023022z y x z y ,取)1,1,33(-= ………………12分 设与的夹角为θ 所以7213722||||cos ==⋅=n EB θ 所以BE 与平面DAB 所成的角的正弦值为721………………………………15分18.(本题15分)解:(Ⅰ)解:(1)⎪⎩⎪⎨⎧<+-≥-=0,0,)(22x tx x x tx x x f , ……………………………………1分当0>t 时,)(x f 的单调增区间为)0,(),,2[-∞+∞t,单调减区间为]2,0[t ……3分 当0=t 时,)(x f 的单调增区间为),(+∞-∞ ……………………………………4分当0<t 时,)(x f 的单调增区间为),0[+∞,]2,(t -∞,单调减区间为)0,2[t ……6分 (Ⅱ)由(Ⅰ)知0>t 时)(x f 在)0,(-∞上递增,在)2,0(t 上递减,在),2(+∞t上递增从而 当22≥t即4≥t 时,0)0()(==f t M ,………………………7分}24,1min{)}2(),1(min{)(t t f f t m ---=-=………………………8分所以,当54≤≤t 时,t t m --=1)(,故51)()(≥+=-t t m t M ………9分 当5>t 时,t t m 24)(-=,故642)()(>-=-t t m t M ………………10分 当t t≤<22即42<≤t 时,0)0()(==f t M t t t t f f t m --=---=-=1}4,1min{)}2(),1(min{)(2……………11分所以,31)()(≥+=-t t m t M ………………………………………12分当20<<t 时,t f t M 24)2()(-==………………………………………13分t t t t f f t m --=---=-=1}4,1min{)}2(),1(min{)(2所以,35)()(>-=-t t m t M ………………………………………………14分综上所述,当2=t 时,)()(t m t M -取得最小值为3.………………………………15分19.(本题15分)解:(Ⅰ)由题意得: ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+====+222222221)26(1c b a a c e b a ,解得:⎪⎩⎪⎨⎧==2422b a 故椭圆C 的方程为:12422=+y x ……………………………………5分(Ⅱ)解法一:如图所示,设直线OM ,ON 的方程为OM y k x =,ON y k x =联立方程组22142OM y k xx y =⎧⎪⎨+=⎪⎩,解得M ,同理可得(N ,……………………………………7分作'MM x ⊥轴, 'NN x ⊥轴,','M N 是垂足,OMN S ∆=''''OMM ONN MM N N S S S ∆∆--梯形1[()()]2M N M N M M N N y y x x x y x y =+--+ 1()2M N N M x y x y =-12=+=……………………………………9分已知OMN S ∆2=,化简可得21-=ON OM k k .……………………………………11分设(,)P P P x y ,则2242P P x y -=,又已知AP OM k k =,所以要证BP ON k k =,只要证明12AP BP k k =-……………………13分而2212242P P P AP BP P P P y y y k k x x x ===-+--所以可得ON BP //…………………………………………………………………………15分 (,M N 在y 轴同侧同理可得)解法二:设直线AP 的方程为)2(+=x k y OM ,代入4222=+y x得0488)12(2222=-+++OM OM OM k x k x k ,它的两个根为2-和P x可得124222+-=OM OMp k k x 1242+=OM OM P k k y ……………………………………7分 从而OM OM OMOM OMBPk k k k k k 2121242124222-=-+-+=所以只需证ON OM k k =-21 即21-=ON OM k k …………………………………9分 设),(11y x M ,),(22y x N ,若直线MN 的斜率不存在,易得221±==x x 从而可得21-=ONOM k k …………………………………10分若直线MN 的斜率存在,设直线MN 的方程为m kx y +=, 代入12422=+y x 得0424)12(222=-+++m kmx x k则124221+-=+k km x x ,12422221+-=k m x x ,0)24(822>-+=∆m k ………11分 212)24(8||21||||2122221=+-+⋅=-⋅=∆k m k m x x m S OMN化得0)12()24(22224=+++-k m k m ,得1222+=k m ………………………13分214)12(2412424)(222222************-=-+-+=--=+++==⋅k k k m k m x x m x x km x x k x x y y k k ONOM ………………………………………………15分20.(本题14分) 解:(Ⅰ)由已知,)12,(+n n n n a a a P ,从而有)12,(1++n nn n a a a Q 因为n Q 在xy 31=上,所以有13112+=+n n n a a a 解得 nn n a a a 611+=+ ………………………………2分 由01>a 及n n n a a a 611+=+,知0>n a , 下证:n n a a 21221<<- 解法一:因为n n n a a a 6)21(2211--=-+,所以211-+n a 与21-n a 异号注意到0211<-a ,知02112<--n a ,0212>-n a 即n n a a 21221<<- …………………………………7分 解法二:由n n n a a a 611+=+ 可得 nn n a a a 6)21(2211--=-+ , n n n a a a 6)31(3311+=++ 所以有312132312111+-⋅-=+-++n n n n a a a a ,即⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧+-3121n n a a 是以32-为公比的等比数列; 设312111+-=a a t , 则1)32(3121--⋅=+-n n n t a a 解得11)32(1)32(321---⋅--⋅+=n n n t t a , …………………………………5分 从而有tt t t a n n n n --=-⋅--⋅+=----111)23(65)32(1)32(32121由2101<<a 可得023<<-t所以0)49(6521112<-=---tt a n n , 221516032()2n n ta t --=>--所以n n a a 21221<<- …………………………………7分(Ⅱ)因为)1(617616161611212121212122212++=+++=+=------+n n n n n n nn n a a a a a a a a a所以 )1(6)13)(21(2)1(6171212121212121212++--=-++=--------+n n n n n n n n a a a a a a a a 因为21102n a -<<,所以1212-+>n n a a 所以有13212221a a a a n n n >>>>>-- 从而可知1a a n ≥ …………………………………9分 故 1||6||6161||1111112+-=-=+-+=-+++++++n n n n n n n n n n n n n a a a a a a a a a a a a a 1||11+-≤+a a a n n||431n n a a -=+ …………………………………11分 所以112121211)43(31||)43(||)43(||43||-----+⋅=-≤≤-≤-≤-n n n n n n n n a a a a a a a a…………………………………12分 所以 ||||||||1342312n n a a a a a a a a -++-+-+-+])43()43(431[3112-++++≤n 431)43(131--⨯=n ])43(1[34n-=34< …………………………………14分命题教师:胡浩鑫 戴海林 叶思迁 叶建华 林世明 叶事一。
2016年浙江省温州市高三理科一模数学试卷一、选择题(共8小题;共40分)1. 已知全集为,集合,,则A. B.C. D.2. 已知,为异面直线,下列结论不正确的是A. 必存在平面使得,B. 必存在平面使得,与所成角相等C. 必存在平面使得,D. 必存在平面使得,与的距离相等3. 已知实数,满足则的最大值为A. B. C. D.4. 已知直线,曲线,则“”是“直线与曲线有公共点”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 设函数是定义在上的偶函数,对任意的都有,则满足上述条件的可以是A. B.C. D.6. 如图,已知,为双曲线:的左、右焦点,点在第一象限,且满足,,线段与双曲线交于点,若,则双曲线的渐近线方程为A. B. C. D.7. 已知集合,若实数,满足:对任意的,都有,则称是集合的“和谐实数对”.则以下集合中,存在“和谐实数对”的是A. B.C. D.8. 如图,在矩形中,,,点在线段上且.现分别沿,将,翻折,使得点落在线段的处,则此时二面角的余弦值为.A. B. C. D.二、填空题(共7小题;共35分)9. 已知,则,函数的零点个数为.10. 已知钝角的面积为,,,则角,.11. 某几何体的三视图如图所示,则该几何体的体积为,表面积为.12. 已知公比不为的等比数列的首项,前项和为,且,,成等差数列,则,.13. 已知,若对任意的,均存在使得,则实数的取值范围是.14. 已知中,,,点为线段上的动点,动点满足,则的最小值等于.15. 已知斜率为的直线与抛物线交于轴上方不同的两点,,记直线,的斜率分别为,,则的取值范围是.三、解答题(共5小题;共65分)16. 已知,且.(1)求的值;(2)求函数在上的值域.17. 如图,在三棱锥中,,在底面上的射影为,,于.(1)求证:平面平面;(2)若,,,求直线与平面所成的角的正弦值.18. 已知函数.(1)求函数的单调区间;(2)当时,若在区间上的最大值为,最小值为,求的最小值.19. 如图,已知椭圆经过点,且离心率等于.点,分别为椭圆的左、右顶点,,是椭圆上非顶点的两点,且的面积等于.(1)求椭圆的方程.(2)过点作交椭圆于点,求证:.20. 如图,已知曲线:及曲线:,上的点的横坐标为.从上的点作直线平行于轴,交曲线于点,再从点作直线平行于轴,交曲线于点.点的横坐标构成数列.(1)试求与之间的关系,并证明:;(2)若,求证:.答案第一部分1. C 【解析】,或,故.2. C 【解析】若存在这样的平面使得,则必有,但,为异面直线不一定垂直,故C错误.A,B,D均正确,存在满足题意的平面.3. B 【解析】令,则,由题意作平面区域如下,结合图象可知,当过点时,取得最大值.4. A 【解析】由直线,曲线,得:所以,若直线和曲线有公共点,则,所以,则“”是“直线与曲线有公共点”的充分不必要条件.5. C【解析】因为,所以,所以,函数是偶函数,所以.所以,所以是以为周期的函数,A.函数的周期,,不满足条件.B.是奇函数,不满足条件.C.,则函数的周期是,,满足条件.D.,则函数的周期是,不满足条件.6. B 【解析】由题意,,所以,,.所以由余弦定理可得.所以.所以.所以双曲线的渐近线方程为.7. C 【解析】由实数,满足:对任意的,都有,即,所以, .而构成的区域如图:A、B、D选项的集合所表示的曲线均与所表示的区域无交点,C选项所表示的抛物线与区域有交点,符合题意.8. D 【解析】方法一:由翻折本质确定射影点的位置;方法二:根据已知数据特征,作二面角的平面角.第二部分9. ,【解析】根据题意得:,则,令,得到,解得:,则函数的零点个数为.10. ,【解析】因为钝角的面积为,,所以,解得,所以或,因为当时,由余弦定理可得,此时,,可得,为直角三角形,矛盾,舍去.所以,由余弦定理可得.11. ,【解析】由三视图可知几何体为四棱锥,作出直观图如图所示:其中底面是边长为的正方形,底面,.所以棱锥的体积.棱锥的四个侧面均为直角三角形,,所以棱锥的表面积.12. ,【解析】因为,,成等差数列,所以,所以,化为,所以,化为,,解得..13.【解析】由任意的,均存在使得,即说明的值域为.根据对数函数的性质,则需取到上所有的值,又的值域为 .所以 .14.【解析】设, .则, .所以,的最小值等于 .15.【解析】设直线方程为,即,代入抛物线,可得,,所以,设,,得,,第三部分16. (1)由已知得,则,所以或(舍),又因为,所以.(2)由(1)得由得,所以,当时,取得最小值;当时,取得最大值.所以函数在上的值域为.17. (1)如图,由题意知平面,所以,又,所以平面,又平面,所以平面平面 .(2)解法一:由知,所以是的外心,又,所以为的中点,过作于,则由(1)知平面,所以即为与平面所成的角,由,,得,,所以,,所以.解法二:如图建系,则,,,所以,.设平面的法向量为,由得取,设与的夹角为,所以所以与平面所成的角的正弦值为.18. (1)当时,的单调增区间为,,单调减区间为;当时,的单调增区间为;当时,的单调增区间为,,单调减区间为.(2)由(1)知,时,在上递增,在上递减,在上递增.从而当即时,,,所以,当时,,故;当时,,故;当即时,,;所以,.当时,,,所以,.综上所述,当时,取得最小值为.19. (1)由题意得:解得故椭圆的方程为:.(2)方法一:设直线,的方程为,.联立方程组解得,同理可得,作轴,轴,,是垂足,梯形已知,化简可得.设,则,又已知,所以要证,只要证明,而.所以可得.方法二:设直线的方程为,代入,得,它的两个根为和.可得,,从而.所以只需证,即.设,,若直线的斜率不存在,易得.从而可得.若直线的斜率存在,设直线的方程为,代入.得,则,,,化得,得,方法三:挖掘椭圆共轭直径的性质,及三角设法,伸缩变换皆可.20. (1)由已知,,从而有,因为在上,所以有,解得.由,及,知.下证:.解法一:因为,所以与异号.注意到,知,,即.解法二:由,可得,,所以有,即是以为公比的等比数列;设,则,解得,从而有.由可得,所以,.所以.(2)因为,所以因为,所以.所以有.从而可知,故所以所以。
2016年温州市高三第一次适应性测试文综历史能力测试2016.1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(综合题)两部分。
满分300分。
考试时间150分钟。
第Ι卷一、选择题(每小题4分,共140分)12.英国历史学家埃尔顿说:“历史学家在社会中扮演的角色,千万不能降低到布道者的水准;一个好的布道者必须有某种信仰,而一个好的历史学家则必须质疑自己的信仰,并承认他人的信念也有价值。
”他强调历史学家A.不能拥有宗教信仰B.应具有全面客观的眼光C.尽量避免价值判断D.应尽可能多地占有史料13.有学者认为,战国至西汉初农民的桑麻纺织业、家畜饲养和园艺种植等多种经营的收入,可占农家生产总收入的40%以上。
这种观点A.推翻了对古代抑商政策的固有认识B.否定了古代中国农业经济的基本特点C.深化了对古代中国自然经济的理解D.肯定了战国至汉初私营纺织业的发达14.东晋葛洪《肘后备急方》记载了“青蒿一握,以水二升渍,绞取汁,尽服之”,这启发了屠呦呦发现青蒿素。
葛洪在另一著作中将“火药”列为“仙药”,该著作是A.《武经总要》B.《神农本草经》C.《抱朴子》D.《梦溪笔谈》15.唐代规定:“诸非州县之所不得置市。
……其市当以午击鼔二百下而众大会,日入前七刻击钲三百下散。
”到宋代,废除了以上规定。
这表明宋代A.市由定时而聚发展为常设商业区B.放松了对“市”的时空限制C.商业活动不受官吏的直接监管D.商人遭受歧视的情形开始转变16.朱熹说:“人生八岁,则自王公以下,至于庶人之子弟,皆入小学,而教之以洒扫、应对、进退之节,礼乐、射御、书数之文;及其十有五年……皆入大学,而教之以穷理、正心、修己、治人之道。
”他在这里强调A.教育应日积月累和循序渐进B.要继承和发展太学的传统C.仁者应具有强烈的社会责任感D.须全面贯彻孔子的教育理念17.某朝设有主管边疆民族事务的机构,其地位与六部相同。
起初只是管理蒙古事务,后来也负责新疆和西藏的行政、兵刑等事务。
浙江省温州市高三数学理科第一次适应性测试卷 人教版2007.2本试卷分第Ⅰ卷和第Ⅱ卷两部分。
全卷满分150分,考试时间120分钟。
参考公式:如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么P(AB)P(A)P(B)=如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()()1n kk kn n P k C P P -=-球的表面积公式24S R π=,其中R 表示球的半径 球的体积公式343V R π=,其中R 表示球的半径第I 卷(选择题共50分)一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中有且只有一项是符合题目要求的. 1.设全集为R ,集合{}1|≥=x x A ,则=A C R ( )A .(,1)(1,)-∞-+∞B .(1,1)-C .(,1][1,)-∞-+∞D .[1,1]-2.复数=+i12( )A .i -1B .i +1C .i -D .i3. 4)1(xx -展开式中的常数项是 ( )A .12-B .12C .6-D .6 4.点)2007sin ,2007(cos ︒︒P 落在第( )象限。
A .一B .二C .三D .四5.已知等差数列{}n a 的前5项的平均值是3,则3a 为 ( )A .10B .5C .3D .06.设直线1y x =+与抛物线y x 42=交于A 、B 两点,则AB 的中点到x 轴的距离为( )。
A .4B .3C .2D .17.设点P 从点O 出发,按逆时针方向沿周长为l 的图形运动一周,若P O ,两点间的距离y 与点P 走过的路程x 的函数关系如右图,则P 走过的图形可能是 ( )8.已知两条不同直线a 、b ,两个平面,αβ,且α//β,a ⊥α,设命题p :b //β;命题q :a ⊥b ,则p 是q 成立的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 9.调查表明,酒后驾驶是导致交通事故的主要原因,交通法规规定:驾驶员在驾驶机动车时血 液中酒精含量不得超过ml mg 2.0。
一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{|1U x x =≤-或}0x ≥,{}|02A x x =≤≤,{}2|1B x x =>,则集合()U AC B 等于( )A.{}|01x x x ><-或 B.{}|12x x <≤ C.{}|01x x ≤≤ D.{}|02x x ≤≤ 【答案】C . 【解析】试题分析:由题意知,{}2|1{|1B x x x x =>=>或1}x <-,所以{11}U C B x x =-≤≤,所以集合(){x 01}U A C B x =≤≤I ,故应选C . 考点:1、集合间的相互关系;2.一个几何体的正视图和侧视图都是面积为1的正方形,则这个几何体的俯视图一定不是( )A B C D【答案】B . 【解析】考点:1、三视图;3.设实数列{}n a 和{}n b 分别是等差数列与等比数列,且114a b ==,441a b ==,则以下结论正确的是( )A.22a b > B.33a b < C.55a b > D.66a b > 【答案】A . 【解析】试题分析:设等差数列{}n a 和等比数列{}n b 的公差、公比分别为,d q ,则由114a b ==,441a b ==得,31131a d b q +==即1,d q =-=213a a d =+=,232144b b q ===,所以()3227a =,()32332416b ⎛⎫== ⎪⎝⎭,所以22a b >,故选项A 正确;3122a a d =+=,21233144b b q ==⨯=,所以33a b >,所以选项B 不正确;5140a a d =+=,41435144b b q -==⨯=,所以55a b <,所以选项C 不正确;6151a a d =+=-,52536144b b q -==⨯=,所以66a b <,所以选项D 不正确;故应选A .考点:1、等差数列;2、等比数列;4.“直线y x b =+与圆221x y +=相交”是“01b <<”的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 【答案】B . 【解析】试题分析:若“直线y x b =+与圆221x y +=相交”,则圆心到直线的距离为1d =<,即b <01b <<;反过来,若01b <<,则圆心到直线的距离为1d=<<,所以直线y x b=+与圆221x y+=相交,故应选B.考点:1、直线与圆的位置关系;2、充分必要条件;5.已知点(0,2)A,抛物线2:2(0)C y px p=>的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若||||FMMN=,则p的值等于()A.18B.14C.2 D.4【答案】C.【解析】试题分析:设点M到抛物线的准线的距离为'MM,抛物线的准线与x轴的交点记为点B,则由抛物线的定义知,'MM MF=,又因为||||FMMN='||||MMMN=,即''||cos||5MMNMMMN∠==,所以'cos cosOFA NMM∠=∠=,而cospOFOFAAF∠==p=,解之得2p=,故应选C.考点:1、抛物线的简单几何性质;6.设集合{}1,2,3,,nS n=,若Z是nS的子集,把Z中的所有数的和称为Z的“容量”(规定空集的容量为0).若Z的容量为奇(偶)数,则称Z为nS的奇(偶)子集.命题①:nS的奇子集与偶子集个数相等;命题②:当3n≥时,nS的所有奇子集的容量之和与所有偶子集的容量之和相等则下列说法正确的是()A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立【答案】A.【解析】试题分析:设S 为n S 的奇子集,令1,1{1,1S ST S S⋃∉⎧=⎨∈⎩,则T 是偶子集,A T →是奇子集的集到偶子集的一一对应,而且每个偶子集T ,均恰有一个奇子集,1,1{1,1T TS T T⋃∉⎧=⎨∈⎩与之对应,故n S 的奇子集与偶子集个数相等,所以①正确;对任一(1)i i n ≤≤,含i 的子集共有12n -个,用上面的对应方法可知,在1i ≠时,这12n -个子集中有一半是奇子集,在1i =时,由于3n ≥,将上边的1换成3,同样可得其中有一半是奇子集,于是在计算奇子集容量之和是2312(1)2nn n i i n n --==+∑,根据上面所说,这也是偶子集的容量之和,两者相等,所以当3n ≥时,n S 的所有奇子集的容量之和与所有偶子集的容量之和相等,即命题②正确,故应选A . 考点:1、集合的综合运用;2、分段函数的表示;7.定义区间12[,]x x 的长度为21x x - 21()x x >,函数22()1()(,0)a a x f x a R a a x+-=∈≠的定义域与值域都是[,]()m n n m >,则区间[,]m n 取最大长度时实数a 的值为( )A.3B.-3 C.1 D.3 【答案】D . 【解析】考点:1、函数的定义域;2、函数的值域;8.如图,点E 为正方形ABCD 边CD 上异于点C ,D 的动点,将△ADE 沿AE 翻折成△SAE ,使得平面SAE ⊥平面ABCE ,则下列三个说法中正确的个数是( )①存在点E 使得直线SA ⊥平面SBC ②平面SBC 内存在直线与SA 平行 ③平面ABCE 内存在直线与平面SAE 平行 A.0 B.1 C.2 D.3 【答案】B . 【解析】试题分析:对于命题①,若直线SA ⊥平面SBC ,则直线SA 与平面SBC 均垂直,则SA ⊥BC ,又由AD ∥BC ,则SA ⊥AD ,这与SAD ∠为锐角矛盾,所以命题①不正确;对于命题②,因为平面SBC ⋂直线SA S =,故平面SBC 内的直线与SA 相交或异面,所以命题②不正确;对于命题③,取AB 的中点F ,则CF ∥AE ,由线面平行的判定定理可得CF ∥平面SAE ,所以命题③正确,故应选B .考点: 1、线面垂直的判定定理;2、线面平行的判定 ;第Ⅱ卷(共110分)(非选择题共110分)二、填空题(每题5分,满分36分,将答案填在答题纸上) 9.已知,255lg =x则x= ;已知函数x x f lg )(=,若1)(=ab f ,则=+)()(22b f a f . 【答案】100,2. 【解析】试题分析:因为lg 525x =,所以5lg log 252x ==,所以210100x ==;又因为1)(=ab f ,所以lg()1ab =,即10ab =,所以222222()()lg lg lg()2lg()2f a f b a b a b ab +=+===,故应填100,2.考点:1、对数函数;2、对数运算; 10.设函数31,1,()2,1.x x x f x x -<⎧=⎨≥⎩则2(())3f f = ;若(())1f f a =,则a 的值为 .【答案】2,. 【解析】试题分析:因为22()31133f =⨯-=,所以12(())(1)223f f f ===;若(())1f f a =,则(1)当1a <时,()31f a a =-,(1)当311a -<,即23a <时,()1f a <,所以2(())(31)3(31)19a 41f f a f a a =-=--=-=,所以25a 9=,即a 3=±a 3=不合题意应舍去,所以a =311a -≥,即23a ≥时,()1f a ≥,所以31(())(31)21a f f a f a -=-==,即13a =,应舍去;(2)当1a ≥时,()21af a =≥,所以2(())21af f a ==,所以20a =,不合题意,应舍去,故应填2,. 考点:1、分段函数;11.若函数2()cos 222x x xf x =-,则函数()f x 的最小正周期为 ;函数()f x 在区间[,0]π-上的最小值是 .【答案】2π,12--. 【解析】 试题分析:因为21cos ()cos 2222x x x x f x x -==cos )x x =+sin()42x π=+-,所以其最小正周期为221T ππ==;因为x [,0]π∈-,所以3x [,]444πππ+∈-,再结合三角函数的图像及其性质可得: min ()12f x =--,故应填2π,12--. 考点:1、三角函数的恒等变换;2、三角函数的图像及其性质;12.如图,12,F F 是双曲线的左、右焦点,过1F 的直线l 与双曲线的左右两支分别交于点B 、A 两点,若2ABF ∆为等边三角形,则该双曲线的离心率为 .. 【解析】试题分析:由双曲线的定义知,21122,2,BF BF a AF AF a -=-=,又因为2ABF ∆为等边三角形,所以11AB AF BF ==,所以224BF AF a AB -==,所以124,6BF a BF a ==. 在12F BF ∆中,由余弦定理可得:22201212122cos 60F F BF BF BF BF =+-,即2220(2)(4)(6)246cos60c a a a a =+-⨯⨯,即ce a==. 考点:1、双曲线的概念;2、双曲线的简单几何性质;13.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E ,F 分别为AB ,BC 的中点,设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为 .【答案】25. 【解析】试题分析:根据已知条件,AB ,AD ,AQ 三直线两两垂直,分别以这三直线为,,x y z 轴,建立如图所示空间直角坐标系,设2AB =,则(0,0,0),(1,0,0),(2,1,0)A EF ,M 在线段PQ 上,设(0,,2)(02)M y y ≤≤,所以(1,,2)EM y →=-,(2,1,0)AF →=,所以cos cos ,EM AF θ→→=<>=,函数()25g y y =--是一次函数,且为减函数,(0)20550g =-⨯-=-<,所以()f y 在[0,2]上单调递减,所以当0y =时,()f y 取得最大值25,故应填25.考点:1、空间向量在立体几何中的应用;14.若直线4ax by +=与不等式组2580240240x y x y x y -+≥⎧⎪+-≤⎨⎪++≥⎩表示的平面区域无公共点,则a b +的取值范围是 . 【答案】(3,3)-. 【解析】试题分析:由已知不等式组可画出其所表示的平面区域图下图所示,并分别联立直线方程组2580240x y x y -+≥⎧⎨+-≤⎩,2580240x y x y -+≥⎧⎨++≥⎩,240240x y x y +-≤⎧⎨++≥⎩并计算得到点,,A B C 的坐标为(1,2),(4,0),(4,4)--要使直线直线4ax by +=与不等式组2580240240x y x y x y -+≥⎧⎪+-≤⎨⎪++≥⎩表示的平面区域无公共点,则24044010a b a a b +->⎧⎪-->⎨⎪-->⎩或24044010a b a a b +-<⎧⎪--<⎨⎪--<⎩,点(,)a b 所在平面区域如图所示:同理可解得点M(1,2),N(2,1)--.令直线t a b =+,即b a t =-+,当直线b a t =-+过点M 时,t 有最小值为-3;当直线t a b =+过点N 时,t 有最小值为3,所以t a b =+的取值范围是(3,3)-.故应填(3,3)-.考点:1、一元二次不等式组所表示的平面区域;2、简单的线性规划;15.已知ABC ∆中,2,1AB AC ==,当2(0)x y t t +=>时,2||2xAB yAC t +≥恒成立,则ABC ∆的面积为 ,在前述条件下,对于ABC ∆内一点P ,()PA PB PC ⋅+的最小值是 . 【答案】51,8-. 【解析】试题分析:因为||xAB yAC +==uu u r uu u r 当cos 0A =时,||)xAB y AC x y +=+uu u r uuu r 满足题意,所以此时112ABC S AB AC ∆=⨯⨯=;在直角三角形ABC 中,取BC 的中点D ,连接PD ,则2PB PC PD →→→+=,即()2PA PB PC PA PD →→→→→⋅+=⋅,当,,A P D 三点共线时,0PA PD →→⋅<,又此时12AD BC ==2522228PA PD PA PD PA PD →→→→→→⎛⎫+ ⎪⎪⋅=-≥-⨯=- ⎪⎪⎝⎭,即有最小值为58-,故应填51,8-. 考点:1、平面向量的数量积的应用;2、基本不等式的应用;三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 16.(本小题满分14分)设△ABC 的内角A 、B 、C 所对的边长分别为a 、b 、c ,且sin sin cos ,,sin sin cos B C BA A A成等差数列 (1)求角A的值;(2)若5a b c =+=,求ABC ∆的面积.【答案】(1)060A=;(2. 【解析】试题分析:(1)根据已知可得等式sin sin cos 2sin sin cos C B BA A A⨯=+,然后结合sin()sin A B C +=可求出cos A 的值,进而可得其角的大小;(2)应用余弦定理即可计算出bc 的值,然后结合三角形的面积公式1sin 2ABC S bc A ∆=即可求出其大小. 试题解析:(Ⅰ)由已知sin sin cos 2sin sin cos C B BA A A⨯=+, 2sin sin cos cos sin sin()2sin sin sin cos sin cos 2sin cos C B A B A A B C A A A A A A A ++===,1cos 2A =,060A =.(Ⅱ)22222102c o s ()353a b c b c A b c b c b c ==+-=+-=-,所以5bc =,所以1s i n 2ABC S bc A ∆==考点:1、三角函数的恒等变换;2、余弦定理;3、正弦定理; 17.(本小题满分15分)如图(1)所示,直角梯形ABCD 中,90BCD ∠=,//AD BC ,6AD =,3DC BC ==.过B 作BE AD ⊥于E ,P 是线段DE 上的一个动点.将ABE ∆沿BE 向上折起,使平面AEB ⊥平面BCDE .连结PA ,PC ,AC (如图(2)).(Ⅰ)取线段AC 的中点Q ,问:是否存在点P ,使得//PQ 平面AEB ?若存在,求出PD 的长;不存在,说明理由;(Ⅱ)当23EP ED =时,求平面AEB 和平面APC 所成的锐二面角的余弦值.【答案】(Ⅰ)当P 为DE 的中点时,满足//PQ 平面AEB ;(Ⅱ)面AEB 和平面APC 所成的 【解析】试题分析:(Ⅰ)首先作出辅助线——取AB 的中点M ,连结EM ,QM .在三角形ABC 中,由Q 、M 为AC 、A BE CDA DCBEP QP•AB 的中点,于是可得//MQ BC ,且12M Q B C =,再由//PE BC ,且12P E B C=,可得四边形PEMQ为平行四边形,进而得出//ME PQ ,即可说明//PQ 平面AEB ;(Ⅱ)建立适当的空间直角坐标系如下图所示,根据已知分别写出各点的坐标,然后分别求出平面AEB 和平面APC 的法向量1n 和2n ,再由公式 121212cos ,⋅=⋅n n n n n n 即可计算出其二面角的余弦值.试题解析:(Ⅰ)存在.当P 为DE 的中点时,满足//PQ 平面AEB .取AB 的中点M ,连结EM ,QM .由Q 为AC 的中点,得//MQ BC ,且12MQ BC =,又//PE BC ,且12PE BC =,所以//PE MQ ,=PE MQ ,所以四边形PEMQ 为平行四边形,故//ME PQ .又PQ ⊄平面AEB ,ME ⊂平面AEB ,所以//PQ 平面AEB .从而存在点P ,使得//PQ 平面AEB ,此时3=2PD .(Ⅱ)由平面AEB ⊥平面BCDE ,交线为BE ,且AE BE ⊥, 所以AE ⊥平面BCDE ,又BE DE ⊥,以E 为原点,分别以 ,,EB ED EA 为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图),则(0,0,0)E ,(3,0,0)B ,(0,0,3)A ,(0,2,0)P ,(3,3,0)C . (3,1,0)PC =,(0,2,3)PA =-.ADCE PMQ平面AEB 的一个法向量为1(0,1,0)=n ,设平面APC 的法向量为2(,,)x y z =n ,由220,0,PC PA ⎧⋅=⎪⎨⋅=⎪⎩n n 得30,230.x y y z +=⎧⎨-+=⎩ 取3y =,得2(1,3,2)=-n,所以12cos ,==n n ,即面AEB 和平面APC考点:1、直线与平面平行的判定定理;2、空间向量法解空间立体几何问题; 18.(本小题满分15分)已知二次函数2()(,,)f x ax bx c a b c R =++∈满足条件:①当x R ∈时,(4)(2)f x f x -=-,且()f x x ≥;②当(0,2)x ∈时,21()2x f x +⎛⎫≤ ⎪⎝⎭;③()f x 在R 上的最小值为0 (1)求()f x 的解析式;(2)求最大的m(m>1),使得存在t R ∈,只要[1,]x m ∈,就有()f x t x +≤. 【答案】(1)21()(1)4f x x =+;(2)m 的最大值为9. 【解析】试题分析:(1)根据已知条件①可得其对称轴为1x =-,根据已知条件③知其开口向上,即0a >,于是可设函数2()(1)f x a x =+,再由①结合②知(1)1f ≥、211(1)12f +⎛⎫≤= ⎪⎝⎭可得(1)1f =,进而求出a 的值,即可得出所求结果;(2)将问题“存在t R ∈,只要[1,]x m ∈,就有()f x t x +≤”转化为“在区间[1,]m 上函数()y f x t =+的图像在直线y x =的下方,且m 最大”,进而可得1和m 是关于x 的方程21(1)4x t x ++=,于是可求出参数t 的值,进而求出参数m 的值即可. 试题解析:(1)由(4)(2)f x f x -=-知,对称轴为1x =-,由③知开口向上,即0a >,故设2()(1)f x a x =+,由①知(1)1f ≥;由②知211(1)12f +⎛⎫≤= ⎪⎝⎭,故(1)1f =,代入得,14a =,所以21()(1)4f x x =+. (2)由题意,在区间[1,]m 上函数()y f x t =+的图像在直线y x =的下方,且m 最大,故1和m 是关于x 的方程21(1)4x t x ++= ……①的两个根,令x=1代入①,得t=0或t=-4,当t=0时,方程①的解为121x x ==(这与m>1矛盾).当t=-4时,方程①的解为121,9x x ==,所以m=9. 又当t=-4时,对任意[1,9]x ∈,恒有21(1)(9)0(41)4x x x x --≤⇔-+=,即(4)f x x -≤,所以m 的最大值为9.考点:1、二次函数的解析式;2、函数与方程; 19.(本小题满分15分)已知,A B 是椭圆2222:1(0)x y C a b a b+=>>的左、右顶点,(2,0)B ,过椭圆C 的右焦点F 的直线交椭圆于点,M N ,交直线4x =于点P ,且直线,,PA PF PB 的斜率成等差数列,R 和Q 是椭圆上的两动点,R 和Q 的横坐标之和为2,RQ (不垂直x 轴)的中垂线交x 轴与于T 点.(1)求椭圆C 的方程; (2)求MNT ∆的面积的最大值【答案】(1)22143x y +=;(2)max 98S =.【解析】试题分析:(1)设出点P 的坐标为(4,)t ,然后根据已知直线,,PA PF PB 的斜率成等差数列可列方程,进而求出参数c 的值,从而求出椭圆的方程即可;(2)首先设出直线MN 的方程为1x my =+,然后联立直线与椭圆的方程并消去x 整理得到关于y 的一元二次方程,再求出判别式以及12||y y -的值,于是由点差法可得出点T 的坐标,再由MNT ∆的面积计算公式可得MNT S ∆的表达式,进而求出其最大值即可得出结果.试题解析:(1)设(4,)P t ,直线,,PA PF PB 的斜率成等差数列⇔2462t t tc =+-1c ⇒=, 所以椭圆方程22143x y +=. (2)设直线MN 方程为1x my =+,联立22143x y +=得22(34)690m y my ++-=,2144(1)0m ∆=+>,12||y y -=RQ 中垂线与x 轴相交于点1T 04⎛⎫⎪⎝⎭,,1219||||22MNT S TF y y ∆=⋅-=,当0m =时,max 98S =. 考点:1、椭圆的标准方程;2、直线与椭圆的相交问题; 20.(本小题满分15分)在数列{}n a 中,12(0),3ta t t a =>≤,n S 为{}n a 的前n 项和,且21143(2)n n n n S S S S n -+=++≥(1)比较2014a 与20153a 大小; (2)令211n n n n b aa a ++=-+,数列{}nb 的前n 项和为n T ,求证:24n t T <.【答案】(1)201420153a a >;(2)112,33a t a t a =≤=,且由(1)知2130n n n a a S +-=≥113n n a a +∴≤∴12111113n n n n n n a a a a a t a a a ---⎛⎫=⋅⋅⋅⋅≤ ⎪⎝⎭,211n n n n b a a a ++=-+是关于1n a +的二次函数,当12n n a a +=时取到最大值,但13n n a a +≤,222339n n n n n a a a b a ⎛⎫⎛⎫∴≤-+= ⎪ ⎪⎝⎭⎝⎭2221212222999n n n a a a T b b b ∴=+++≤+++22212111199994n t t -⎛⎫≤++++= ⎪⎝⎭. 【解析】试题分析:(1)根据1(2)n n n a S S n -=-≥及21143(2)n n n n S S S S n -+=++≥可得到等式213n n n a a S +-=,并令2014n =,即可得出等式22014201520143a a S -=,进而可得20142015,3a a 的大小关系;(2)由(1)知不等式2130n n n a a S +-=≥,即113n n a a +≤,进而可得不等式12111113n n n n n n a a a a a t a a a ---⎛⎫=⋅⋅⋅⋅≤ ⎪⎝⎭,再结合已知211n n n n b a a a ++=-+是关于1n a +的二次函数,根据二次函数的图像可得出其最大值为233n n n n a a b a ⎛⎫⎛⎫≤-+ ⎪ ⎪⎝⎭⎝⎭,进而由数列的前n 项和可得所证结论即可.试题解析:(1)由21143(2)n n n n S S S S n -+=++≥得213n n n a a S +-=,当2014n =时,有220142015201430a a S -=≥,所以201420153a a >.(2)112,33a t a t a =≤=,且由(1)知2130n n n a a S +-=≥ 113n n a a +∴≤∴12111113n n n n n n a a a a a t a a a ---⎛⎫=⋅⋅⋅⋅≤ ⎪⎝⎭211n n n n b a a a ++=-+是关于1n a +的二次函数,当12nn a a +=时取到最大值 但13n n a a +≤,222339n n nn n a a a b a ⎛⎫⎛⎫∴≤-+= ⎪ ⎪⎝⎭⎝⎭2221212222999n n n a a a T b b b ∴=+++≤+++22212111199994n t t -⎛⎫≤++++= ⎪⎝⎭. 考点:1、数列的前n 项和;2、放缩法;。
2016年温州市高三第一次适应性测试自选模块试题2016.1本试题卷共18题,全卷共10页。
自选6道题作答,满分60分,考试时间90分钟。
语文题号01“《论语》选读”模块(10分)阅读下面的材料,然后回答问题。
材料一:子路曰:“君子尚勇乎?”子曰:“君子义以为上。
君子有勇而无义为乱,小人有勇而无义为盗。
”(《论语•阳货篇》)子谓颜渊曰:“用之则行,舍之则藏,惟我与尔有是夫!”子路曰:“子行三军,则谁与?”子曰:“暴虎冯河,死而无悔者,吾不与也;必也临事而惧,好谋而成者也。
”(《论语·述而》)材料二:(齐宣)王曰:“大哉言矣!寡人有疾,寡人好勇。
”(孟子)对曰:“王请无好小勇。
夫抚剑疾视曰,‘彼恶敢当我哉’!此匹夫之勇,敌一人者也。
王请大之!《诗》云:‘王赫斯怒,爰①整其旅,以遏徂莒②,以笃周祜③,以对于天下。
’此文王之勇也。
文王一怒而安天下之民。
《书》曰:‘天降下民,作之君,作之师。
惟曰其助上帝,宠之四方。
有罪无罪,惟我在,天下曷敢有越厥志?’一人衡行于天下,武王耻之。
此武王之勇也。
而武王亦一怒而安天下之民。
今王亦一怒而安天下之民,民惟恐王之不好勇也。
”(《孟子·梁惠王下》)[注]:①爰:语首助词,于是。
②徂:攻击,莒:国名。
③笃:厚;祜:福。
(1)简析材料二中孟子说“今王亦一怒而安天下之民,民惟恐王之不好勇也”的意图。
(2分)(2)结合上述材料,简析孔子、孟子对“勇”看法的异同。
(8分)题号02“外国小说欣赏”模块(10分)阅读下面的小说,然后回答问题。
高速公路上的森林[意大利]卡尔维诺那天晚上,马可瓦多家用尽了最后的干柴。
裹着大衣的全家,看着暖炉中逐渐黯淡的小木炭,每一次呼吸,就从他们嘴里升起云雾。
最后马可瓦多决定了:“我去找柴火,说不定能找到。
”到市区里找柴火,说得倒好!马可瓦多直向夹在两条马路中的一小片公园走去。
空无一人,马可瓦多一面研究光秃秃的树干,一面想着家人正牙齿打颤地等着他……小米开尔,哆嗦着牙齿,读一本从学校图书室借回来的童话,书里头说的是一个木匠的小孩带着斧头去森林里砍柴。
2016年温州市高三第一次适应性测试数学(理科)试题 2016.1本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页,非选择题部分3至6页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
参考公式:柱体的体积公式:V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式:13V Sh =其中S 表示锥体的底面积,h 表示锥体的高台体的体积公式:)(312211S S S S h V ++=其中S 1、S 2分别表示台体的上、下底面积,h 表示台体的高球的表面积公式:24S R π=球的体积公式:334R V π=其中R 表示球的半径 选择题部分(共40分)一、选择题:本大题共8小题,每小题5分。
共40分.在每小题给出的四个选项中,只有一项符合题目要求的。
1.已知集合{}{}032,lg 2<--===x x x B x y x A ,则AB = ( ▲ )A .)3,0(B .)0,1(-C .(,0)(3,)-∞+∞D .)3,1(-2.已知b a ,为异面直线,下列结论不正确...的是( ▲ ) A .必存在平面α使得αα//,//b a B .必存在平面α使得b a ,与α所成角相等C .必存在平面α使得αα⊥⊂b a, D .必存在平面α使得b a ,与α的距离相等3.已知实数y x ,满足⎪⎩⎪⎨⎧≤-≤+≥-32302y x y x y x ,则y x -的最大值为( ▲ )A .1B .3C .1-D .3-4.已知直线l :b kx y +=,曲线C :0222=-+x y x ,则“0=+b k ”是“直线l 与曲线C 有公共点”的( ▲ ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5.设函数)(x f y =是定义在R 上的偶函数,对任意的R x ∈都有(6)()(3)f x f x f +=+,则满足上述条件的)(x f 可以是( ▲ )A .()cos3xf x π= B .()sin3xf x π=C .2()2cos 6x f x π= D .2()2cos 12x f x π= 6.如图,已知1F 、2F 为双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,P 为第一象限内一点,且满足2||F P a =,1122()0F P F F F P +⋅=,线段2PF 与双曲线C 交于点Q ,若225F P F Q =,则双曲线C 的渐近线方程为( ▲ )A.y x = B .12y x =±C .y x =D .y =7.已知集合22{(,)|1}M x y x y =+≤,若实数,λμ满足:对任意的(,)x y M∈,都有(,)x y Mλμ∈,则称(,)λμ是集合M 的“和谐实数对”。
2016年温州市高三第一次适应性测试理科综合能力测试参考答案及评分标准 2016.1一、选择题(本题共17小题,每小题6分,共102分。
在每小题给出的四个选项中,只有一个选项正确,选对的得6分,选错的得0分。
) 题号 1 2 3 4 5 6 7 8 9 答案 C B D B A D B A D 题号 10 11 12 13 14 15 16 17 / 答案CCADCADB/二、多项选择题(本题共3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有一个选项是符合题目要求的。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
)题号 18 19 20 答案BCACDAB第Ⅱ卷(非选择题,共12题,共180分)21.(1)2.5m/s 2(2分) A (2分);场景B 变加速运动(1分),场景C 接近重力加速度(1分) (2)A (2分)(漏选给1分,错选或不选零分) (3)橡皮筋恢复原长时的速度(2分) 22.(1)1200Ω(2分); (2)D (2分);(3)①如图(2分:1线1分) 、②左(2分)、③电源(2分)23. m L L L h 2)2(22211=--= ………………① 2分 21102Mgh Mv =- …………………………② 2分 2111v F Mg M L -= (2)②③联立得 N F 3601=……………………2分221()()02M m gh M m v +=+- …… …④2分 2221()()v F M m g M m L -+=+……………⑤2分 ④⑤联立得 N F 4502= ………………………… 2分因360N<400N ,故大猴可以安全摆到对岸 ……… 1分 因450N>400N ,故大猴不能将小猴安全抱回 …… 1分 24.(1)mg dqU =-----① 2分;mg rv dqU =+πη62-----② 2分; 334r m πρ=-----③ 2分联立①②③得:eUgdr e q n 343πρ==------ 2分 ηρ92r g v =------ 2分(2)(ⅰ)2222Uq mg ma d-=----④ 3分联立①④得:g a =,竖直向上 ----- 2分(ⅱ)211222022f mgd q U W mv -+=-⨯------⑤ 3分联立①③⑤得:)2(3434382133213v gd r r v gdr W f-=-=πρπρπρ----- 2分25.(22分)(1)从C 入射的为正电子,从D 入射的为负电子(2分) (2)电子射入后的轨迹如图甲所示电子在Ⅰ、Ⅱ区域中运动时半径相同,设为r ,由rv m eBv 211=得:d r 2=(2分)21cos =-=r d r θ得:060=θ(2分) 2mT eB π=(2分)对撞时间:eB mT t 3262π=⨯=(2分)(3)由0222r v m eBv =得d r )22(0-=(1分)由22cos 00=-=r r d α得045=α(1分)所以d r x )12(220-==(1分)。
2016年温州市高三第一次适应性测试数学(理科)试题参考答案 2016.1一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.二、填空题:本大题共7小题,前4题每题6分,后3题每题4分,共36分.9.14;1. 10.43π;5. 11.12;36. 12.21;6463. 13.),4[+∞. 14.43-. 15.),2(+∞.三、解答题 16.(本题15分)解:(Ⅰ)由已知得ααcos 3sin 22=,则02cos 3cos 22=-+αα…………3分 所以21cos =α或2cos -=α(舍)……………………………………5分 又因为πα<<0 所以3πα=……………………………7分(Ⅱ)由(Ⅰ)得)3cos(cos 4)(π-=x x x f)sin 23cos 21(cos 4x x x +=……………………………9分x x x cos sin 32cos 22+= x x 2sin 32cos 1++=)62sin(21π++=x ……………………………………11分由40π≤≤x 得32626πππ≤+≤x …………………………………………12分所以 当0=x 时,)(x f 取得最小值2)0(=f当6π=x 时,)(x f 取得最大值3)6(=πf ……………………………14分所以函数)(x f 在]4,0[π上的值域为]3,2[…………………………………15分17.(本题15分)(Ⅰ)如图,由题意知⊥DE 平面ABC 所以 DE AB ⊥,又DF AB ⊥所以 ⊥AB 平面DEF ,………………3分又⊂AB 平面ABD 所以平面⊥ABD 平面DEF…………………6分 (Ⅱ)解法一:由DC DB DA ==知EC EB EA == 所以 E 是ABC ∆的外心又BC AB ⊥ 所以E 为AC 的中点 …………………………………9分 过E 作DF EH ⊥于H ,则由(Ⅰ)知⊥EH 平面DAB所以EBH ∠即为BE 与平面DAB 所成的角…………………………………12分由4=AC ,60=∠BAC 得2=DE ,3=EF所以 7=DF ,732=EH 所以721sin ==∠BE EH EBH …………………………………15分 解法二:如图建系,则)0,2,0(-A ,)2,0,0(D ,)0,1,3(-B所以)2,2,0(--=,)2,1,3(--= ……………………………………9分 设平面DAB 的法向量为),,(z y x =由⎪⎩⎪⎨⎧=⋅=⋅00得⎩⎨⎧=--=--023022z y x z y ,取)1,1,33(-= ………………12分 设与的夹角为θ 所以7213722||||cos ==⋅=n EB θ 所以BE 与平面DAB 所成的角的正弦值为721………………………………15分18.(本题15分)解:(Ⅰ)解:(1)⎪⎩⎪⎨⎧<+-≥-=0,0,)(22x tx x x tx x x f , ……………………………………1分当0>t 时,)(x f 的单调增区间为)0,(),,2[-∞+∞t,单调减区间为]2,0[t ……3分 当0=t 时,)(x f 的单调增区间为),(+∞-∞ ……………………………………4分当0<t 时,)(x f 的单调增区间为),0[+∞,]2,(t -∞,单调减区间为)0,2[t ……6分 (Ⅱ)由(Ⅰ)知0>t 时)(x f 在)0,(-∞上递增,在)2,0(t 上递减,在),2(+∞t上递增从而 当22≥t即4≥t 时,0)0()(==f t M ,………………………7分}24,1min{)}2(),1(min{)(t t f f t m ---=-=………………………8分所以,当54≤≤t 时,t t m --=1)(,故51)()(≥+=-t t m t M ………9分 当5>t 时,t t m 24)(-=,故642)()(>-=-t t m t M ………………10分 当t t≤<22即42<≤t 时,0)0()(==f t M t t t t f f t m --=---=-=1}4,1min{)}2(),1(min{)(2……………11分 所以,31)()(≥+=-t t m t M ………………………………………12分当20<<t 时,t f t M 24)2()(-==………………………………………13分t t t t f f t m --=---=-=1}4,1min{)}2(),1(min{)(2所以,35)()(>-=-t t m t M ………………………………………………14分综上所述,当2=t 时,)()(t m t M -取得最小值为3.………………………………15分19.(本题15分)解:(Ⅰ)由题意得: ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+====+222222221)26(1c b a a c e b a ,解得:⎪⎩⎪⎨⎧==2422b a 故椭圆C 的方程为:12422=+y x ……………………………………5分(Ⅱ)解法一:如图所示,设直线OM ,ON 的方程为OM y k x =,ON y k x =联立方程组22142OM y k xx y =⎧⎪⎨+=⎪⎩,解得M ,同理可得(N ,……………………………………7分作'MM x ⊥轴, 'NN x ⊥轴,','M N 是垂足,OMN S ∆=''''OMM ONN MM N N S S S ∆∆--梯形1[()()]2M N M N M M N N y y x x x y x y =+--+ 1()2M N N M x y x y =-12==9分已知OMN S ∆2=,化简可得21-=ON OM k k .……………………………………11分设(,)P P P x y ,则2242P Px y -=, 又已知AP OM k k =,所以要证BP ON k k =,只要证明12AP BP k k =-……………………13分而2212242P P P AP BP P P P y y y k k x x x ===-+--所以可得ON BP //…………………………………………………………………………15分 (,M N 在y 轴同侧同理可得)解法二:设直线AP 的方程为)2(+=x k y O M ,代入4222=+y x 得0488)12(2222=-+++O M O M O M k x k x k ,它的两个根为2-和P x可得124222+-=OM OMp k k x 1242+=OM OM P k k y ……………………………………7分 从而OM OM OMOM OMBPk k k k k k 2121242124222-=-+-+=所以只需证ON OMk k =-21即21-=ON OM k k …………………………………9分设),(11y x M ,),(22y x N ,若直线MN 的斜率不存在,易得221±==x x从而可得21-=ON OM k k …………………………………10分 若直线MN 的斜率存在,设直线MN 的方程为m kx y +=, 代入12422=+y x 得0424)12(222=-+++m kmx x k则124221+-=+k km x x ,12422221+-=k m x x ,0)24(822>-+=∆m k ………11分 212)24(8||21||||2122221=+-+⋅=-⋅=∆k m k m x x m S OMN化得0)12()24(22224=+++-k m k m ,得1222+=k m ………………………13分214)12(2412424)(222222************-=-+-+=--=+++==⋅k k k m k m x x m x x km x x k x x y y k k ONOM ………………………………………………15分20.(本题14分) 解:(Ⅰ)由已知,)12,(+n n n n a a a P ,从而有)12,(1++n nn n a a a Q 因为n Q 在x y 31=上,所以有13112+=+n n n a a a 解得 nn n a a a 611+=+ ………………………………2分 由01>a 及nn n a a a 611+=+,知0>n a , 下证:n n a a 21221<<-解法一:因为n n n a a a 6)21(2211--=-+,所以211-+n a 与21-n a 异号注意到0211<-a ,知02112<--n a ,0212>-n a 即n n a a 21221<<- …………………………………7分 解法二:由nn n a a a 611+=+ 可得 n n n a a a 6)21(2211--=-+ , n n n a a a 6)31(3311+=++ 所以有312132312111+-⋅-=+-++n n n n a a a a ,即⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧+-3121n n a a 是以32-为公比的等比数列; 设312111+-=a a t , 则1)32(3121--⋅=+-n n n t a a 解得11)32(1)32(321---⋅--⋅+=n n n t t a , …………………………………5分 从而有tt t t a n n n n --=-⋅--⋅+=----111)23(65)32(1)32(32121 由2101<<a 可得023<<-t所以0)49(6521112<-=---tt a n n , 221516032()2n n ta t --=>-- 所以n n a a 21221<<- …………………………………7分(Ⅱ)因为)1(617616161611212121212122212++=+++=+=------+n n n n n n nn n a a a a a a a a a所以 )1(6)13)(21(2)1(6171212121212121212++--=-++=--------+n n n n n n n n a a a a a a a a 因为21102n a -<<,所以1212-+>n n a a 所以有13212221a a a a n n n >>>>>-- 从而可知1a a n ≥ …………………………………9分 故 1||6||6161||1111112+-=-=+-+=-+++++++n n n n n n n n n n n n n a a a a a a a a a a a a a 1||11+-≤+a a a n n||431n n a a -=+ …………………………………11分 所以112121211)43(31||)43(||)43(||43||-----+⋅=-≤≤-≤-≤-n n n n n n n n a a a a a a a a…………………………………12分 所以 ||||||||1342312n n a a a a a a a a -++-+-+-+])43()43(431[3112-++++≤n 431)43(131--⨯=n ])43(1[34n-=34< …………………………………14分命题教师:胡浩鑫 戴海林 叶思迁 叶建华 林世明 叶事一。
2016年温州市高三第一次适应性测试英语试题2016.1本试卷分第Ⅰ卷 (选择题) 和第Ⅱ卷 (非选择题) 两部分。
共120分。
考试时间为120分钟。
第I 卷第一部分英语知识运用:(共两节,满分30分)第一节单项填空:(共20小题; 每题0.5分, 满分10分 )从A、B、C、D四个选项中, 选出可以填入空白处的最佳选项, 并在答题卷上将该项涂黑。
例:It is generally considered unwise to give a child _______ he or she wants.A.howeverB. whateverC. whicheverD. whenever答案是B。
1. —I am going to drive home.—_______! You’ve drunk too much.A. Take your timeB. Go aheadC. Keep in touchD. Come on2. As the number of _______ newborn babies decreases, more couples should be encouraged to have _______ second child.A. /; theB. the; aC. /; aD. the; /3. You are not rich _______ you have something that money can’t buy.A. untilB. ifC. afterD. because4. If you care _______ you sit on the trip, check the website for guide to the best seats.A. whenB. howC. whyD. where5. Thank you for inviting me, but _______ , I am not really a big fan of action movies.A. in the meantimeB. in other wordsC. on the contraryD. to be honest6. Whatever the problem is, I always feel there has to be a _______ .A. regulationB. solutionC. decisionD. relation7. It was freezing. Not even the thickest jacket was enough to _______ the cold.A. work outB. put outC. cut outD. keep out8. There’s _______ out there for everyone. You just have to wait for life to bring them into your life.A. anybodyB. everybodyC. somebodyD. nobody9. I left the tough job because I couldn’t _______ the pressure any longer.A. handleB. evaluateC. obtainD. feel10. I am mad when my wife insists on selling the house. I _______ she would decide that.A. don’t thinkB. haven’t thoughtC. didn’t thinkD. hadn’t thought11. They couldn’t understand what she meant and simply looked at her _______ .A. calmlyB. blanklyC. deeplyD. angrily12. Children with parents _______ guidance is firm and reasonable are likely to possess high levelsof self-confidence.A. whoB. thatC. whomD. whose13. His speech touched the audience’s heart, _______ them to achieve their dreams.A. to inspireB. inspiredC. inspiringD. having inspired14. The power of a smile is amazing. It helps me stay _______ , even in bad times.A. sensitiveB. passiveC. optimisticD. steady15. Let’s focus on what you bring to society _______ on how much money you earn.A. rather thanB. or ratherC. other thanD. or else16. With jobs so hard _______ right now, the idea of being out of work really scares me.A. findingB. to findC. foundD. having found17. It may be worth trying _______ the effort makes you uncomfortable.A. even ifB. as thoughC. in caseD. now that18. A lack of vitamin D, the “sunshine” vitamin, may _______ back pain.A. apply toB. contribute toC. suffer fromD. result from19. Green Gym gives people who _______ wouldn’t have access to gyms a chance to make adifference to their health.A. insteadB. otherwiseC. besidesD. therefore20. —Please line up and take your turn.—Good. _______ .A. First come, first servedB. Easy come, easy goC. You are so kindD. That’s all right第二节完形填空:(共20小题;每小题1分, 满分20分)阅读下面短文,掌握其大意,从第21-40各题所给的四个选项(A、B、C和D)中选出最佳选项,并在答题卷上将该项涂黑。
2016年温州市高三第一次适应性测试数学(理科)试题
一、选择题:本大题共8小题,每小题5分。
共40分.
1.已知集合{}
{}
032,lg 2
<--===x x x B x y x A ,则A B = ( )
A .)3,0(
B .)0,1(-
C .(,0)(3,)-∞+∞
D .)3,1(-
2.已知b a ,为异面直线,下列结论不正确...的是( ) A .必存在平面α使得αα//,//b a
B .必存在平面α使得b a ,与α所成角相等
C .必存在平面α使得αα⊥⊂b a ,
D .必存在平面α使得b a ,与α的距离相等
3.已知实数y x ,满足⎪⎩
⎪
⎨⎧≤-≤+≥-3230
2y x y x y x ,则y x -的最大值为( )
A .1
B .3
C .1-
D .3-
4.已知直线l :b kx y +=,曲线C :022
2=-+x y x ,则“0=+b k ”是“直线l 与曲线C 有公
共点”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
5.设函数)(x f y =是定义在R 上的偶函数,对任意的R x ∈都有(6)()(3)f x f x f +=+,则满足上述条件的)(x f 可以是( )
A .()cos
3x f x π= B .()sin 3x f x π= C .2()2cos 6x f x π= D .2()2cos 12x
f x π=
6.如图,已知1F 、2F 为双曲线C :22
221(0,0)x y a b a b
-=>>的左、右焦点,P 为第一象限内一点,且满足
2||F P a = ,1122()0F P F F F P +⋅=
,线段2PF 与双曲线C 交于
点Q ,若225F P F Q =
,则双曲线C 的渐近线方程为( )
A
.y = B .12
y x =± C
.y =D
.y = 7.已知集合22
{(,)|1}M x y x y =+≤,若实数,λμ满足:对任
意的(,)x y M ∈,都有(,)x y M λμ∈,则称(,)λμ是集合M 的“和谐实数对”。
则以下集合中,存在“和谐实数对”的是( )
A .}4|),{(=+μλμλ
B .}4|),{(22=+μλμλ
C .}44|),{(2=-μλμλ
D .}4|),{(2
2=-μλμλ 8.如图,在矩形ABCD 中,2AB =,4AD =,点E 在线段AD 上且3AE =,现分别沿,BE CE 将,ABE DCE ∆∆翻折,使得点D 落在线段AE 上,则此时二面角D EC B --的余弦值为 ( )
A .45
B .5
C .67
D .7
8
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
9.已知2,0()22,0x x x f x x ⎧<⎪
=⎨-≥⎪⎩
,则((2))f f -= ,函数()f x 的零点个数为 .
10.已知钝角..ABC ∆的面积为1
2
,1,AB BC ==则角=B ,AC = .
11.如图为某几何体的三视图,则该几何体的体积为 ,表
面积为 .
12.已知公比q 不为1的等比数列}{n a 的首项112
a =
,前n 项和为n S ,且223344,,a S a S a S +++成等差数列,则=q ,=6S . 13.已知4
()ln()f x x a x
=+
-,若对任意的R m ∈,均存在00x >使得0()f x m =,则实数a 的取值范围是 . 14.已知ABC ∆中,||1BC =
,2BA BC ⋅= ,点P 为线段BC 上的动点,动点Q 满足
P Q P A P B P C =++ ,则PQ PB ⋅ 的最小值等于 .
15.已知斜率为1
2
的直线l 与抛物线22(0)y px p =>交于位于x 轴上方的不同两点,A B ,记直线
,OA OB 的斜率分别为21,k k ,则21k k +的取值范围是 .
三、解答题:本大题共5小题,共74分。
解答应写出文字说明、证明过程或演算步骤。
16.(本题满分14分)已知2sin tan 3αα=,且0<α<π. (Ⅰ)求α的值;(Ⅱ)求函数()4cos cos()f x x x =-α在[0,]4
π
上的值域.
17.(本题满分15分)如图,在三棱锥D ABC -中,DA DB DC ==,D 在底面ABC 上的射影为E ,
AB BC ⊥,DF AB ⊥于F .(Ⅰ)求证:平面ABD ⊥平面DEF ;
(Ⅱ)若AD DC ⊥,4AC =,60BAC ∠= ,求直线BE 与平面DAB 所成的角的正弦值.
A C
俯视图
侧视图
正视图
第8题图
⇒
D
B
18.(本题满分15分)已知函数()()||(R)f x x t x t =-∈. (Ⅰ)求函数()y f x =的单调区间;
(Ⅱ)当0t >时,若()f x 在区间[1-,2]上的最大值为()M t ,最小值为()m t ,求()()
M t m t -的最小值.
19.(本题满分15分)如图,已知椭圆C :22221(0)x y a b a b +=>>
经过点
,且离心率等于2
,A B 分别为椭圆C 的左、右顶点,N M ,是椭圆C 上非顶点的两点,且OMN ∆的面积等于2.
(Ⅰ)求椭圆C 的方程;
(Ⅱ)过点A 作OM AP //交椭圆C 于点P ,求证:
20.(本题满分15分)如图,已知曲线1C :21x y x =
+(0)x >及曲线2C :1
3y x
=(0)x >,1C 上的点1P 的横坐标为1a 11
(0)2
a <<.从1C 上的点n P (N )n +∈作直线平行于x 轴,交曲线2C 于点
n Q ,再从点n Q 作直线平行于y 轴,交曲线1C 于点1n P +.点n P (1,2,3,)n = 的横坐标构成数列{}n a .
(Ⅰ)试求1n a +与n a 之间的关系,并证明:2121
(N )2
n n a a n -+<<∈; (Ⅱ)若11
3a =,求证:213214||||||(N )3
n n a a a a a a n ++-+-++-<∈ .。