沥青混合料高温稳定性试验检测方法及其影响因素
- 格式:doc
- 大小:26.00 KB
- 文档页数:3
抗车辙剂改性沥青混合料动稳定度变异性研究摘要:目前,我国沥青混合料高温性能的评价方法主要是车辙试验,抗车辙剂改性沥青混合料动稳定度需达到2800次/mm,且同一试验变异系数不大于20%。
众多学者对抗车辙剂改性沥青混合料高温性能的影响因素做了大量研究。
王淑颖认为沥青种类、抗车辙剂和级配会影响沥青混合料抗车辙性能;张争奇等人探讨了抗车辙剂掺加量及矿料级配对沥青混合料高温抗车辙剂性能的影响规律;马峰等人认为抗车辙剂改性沥青混合料的矿料粒径和制备方法会影响其高温性能。
在施工、检测、科研试验中,同一样品、同样生产工艺的抗车辙剂改性沥青混合料成型的车辙试件,得到的动稳定度依然会出现变异性偏大的情况。
由于沥青混合料是复杂的混合物,往往由3到5种不同尺寸规格的集料配合应用,其中材料自身及取样代表性不足造成的变异性,极易造成矿料配比变异性过大,进而影响沥青混合料性能稳定。
因此,本文主要考察集料的取样方法对其矿料配比和抗车辙剂改性沥青混合料动稳定度变异系数的影响,分析结果得出结论。
关键词:抗车辙剂;动稳定度;沥青混合料;变异系数引言近年来,中国交通运输业飞速发展,重载车辆逐渐增多,伴随着环境、气候的不断变化,使沥青路面的早期病害越发普遍,很多新建沥青路面仅使用2~3a便发生了早期病害现象。
为改善沥青路面的使用性能,道路科技工作者针对不同的病害类型,在沥青混合料中尝试添加不同的改性材料。
如谢轶琼等针对沥青路面的高温稳定性,在沥青混合料中添加抗车辙剂,以提升沥青路面的抗车辙能力和水稳定性,但发现其对沥青路面的抗裂性能改善作用较小;韦佑坡等在沥青混合料中加入不同种类的纤维材料,发现这些材料能够大幅提升沥青路面的低温抗裂性能、抗疲劳性能和水稳定性,但对沥青路面的抗车辙性能提升不足。
1抗车辙剂1.1作用机理抗车辙剂对于提高沥青路面的抗车辙能力主要从以下几个方面表现:1、集料增粘作用在混合过程中,首先将抗车辙剂与集料混合。
由于混合时间短,它在集料的表面上部分熔融,提高了集料的粘结性,相当于对集料进行了预改性。
粉胶比对沥青混合料高温性能的影响引言沥青混合料是一种具有流变特性的材料,由沥青与填料矿粉所组成的沥青胶浆的性质随粉胶比的变化而变化,从而影响沥青混合料的高温稳定性。
为了获得较好的高温稳定性,应确定沥青胶浆合适的粉胶比。
1.原材料基础沥青:克拉玛依AH-90沥青,其性质见表1。
矿粉:石灰岩矿粉,矿粉的筛分结果见表2。
选取粉胶比为0.6,0.8,1.0,1.2,1.4,1.6。
表1 基础沥青性质采用布洛克菲尔德粘度计,试验方法为T0625—2000。
试验结果见表3。
表3粘度值表表观粘度与粉胶比之间的关系见图1图1表观粘度与粉胶比关系图从试验结果可以看出,随粉胶比增大,抗剪强度增大。
当粉胶比小于1.2时,变化并不剧烈,当粉胶比大于1.2时,抗剪强度急剧增大,说明过大的矿粉掺量严重影响了沥青的粘度。
因此会影响沥青混合料的拌合和施工,所以从沥青的粘度方面考虑,粉胶比不宜大于1.2。
3.动态剪切流变试验(DSR)动态剪切流变试验采用动态剪切流变仪( DSR),在规定的试验角速度(10 r ad/ s)下,测定沥青材料的复数模量*G和相位角δ并计算车辙因子(*G/sinδ),用该指标来表征沥青结合料的粘性和弹性性状,车辙因子越大,沥青结合料的高温性能越好。
动态剪切流变试验采用美国BOH LIN公司生产的C-VOR150型动态剪切流变仪,试验结果见表4。
*在不同温度下抗车辙因子与粉胶比之间的关系见图2图2粉胶比变化对车辙因子影响曲线从试验结果可知:在3种不同的温度下,抗车辙因子曲线表现出类似的变化规律。
在粉胶比0.6到1.2的范围内,随粉胶比的增加,*G/sin 显著增大,说明加入适当比例的矿粉有利于提高沥青混合料的高温稳定性。
原苏联的研究结果认为,沥青与矿料相互作用后,沥青在矿料表面产生化学组分的重新排列,在矿料表面形成一层扩散结构膜,从而形成一定量的结构沥青,使其具有较高的粘结力和稳定性。
粉胶比的增加提高了结构沥青的比例,使沥青的粘度和强度有所增加,提高了沥青胶浆的高温稳定性。
AC-20热拌沥青混合料动稳定度试验分析探究摘要:在公路工程施工过程中,由于沥青混合料具有工期短、行车跳动小、连续性好、平整度高以及养护维修较为便捷等特点,因此,公路工程中沥青路面应用越来越广泛。
在沥青路面不断使用过程中,由于外界环境温度增加、交通量增加等因素的影响,导致其出现车辙等病害,不但会使道路使用性能受到影响,还对沥青路面的使用寿命产生较大的影响。
通过对我国的规范进行分析可知,动稳定度指标是判断沥青混合料的高温抗车辙能力的主要指标。
本文以AC-20热拌沥青混合料的动稳定度试验为基础,首先对车辙病害的影响因素进行阐述,再对动稳定度试验目的以及方案进行分析,并对沥青混合料原材料进行试验,最后,以此为基础,对其试验结果进行分析,旨在为今后沥青混合料动稳定度试验提供借鉴。
关键词:试验分析;动稳定度;热拌沥青混合料前言在社会经济不断发展的过程中,为了满足社会发展的要求,公路工程建设规模也不断扩大,由于沥青路面具有诸多优点,因此被广泛应用于公路工程建设过程中。
但是,在实际使用过程中,由于沥青混合料施工水平、设计情况以及材质等因素的影响,会使沥青路面出现车辙、坑槽、松散、泛油等病害,本文通过动稳定度试验,对沥青混合料的配合比进行控制,旨在使沥青混合料抗车辙能力进一步提高。
1车辙病害的主要影响因素由于沥青混合料为粘弹性材料,应其对温度等具有较高的敏感度。
在全球气候变暖的过程中,各个地区夏季的温度也越来越高,外界气温的增加,导致沥青路面温度随之增加,在此过程中,沥青路面结构中的热量也不断积累,部分路面的内部温度甚至会比表面温度高,进而使沥青路面出现车辙等病害,这不但会使沥青路面的安全性和行车舒适性受到影响,还会对沥青路面的使用寿命产生较大的影响[1]。
导致沥青路面出现车辙的因素较多,常见的因素主要包括交通荷载、沥青级配合理性、路面结构稳定性、沥青的技术指标以及集料的性质等因素。
在对沥青混凝土进行配制过程中,若所使用的集料具有针片状含量相对较多、棱角性较差等特点,不但会导致集料之间的嵌挤力受到影响,也会使其粘附性受到影响;当沥青中含蜡量相对较大时,所配制的沥青混合料也会更容易变软,导致其高温稳定性受到影响;当地面层或路基承载能力较差时,会使路面结构的稳定性变差,在交通荷载长时间的作用下,沥青路面会出现剪切变形,使其使用性能受到影响;当沥青混合料级配设计不符合要求时,也会导致沥青路面质量受到影响。
沥青混合料高温抗车辙性能试验研究摘要:高温性能是沥青混合料最重要的路用性能之一。
该文主要采用表面层3种级配进行了马歇尔稳定度试验、常规车辙试验和APA车辙试验来评价沥青混合料的高温性能,并分析了3种方法的优劣。
沥青路面在重载作用下造成的车辙、推拥、波浪、拥包等病害使得沥青路面的路用性能迅速下降,这些车辙和拥包主要产生在行车道上,当车辆在行驶过程中,稍稍偏离行车方向时就会引起车辆左右晃动,带来乘客不舒适的感觉。
当车辙达到一定的深度,足以在轮迹带内积水,将导致沥青路面水损害,同时使得快速行驶其上的车辆容易产生水漂。
对于寒冷季节,积水结冰,路面的抗滑性能将大大降低,影响行车安全。
因此,减少和延缓车辙,研究具有优良高温稳定性的沥青混合料是当前道路工作者急待解决的问题之一。
本文主要对表面层3种级配进行系列试验,以评价沥青混合料的高温性能。
1 集料级配3种表面层沥青混合料级配:AC-13F、AC-13C及Sup-12.5。
其中AC-13F与AC-13C分别为《公路沥青路面施工技术规范》(JTGF40—2004)中的细型(F型)与粗型(C型)沥青混合料,Sup—12.5为通过Superpave限制区下限的粗级配。
3种级配结构如表1所示。
2 沥青混合料高温性能试验分析2.1马歇尔试验大量研究表明,马歇尔试验在评价路面高温稳定性方面存在严重的局限性,大多数国家认为用马歇尔方法设计的沥青混合料的稳定度和流值指标与实际路面相关性不好。
大量的路况调查证明,马歇尔稳定度与路面的车辙量之间并没有良好的相关关系,仅有很高的马歇尔稳定度并不能保证沥青路面不产生车辙。
目前,马歇尔试验主要用于配合比设计确定最佳沥青用量,同时用于施工质量检验,马歇尔稳定度也用于量测厂拌沥青混合料的一致性,所以仍然是一项重要的试验项目。
对3种级配沥青混合料在最佳油石比下进行马歇尔试验,结果如表2所示。
从各级配比较来看,马歇尔稳定度指标均满足规范要求,且相差不是很大,从中较难比较各级配高温性能的优劣,同时,马歇尔稳定度与流值之间的相关性不好,流值小的马歇尔稳定度不一定大。
热拌沥青混合料高温强度影响因素浅析万建中1艾克拜尔1海自玲2祁伟3刘浩31 新疆交通科研院,乌鲁木齐830000 ;2 新疆公路设计院,乌鲁木齐830000;3 乌鲁木齐河滩快速路管理处,乌鲁木齐830000关键词:沥青混合料强度因素前言沥青混合料是一种复合粘弹性材料,它是由沥青、粗骨料、细骨料和矿粉以及外加剂所组成。
夏季高温条件下沥青路面结构破坏主要是指沥青混合料在高温时由于其抗剪强度不足或塑性变形过大而产生路面车辙、推移等现象。
目前沥青混合料高温强度和稳定性理论,主要是要求沥青混合料在高温时必须具有一定的抗剪强度和抵抗变形的能力。
沥青混合料的抗剪强度τ主要取决于沥青混合料的粘聚力c和内摩擦角φ两个参数。
通过三轴试验方法应用莫尔——库仑包络线方程:τ=С+σtgφτ——沥青混合料的抗剪强度(MPa);σ——正应力(MPa);С——沥青混合料的粘聚力(MPa);φ——沥青混合料的内摩擦角(rad)。
通过公式,我们看出沥青混合料的粘聚力c和内摩擦角φ决定了混合料的抗剪强度,而影响热拌沥青混合料抗剪强度的原因主要有以下方面:1 沥青粘度的影响沥青混合料是一个具有多级空间网络结构的分散体系,从最细一级网络的结构来看,它是各种矿质集料分散在沥青中的分散系,因此它的抗剪强度与分散相的浓度和分散介质粘度有着密切的关系。
在其它条件不变的条件下,沥青混合料的粘聚力c是随着沥青粘度的提高而增加的。
因为沥青的粘度间接反映出沥青内部的沥青胶团相互位移,是其分散介质抵抗剪切作用的抗力,所以沥青混合料受到剪切作用时,特别是受到短暂的瞬时荷载时,具有高粘度的沥青能赋予沥青混合料较大的粘滞阻力,因而具有较高抗剪强度。
2 沥青与矿料化学性质的影响在沥青混合料中,沥青与矿料交互作用是物理化学过程。
沥青与矿料交互作用后,沥青在矿粉表面产生化学组分的重新排列,在矿粉表面形成一层一定厚度的扩散剂化膜。
在此膜厚度以内的沥青称为“结构沥青”。
1.高温稳定性:在高温条件下,抵抗车辆荷载反复作用,不发生显著永久变形,保持平整度的特性。
高温稳定性的影响因素:沥青混合料类型的影响(高温稳定性形成机理来源于沥青结合料的高温粘结性和矿料级配的嵌挤作用);材料(选取优质材料,合适的沥青用量,适当的级配设计。
适当减少沥青用量,加大压实度,使混合料充分嵌挤,又没有留下大的空隙率是提高沥青路面高温稳定性的重要措施);气候;荷载;评价高温稳定性的试验:马歇尔稳定度试验(马歇尔稳定度和流值)和车辙试验(动稳定度)2.低温抗裂性:低温下产生体积收缩,边界约束在其内部产生温度应力,沥青混合料抵抗这种应力而不破坏的特性。
温度应力超过容许应力时会发生开裂;影响低温性能因素:沥青黏度和沥青温度敏感性,低温弯拉试验的破坏应变指标加以评价。
3.耐久性:使用过程中抵抗环境因素及行车荷载反复作用的能力。
4.抗滑性:路面的抗滑能力与沥青混合料的粗糙度、级配组成、沥青用量和矿质集料的微表面等因素有关;抗滑性的主要因素:矿物组成、化学成分及风化程度、加工方法所决定的矿料自身表面结构;矿料级配所确定的路面构造深度;沥青用量及含蜡量。
4.施工和易性:混合料在拌和、摊铺与碾压过程中集料颗粒保持分布均匀、表面被沥青膜完整的包裹,并能被压实到规定密度的性质。
施工和易性的因素:组成材料的矿料级配、粗细集料之间比例、沥青与矿粉之间比例、矿料与沥青之间比例和施工条件(温度、拌和时间、拌和设备等)5.水稳定性的因素:集料的化学组成、沥青混合料的压实空隙率或混合料类型、沥青用量和沥青膜厚度、沥青品质水稳定性测试方法:粘附性试验(黏附性等级)、浸水马歇尔试验(残留稳定度)、冻融劈裂试验(冻融劈裂强度比)5.气候分区指标:高温、低温、雨量6.蠕变:在恒定荷载下随时间而增加的应变7.合成级配:几种矿质集料按照一定的比例配合得到的沥青混合料的级配情况8.沥青马蹄脂碎石或SMA混合料:一种粗集料多、矿粉多、沥青用量多,而细集料少,并掺加少量纤维稳定剂组成的沥青马蹄脂混合料。
沥青材料的高温性能—软化点及当量软化点摘要车辙变形是当前沥青路面最主要的损坏形式。
沥青高温稳定不足的路面,反映在夏季高温季节中出现车辙、推拥的永久性变形,不仅影响行车舒适性,而且对交通安全造成威胁。
因此在沥青标准中无一例外的都列入了反映沥青高温使用条件的性能指标:软化点。
而当量软化点是为了排除蜡的影响提出的评价沥青混合料的高温性能的重要指标。
本文主要介绍了软化点及当量软化点的工程意义、工程应用及其影响因素、测试方法及设备。
关键词:软化点;当量软化点;沥青;高温性能1.绪论在我国大部分地区,夏季的最高气温能达到35-40ºC以上,沥青路面的最高温度达到60-65 ºC以上,再加上高温持续的时间长,致使沥青路面的重交通作用下迅速变形破坏。
沥青作为粘弹性材料,在如此持续高温的条件下,沥青性能由弹性体向塑性体转化,劲度模量大幅度降低,抗变形能力急剧下降,因此高温稳定性始终是沥青路面最基本的路用性能,车辙变形仍然是沥青路面最主要的损坏形式。
沥青高温稳定性不足的路面,反映在夏季高温季节出现车辙、推拥等永久性变形,不仅影响行车舒适性,而且对交通安全造成威胁。
据工业发达国家的资料,在许多国家,高速公路路面的维护、罩面的原因中,车辙的比率高达80%以上,可见问题的严重性。
沥青路面的车辙变形、拥包等实际上是一种混合料各种成分位置的变化过程,这时沥青的粘度较低,粘结集料抵抗变形的能力有限。
而沥青混合料的高温稳定性能,实际上是抵抗车辙反复压缩变形及侧向流动的能力,它首先取决于矿料骨架,尤其是粗集料的相互嵌挤作用,同时沥青结合料则起到阻碍混合料发生剪切变形的牵制作用,因而两者都是十分重要的。
在通常情况下,矿料级配的贡献率占到60%,沥青结合料则提供40%的抗车辙能力。
尤其是对许多密实型的密级配沥青混凝土来说,粗集料是呈悬浮型结构状态,相互嵌挤作用相当有限,沥青结合料具有较高的高温劲度就起到更为重要的作用。
四、沥青混合料的路用性能1、高温抗车辙性能马歇尔稳定度试验、车辙试验影响高温稳定性的主要因素:沥青用量、粘度、矿料级配和尺寸、形状;2、低温抗开裂;3、耐久性:空隙率和沥青饱和度、残留稳性度(浸水试验);4、抗滑性能:构造深度、抗磨光性、颗粒形状与尺寸;5、施工和易性:影响因素是材料组成和施工条件控制。
二)沥青混合料试件制作方法击实法、轮碾法、静压法1、试验目的采用标准击实法或大型击实法制作沥青混合料试件,用于进行室内马歇尔稳定度试验和进行劈裂强度试验。
2、试验仪器与材料(1)实验室用沥青混合料拌和机:容量不少于10L。
(2)击实仪。
(3)试模:内径101.6mm±0.2mm,高87mm的圆柱形金属筒。
(4)脱模器。
(5)烘箱。
(6)天平或电子秤。
(7)温度计:分度为1℃。
3、试验方法与步骤(1)试件尺寸应符合试件直径不少于集料公称最大粒径的4倍,厚度不小于集料公称最大粒径的1~1.5倍的规定。
(2)确定制作沥青混合料试件的拌和与压实温度。
4、成型操作(1)将拌好的沥青混合料,均匀称取一个试件所需的用量(标准马歇尔试件约1200g,大马歇尔试件约4050g)。
(2)从烘箱中取出预热的试模及套筒,将试模装在底座上,垫一张圆形的吸油性小的纸,用插刀或大螺丝刀沿周围插捣15次,中间10次。
在装好的混合料上面垫一张吸油性小的圆纸,将装有击实锤及导向棒的压实头插入试模中,然后开启电动机或人工将击实锤从457mm的度自由落下击实规定的次数(75次或50次)。
(3)试件击实一面后,取下套筒,将试模掉头,装上套筒,然后以同样的方法和次数击实另一面。
(4)试件击实结束后,立即用镊子取掉上下面的纸,用卡尺量取试件离试模上口的保证高度符合63.5mm±1.3mm(标准试件)。
(5)卸去套筒和底座,将装有试件的试模侧向放置冷却至室温后(不少于12h),置脱模机上脱出试件,逐一编号。
(三)压实沥青混合料密度试验●表干法:判定吸水率≤2%混合料试件●水中重法:几乎不吸水●蜡封法:吸水率>2%(2)计算试件的毛体积相对密度和毛体积密度,取3位小数。
沥青混合料高温特性及其影响因素我国大多数地区夏季温度都很高,最高温度可达四十多度,由于沥青路面吸收阳光紫外线的作用,实际反映到路面的温度可到接近六十多度。
通过衡量沥青路面的温度特性尤其是高温稳定性十分迫切。
沥青路面的高温稳定性指抵抗荷载下车重大小的能力,文章论述了沥青混合料在高温下的几种损坏类型、产生这些病害的成因,并提出防治高温车辙的出现及采取的相应的对策来减小或避免高温病害。
标签:沥青混合料;高温特性;影响因素1 概述沥青路面直接作用于行车荷载大小及各种自然因素的影响,沥青混合料的各种物理以及力学性质也受到各种自然因素的影响(包括温度的高低、含水量的多少、阳光的辐射等)受气候因素与时间因素等),沥青混合料的温度特性包括高温稳定性、低温抗裂性[1,2]。
沥青混合料面的抵抗破坏及抵抗变形的能力与温度有直接的关系,随着温度升高而减小,为了能使沥青路面在高温环境影响下,仍然具有良好的高温路用性能。
不因行车荷载作用而产生各种车辙、推移、等病害,一般评价沥青混合料的高温性能是在室内实验室采用车辙指标来衡量其在荷载作用下抵抗变形的能力[3,5]。
2 破坏类型通常指在高温环境下、慢速加载情况下及抵抗水平剪应力能力弱时,或者说低劲度模量下的沥青路面。
破坏类型通常有一项几种:(1)推移、拥包等类型破坏:通常指由于沥青混合料的剪应力大小不能够抵抗横向水平车辆荷载力导致的破坏,这种破坏多半出现在表处、贯入、路拌中低级沥青路面(如沥青表面处治、沥青贯入式等类型路面)的平交道口和纵坡较陡的坡段。
(2)车辙:对于分车道行驶道路类型的沥青路面而言,高温稳定性不足用车辙指标来衡量。
随着重载交通量的增大,对于行车荷载作用下的沥青类路面,将产生车辙病害(塑形变形不断增加的结果),车辙的大量出现会严重影响路面的使用性能,尤其是路面的平整度;车辙的出现致使沥青面层厚度不均匀,影响层间结合及结构的整体性能,同时车辙的出现直接导致车辙处雨水的聚集,雨水不能得到及时的排除,水膜的形成导致路面的抗滑性能不足,也影响了在高速、超载超车及变向时的安全行车、使用寿命和服务质量的降低。
沥青混凝土路面稳定性与耐久性的影响因素与防治措施分析摘要:稳定性和耐久性是影响沥青混凝土路面使用寿命的两大基本问题,现代公路建设者和设计者们对公路的稳定性和耐久性给予高度重视。
近年来,随着我国交通运输业的高速发展,路基路面的工程投资巨大,因此,要保证沥青混凝土面层具有良好的力学性能和较好的耐久性及行车舒适性,并适合于各种车辆的通行,其中耐久性就是一个重要的影响因素。
很多路面的沥青面层发生了大面积的损害,甚至影响到正常的营运,造成较大的经济损失和社会影响。
本文重点分析了影响公路沥青路面耐久性的重要因素—沥青混合料的稳定性与防护方式,沥青路面水损害的影响因素和防治措施等。
关键词:沥青路面水损害大气降水影响一条公路路面的因素有很多。
随着我国近年来交通建设的飞速发展,公路建设取得了一些突破性的进展。
但同时沥青混凝土路面也存在着大量病害,必须要有严密的施工组织设计,严格的组织管理,还要保证合格的原材料和施工过程中的施工工艺和质量的管理与控制,才能确保公路工程施工的高效性。
对于沥青路面的公路,路基,材料,大气降水对于路面的稳定性和耐久性都有很大的影响。
影响沥青路面的因素路基路面结构的主体裸露在大气中,并具有路线长,与大自然接触面广的特点。
其稳定性受到自然因素、人为因素和环境因素的极大影响。
地质和地理条件、气候条件及水文地质条件和土的类别与强度是影响路基路面稳定性的主要自然因素。
静载.动载的大小及重复作用次数、路基填土或填石的类别与性质、路基的断面形式、路面的等级与结构类型、排水构筑物的设置情况,路面表层是否渗水等,不同类别的土是否分层填筑。
路基压实方法及质量。
面层的施工质量与水平和养护措施及沿线附近的人为设施。
如水库.排灌渠道.水田及人为的活动等都是影响路基路面稳定性的因素。
路基路面结构内温度和湿度的变化则是影响路基路面结构稳定性的环境因素。
路基土和路面材料的力学性质随温度和湿度的变化而产生变化,使路基路面结构分析和计算复杂化。
沥青混合料动稳定度的影响因素一、概述随着我过经济的发展,交通量日益增大,道路的交通量超过了设计交通量的预期值,道路出现了许多损坏。
车辙是我国道路最严重的损坏之一,影响车辙损坏的因素又很多。
车辆的超载,道路日常养护不到位,沥青混合料的质量等等。
车辙损坏中,沥青混合料的质量主要指沥青混合料的动稳定度,在施工阶段控制。
车辙试验是沥青混合料动稳定度由车辙试验得到,车辙试验是被认为是沥青混合料性能检验中最重要的指标。
车辙试验的准确性闲的尤为重要。
影响沥青动稳定度的因素有很多,原材,矿料级配,油石比,车辙试验等等。
二、原材、矿料级配、油石比沥青的针入度,软化点,对车辙的影响很大。
针入度低,软化点高的沥青,沥青混合料的动稳定度会比较高。
在北方冬季严寒的地区,如内蒙古兴安盟地区,冬季气温可达到零下30°C,为了保证沥青混合料的低温性能,会使用针入度较大的沥青,动稳定度会比较低。
沥青动稳定度更加重要。
一般情况下,原材确定后,可以通过调整级配的手段,提高沥青混合料的动稳定度。
可以采用“贝雷法”检验矿料的级配曲线,贝雷法提出关键筛孔与矿料的最大公称粒径有关,不同粒径的混合料采用不同的控制筛孔,将矿料中粗集料分为较粗的粗集料较细的粗集料,细集料分为较粗的细集料和较细的细集料。
给出了关键筛孔通过率比值的范围,从而使较细的粗集料和较细的细集料不会过多。
根据大量试验表明,细集料中较细部分过多,会使沥青混合料碾压时推移严重,动稳定度大幅降低。
使用贝雷法检验调整级配曲线,可适当提高沥青混合料的动稳定度。
沥青混合料的油石比,一般由多项指标共同确定,油石比降低混合料的动稳定度会提升,但抗渗,水稳定性,低温抗裂性能可能会受到影响。
重载交通时为保证动稳定度,可酌情降低其他指标的要求,适当降低油石比。
三、车辙试验沥青混合料动稳定度由车辙试验得到,车辙试验的准确性显的尤为重要。
本文着重分析室内车辙试验对沥青混合料动稳定度的影响。
影响车辙板动稳定度的主要因素有:车辙仪的温度压强,车辙板成型的方式,车辙板的压实度等。
东南大学硕士学位论文不同添加剂对沥青与沥青混合料高温及低温性能影响姓名:任永刚申请学位级别:硕士专业:道路与铁道工程指导教师:黄晓明20071225东南大学硕士论文一般认为60"C粘度是反映沥青在盛夏季节耐热性能的最理想的指标。
在我国,夏季沥青路面的温度可达50"C到70℃,测定60"C粘度真实地反映路面的实际使用情况。
粘度大的沥青说明在荷载作用下产生较小的剪切变形,弹性恢复性能好,残留的永久塑性变形小,这说明了路面抵抗车辙能力的本质。
美国、澳洲等国采用60℃粘度作为沥青的分级指标正是这个道理。
但60℃粘度与沥青的其他指标一样,是一个条件性指标,它是在一个标准的真空减压条件下,使沥青通过一个特定尺寸的毛细管,按流经时间计算得到的动力粘度,在物理意义的表达方式上,我国广大生产单位的技术人员比较陌生,需要一个逐渐的认识过程。
最重要的是此设备需进口且价格昂贵,而目前国内自行研制开发的设备是属于仿造性的产品,控制精度较差,尤其是毛细管没有自己的标定方法,标定用的标准粘度油是进口的,不能长期保存。
这就严重影响了我国推广使用粘度这种指标的可行性。
综上所述,简单的粘度计不能获得满意的粘度及弹性行为特性的测量结果。
根据东南大学陈平硕士论文所做的稠度试验的结果表明,稠度试验评判结果与SHRP试验评判结果有非常好的相关性。
利用稠度试验不仅可以测试沥青的稠度、粘度,同时可对沥青中添加的改性剂进行评判。
为了通过稠度试验来更有效的反映沥青高温情况下的粘弹性特性。
根据粘稠度的物理意义,东南大学联合河南高远公路养护技术有限公司在国内首先开发出新型稠度仪,原理为在一目标温度的水浴里以一定的速率剪切环形沥青试样,由剪切过程中剪应力和剪切应变率的比值定义为稠度,它表征的是沥青的粘稠程度。
稠度试验的原理是通过剪切一个置于两个同轴圆筒间的环形材料试样,以受控的应变率(垂直于圆筒的环形平面)进行加载试验。
加载期间位移和力得到测量,从而测定材料的粘稠度和强韧性,本质上与粘度的意义相同。
沥青混合料的高温稳定性评价方法及指标摘要:沥青现在广泛应用在道路路面铺装,我国许多道路路面都采用沥青路面进行铺装。
对于沥青混合料的一些性能研究和其对应的评价指标和评价方法的选定极为重要,本文对沥青高温稳定性一些评价方法进行介绍和对比选取了相应的评价方法和通过一些试验对沥青混合料的高温稳定性性能进行了研究,并且选取了相对应得评价指标及其评价方法最终得出结论。
结果表明:评价指标中的动稳定度与沥青混合料中的沥青用量有关并且与沥青混合料空隙率和饱和度有很大的线性关系。
关键词:沥青混合料;高温稳定性;评价指标;评价方法;动稳定度;线性关系1.引言随着沥青路面道路在我国的大量修筑和使用,有关沥青性能和沥青混合料性能的研究也在逐渐的开展。
现在对于沥青混合料的高温稳定性也有其他具体的研究,本文通过对沥青混合料高温稳定性评价方法进行一些介绍和对比,最终然后选取了车辙试验作为沥青混合料高温稳定性的评价方法这主要是因为车辙实验的实验原理比较简单明了直观不会过于复杂,实验的的结果也可以较为直观明显并且与实际的沥青栓路面的车辙性能而得到大规模的应用。
2.沥青混合料高温稳定性评价方法沥青混合料的高温稳定性性能评价主要采用具体的某一集配的集料然后根据相关的试验的方法确定最佳油石比最后通过试验然后选取相关的评价指标对于试验的沥青混合料的高温稳定性做出评价。
对于沥青混合料的高温稳定性评价可以采取不同的方法原理的试验方法,并且采取不同的评价指标对其试验的结果进行衡量。
但是我国目前采用沥青混合料高温稳定性评价方法主要是通过以下试验来进行:单轴压缩试验、马歇尔试验、车辙实验。
这些试验都有其试验的原理理论并且都根据试验的原理和结果选取了相对应的评价指标。
下面将对这些评价方法进行一些说明和对比指出其一些优劣处本文主要选择车辙试验对沥青混合料的高温稳定性做出评价并且在指标选取上会对常规的评价指标做出分析最后选择相应的评价指标。
2.1单轴压缩试验单轴压缩试验指的是将沥青混合料制成相对应标准的试件一般是将试件制作成尺寸在直径100mm±2.0mm然后高为100mm±2.0mm的圆柱形试件,然后在万能试验机将下压板和底座放置在试验机升降台座上对中,迅速的取出试件放在我们之前标记好的下压板中央刻度线的附件的地方然后加上压板。
沥青混合料高温稳定性试验检测方法及其影响因素[摘要]本文介绍沥青混合料车辙试验方法,分析沥青混合料高温稳定性的影响因素。
【关键词】沥青混合料;高温稳定性;车辙;动稳定度
一、概述
沥青混合料是一种典型的流变性材料,它的强度和变形量随着温度的升高而降低。
所以沥青混凝土路面在夏季高温时,在重交通荷载的重复作用下,由于交通的渠化,在轮迹带逐渐形成变形下凹、两侧鼓起的所谓“车辙”,这是高速公路沥青路面最常见的病害。
众多研究表明,动稳定度能较好地反映沥青路面在高温季节抵抗形成车辙的能力。
二、沥青混合料高温稳定性的检测方法
检测沥青混合料高温稳定方法有很多,如:最常见马歇尔稳定度试验和三轴压缩试验。
由于三轴试验较为复杂,所以马歇尔稳定度被广泛采用,并且已成为国际通用的方法。
辽宁高速公路有着的多年经验,我省采用车辙动稳定度试验(以正式列入《公路工程沥青及沥青混合料试验规程》(JTG E20-2011)来评价沥青混合料的抗车辙能力。
1、原理
沥青混合料的车辙试验是试件在规定温度及荷载条件下,测定试验轮往返行走所形成的车辙变形速率,以每产生1mm变行的行走次数即用动稳定度表示。
2、试件成型
车辙试件采用轮碾法制成,尺寸为300mm*300mm*50-100mm。
(厚度根据需要确定)。
也可以从路面切割得到需要尺寸的试件。
碾压轮为与钢筒式压路机相似的圆弧形碾压轮,轮宽300mm,压实线荷载为300N/cm,碾压行程为试件宽度即300mm,经碾压后的试件的密度应为马歇尔试验标准击实密度的100±1%。
3、沥青混合料车辙试验方法
将试件连同试模一起,置于已达到试验温度60℃±1℃的恒温室中,保温不少于5h,也不得超过12h。
之后,将试件连同试模移置于车辙试验机的试验台上,试验轮在试件的中央部位,其行走方向必须与试件碾压方向或行车方向一致。
启动试验机,使试验轮往返行走,时间1h,记录仪自动记录变形曲线及时间温度。
DS={(t2-t1)*N/(d2-d1)}*C1*C2
式中:DS--沥青混合料的动稳定度(次/mm)
d1—对应于时间t1(一般为45min)的变形量(mm);
d2—对应于时间t2(一般为60min)的变形量(mm);
C1--试验机类型修正系数,曲柄连杆驱动加载轮往返运行走方式为1.0;
C2--试件系数,试验室制备的宽300mm的试件为1.0;
N—试验轮往返碾压速度,通常为42次/min。
4、车辙试验注意事项
(1)称料。
试验规程规定,一个车辙试件混合料用量按试件的体积乘以马歇尔标准确击实密度,再乘以系数1.03计算。
根据笔者的经验,系数不一定必须是1.03,应根据现场实际情况而定。
高速公路常用的I型沥青混凝土的密度一般采用毛体积密度或表观密度,而表观密度比毛体积密度大,所以同一种混合料如果按表观密度计算比按毛体积密度计算所需材料用量多。
所以在混合料成型时,如果采用表观密度或者试件表面高出试模,称料时应降低系数值,笔者建议选用1.025。
(2)碾压次数。
车辙试件正式压实前,应经试压,决定碾压次数。
一般先在一个方向上预压2个往返,再掉转方向,碾压12个往返左右可达到马歇尔密度的100±1%。
有的施工单位认为碾压次数越多,车辙试验结果越好,这种想法是错误的。
其实,如果碾压次数过多,不但容易把集料碾碎,而且也不符合车辙试验的变形机理,实际的试验结果不一定好。
(3)拌和及碾压温度。
普通沥青混合料的拌和温度为163℃,碾压温度为130-140℃;改性沥青混合料拌和温度为180℃,碾压温度为150-160℃。
需要强调的是:碾压温度一定要保证,如果碾压温度低,就是碾压次数再多,试件的亮度也不能达到要求,造成试验结果与实际情况不符。
三、沥青混合料高温稳定性的影响因素
沥青混合料是由沥青结合料粘结矿料组成的,其高温稳定性的形成机理来源于矿料之间的嵌挤力与粘聚力的原材料、矿料级配、沥青用量以及施工质量成为影响沥青混合料高温稳定性的主要因素。
1、材料
沥青混合料由沥青、集料以及矿粉混合组成,这些材料的物理力学直接影响
沥青混合料的高温稳定性。
(1)集料。
集料包括粗集料和细集料。
不论是粗集料还是细集料,其表状况和化学成分对沥青混合料的高温稳定性有很大的影响。
通常,表面破碎、坚硬、纹理粗糙、多棱角、颗粒接近立方体的碱性集料,其相应的沥青混合料的高温稳定性就比较好。
细集料中机制砂大大增加了混合料的流动性,使整体混合料表面粗糙、有较好棱角的集料组成的混合具有较大的嵌挤力和内摩阻力。
(2)沥青。
沥青本身的性质对沥青混合料高温稳定性的影响很大。
通常沥青的60℃粘度越高、软化点越高,相应的沥青混合料的高温抗车辙能力就越强。
我们结合沈阳绕城高速公路改扩建工程LAC-25型沥青混合料与LAC-20型沥青混合料车辙试验,采用辽河油田AH-70沥青和SBS掺量为5%的改性沥青混合料做车辙试验,试验结果为1850次/mm、3340次/mm。
试验结果表明,使用改性沥青与普通沥青能大大担高沥青混合料的抗车辙能力。
我们经大量的试验发现:改性沥青(SBS掺量为5%、基质沥青为辽河油田AH-70)比普通沥青(辽河油田AH-70)的软化点提高了30℃左右,而60℃粘度是普通沥青的30倍。
因此,使用改性剂掺量适宜的改性沥青能够提高沥青与石料的粘附性,增加沥青与矿料之间的粘聚力,从而提高沥青混合料的高温稳定性。
2、矿料级配
沥青混合料的高温稳定性能,就是沥青混合料抵抗车辆反复压缩变形及侧向流动的能力,它首先取决于矿料骨架的嵌挤作用即矿料级配的空隙率值。
空隙率过大或过小动稳定度都会下降,空隙率大,沥青混合料的水稳定性不好,沥青与矿料的粘附性下降使动稳定度降底。
空隙率小,说明级配中粗集料少,细集料多,不能形成矿料骨架的嵌挤作用,从而降低了沥青混合料的高温抗车辙能力。
3、施工
沥青路面在施工过程中,施工单位应制定质量保证和质量控制体系,加强施工中的质量控制。
首先要严把原材料的质量关,其次,应对施工中的混合料的各项指标如:马歇尔试验各项指标、矿料级配、油石比、动稳定度等进行严格的控制;同时控制好施工温度(包括拌和、摊铺及碾压温度)及压实度。
只有严格控制施工质量,才能使铺筑的沥青混合料获得最佳嵌挤作用和粘结作用,提高沥青混凝土路面的高温稳定性。
四、结束语
影响沥青混合料高温稳定性的因素很多,除了有材料、矿料级配、油石比及施工质量的影响外,与荷载、温度、时间(含车速)的关系也很大。
为了提高沥青混合料的高温稳定性,从主观上应采用表面粗糙、破碎面积大、坚硬并且与沥青粘附性好的集料;适当的提高沥青的稠度,或采用改性沥青在级配允许范围内增加骨料用量,控制空隙率,使集料形成空间骨架结构,以提高混合料的内摩阻力,严格控制沥青用量,严格控制施工质量。